
Recursive autonomy identification-based learning of augmented naive Bayes classifiers

Recursive autonomy identification-based learning of
augmented naive Bayes classifiers

Shouta Sugahara sugahara@ai.is.uec.ac.jp

Wakaba Kishida kishida@ai.lab.uec.ac.jp

Koya Kato kato@ai.lab.uec.ac.jp

Maomi Ueno ueno@ai.is.uec.ac.jp

The University of Electro-Communications, Tokyo, Japan

Abstract

Earlier reports have described classification accuracies of exactly learned augmented naive
Bayes (ANB) classifiers. Those results indicate that a class variable with no parent has
higher accuracy than those of other Bayesian network classifiers. Additionally, asymp-
totic estimation of the class posterior identical to that of the exactly learned Bayesian
network is guaranteed to be achieved. Nevertheless, exact learning of large ANB is dif-
ficult because it entails an associated NP-hard problem that worsens as the number of
variables increases. Recent reports have described that constraint-based learning methods
with Bayes factor achieve larger network structures than when using traditional methods.
This study proposes an efficient learning algorithm of an ANB classifier using recursive au-
tonomy identification (RAI) with Bayes factor. A unique benefit of the proposed method is
that the proposed method is guaranteed to accelerate execution of the RAI algorithm when
the data follow an ANB structure. Numerical experiments were conducted to demonstrate
the effectiveness of the proposed method.

Keywords: augmented naive Bayes; Bayesian networks; classification; structured learn-
ing

1. Introduction

A Bayesian network classifier (BNC) can be interpreted as a Bayesian network for which
one node is a class variable and the other nodes are feature variables. Earlier reports have
described that classification accuracies of Bayesian networks (BNs) obtained by maximizing
the conditional log likelihood (CLL) of a class variable, given the feature variables, were
higher than those obtained by maximizing the marginal likelihood (ML) (Friedman et al.,
1997; Carvalho et al., 2011, 2013; Grossman and Domingos, 2004). Recently, however, Sug-
ahara et al. (2018); Sugahara and Ueno (2021) demonstrated experimentally that the BNC
performance achieved by maximizing the ML is not necessarily worse than that achieved
by maximizing CLL for large data. Unfortunately, their experiments also demonstrated
that the classification accuracy of the structure maximizing the ML rapidly worsens as the
sample size becomes small. They explained the reason: the class variable tends to have
numerous parents when the sample size is small. Therefore, the conditional probability
parameter estimation of the class variable becomes unstable because the number of par-
ent configurations becomes large. Then the sample size for learning a parameter becomes
sparse. This analysis suggests that exact learning BNC by maximizing the ML to have
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no parents of the class variable might improve the classification accuracy. Consequently,
they proposed exact learning augmented naive Bayes classifier (ANB), in which the class
variable has no parent and in which all feature variables have the class variable as a parent.
Additionally, they demonstrated the effectiveness of their method empirically. However,
exact learning ANB has an associated NP-hard problem (Chickering, 1996): as the number
of variables increases, the number of structure searches increases exponentially. Various
algorithms for exact learning Bayesian networks have been developed, such as dynamic
programming (Silander and Myllymäki, 2006), A∗ search (Yuan et al., 2011), breadth-first
branch and bound search (Malone et al., 2011), and integer programming (Cussens, 2012).
Nevertheless, it cannot be applied to network structures with more than 60 variables.

However, in the field of causal models, a more computationally efficient structure learn-
ing method has been proposed, although it has no asymptotic matching of the true structure.
This method, called the constraint-based approach, learns structure by orienting edges using
orientation rules (Pearl, 2000) on an undirected graph that is learned by application of the
Conditional Independence test (CI test) between two variables to a fully undirected graph.
In the study of constraint-based approaches, the PC algorithm (Spirtes et al., 2000), the
TPDA algorithm (Cheng et al., 2002), the MMHC algorithm (Tsamardinos et al., 2006),
and the RAI algorithm (Yehezkel and Lerner, 2009) have been reported. The RAI algo-
rithm is known as an extremely efficient method with this approach. The salient benefit
of the RAI algorithm is that it decreases the number of conditional variables of CI tests in
the constraint-based approach because it decomposes the entire structure into partial struc-
tures based on observed V-structures. Steck and Jaakkola (2002) proposed a conditional
independence test with an asymptotic consistency, a Bayes factor with BDeu. Abellán
et al. (2006) proposed a learning method by application of the CI test with the BDeu score
to the PC algorithm. Furthermore, Natori et al. (2017) reported that the RAI algorithm
based on the Bayes factor yielded the largest and the most accurate learning results. More
recently, researchers challenged to employ constraint-based learning methods with Bayes
factor to increase the available learning Bayesian networks size (e.g. Rohekar et al. (2018);
Mokhtarian et al. (2021)).

As described in this paper, we propose a constraint-based Learning ANB classifier using
RAI with Bayes factor to learn large ANB classifier structures. The proposed method is
expected to improve efficiency of the original RAI algorithm without the ANB constraint
because the proposed method is guaranteed to accelerate the structure decompositions that
occur during the RAI algorithm execution when the data follow an ANB structure.

Numerical experiments using benchmark datasets show that the proposed method can
learn larger networks than the exact solution search approach can.

2. Bayesian network classifiers

2.1 Bayesian network

Let V = {X0, X1, . . . , Xn} be a set of n+1 discrete variables. Each can take values in the
set of states {1, . . . , rXi}. We write Xi = k when we observe that variable Xi is state k.
According to the Bayesian network structure G, the joint probability distribution is given
as
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P (X0, X1, . . . , Xn) =

n∏
i=0

P (Xi | Πi, G). (1)

where Πi is the parent variable set of Xi. Letting θijk be a conditional probability parameter
of Xi = k when the j-th instance of the parents of Xi is observed (We write Πi = j), we
define Θ = {θijk} (i = 0, · · · , n; j = 1, · · · , qΠi ; k = 1, · · · , rXi). A Bayesian network is
a pair B = (G,Θ). Buntine (1991) assumed the Dirichlet prior and used an expected a
posteriori (EAP) estimator θ̂ijk as

θ̂ijk =
αijk +NXi=k,Πi=j

αij +NΠi=j
. (2)

In that equation, NXi=k,Πi=j represents the number of samples of Xi = k when Πi = j,

NΠi=j =
∑rXi

k=1NXi=k,Πi=j . In addition, αijk denotes the hyperparameters of the Dirichlet

prior distributions (αijk is a pseudo-sample corresponding to NXi=k,Πi=j); αij =
∑rXi

k=1 αijk.
The first learning task of the Bayesian network is to seek a structure G optimizing a

given score. The most popular marginal likelihood (ML) score of Bayesian network (using
a Dirichlet prior over model parameters) finds the maximum a posteriori (MAP) structure
when we assume a uniform prior over structures, as described by Buntine (1991) and Heck-
erman et al. (1995). In addition, the Dirichlet prior is known as a distribution that ensures
likelihood equivalence. This score is known as Bayesian Dirichlet equivalence (BDe) (Heck-
erman et al., 1995). Given no prior knowledge, the Bayesian Dirichlet equivalence uniform
(BDeu), as proposed earlier by Buntine (1991), is often used. Let D = {x1, · · · ,xd, · · · ,xN}
be training dataset and let each xd be a tuple of the form 〈xd0, xd1, · · · , xdn〉. For the anal-
yses presented in this paper, we assume no missing data throughout. The BDeu score is
represented as

P (D | G) =
n∏
i=0

qΠi∏
j=1

Γ( α
qΠi

)

Γ( α
qΠi

+NΠi=j)

rXi∏
k=1

Γ( α
rXi

qΠi
+NXi=k,Πi=j)

Γ( α
rXi

qΠi
)

, (3)

where α is a hyperparameter.

2.2 Bayesian network classifiers

A Bayesian network classifier (BNC) can be interpreted as a Bayesian network for which X0

is the class variable and for which X1, . . . , Xn are feature variables. Given an instance x =
〈x1, . . . , xn〉 for feature variables X1, . . . , Xn, the BNC predicts the class c by maximizing
the posterior probability as

ĉ = arg max
c∈{1,...,r0}

P (c | x1, . . . , xn, G,Θ) (4)

= arg max
c∈{1,...,r0}

q0∏
j=1

r0∏
k=1

(θ0jk)
10jk ×

∏
i:Xi∈Ch

qi∏
j=1

rXi∏
k=1

(θijk)
1ijk

where 1ijk if Xi = k and Πi = j in case 〈x0, . . . , xn〉 and 1ijk = 0 otherwise. Furthermore,
Ch is a set of children of the class variable X0. From Equation 4, we can infer class c given
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only the values of the X0’s parents, the X0’s children, and the parents of the X0’s children,
which are called a Markov blanket of X0. A BNC that uses a general Bayesian network
is called a General Bayesian Network (GBN). However, the most common score for BNC
structures is the conditional log likelihood (CLL) of the class variable given all the feature
variables (Friedman et al., 1997). Friedman et al. (1997) claimed that the structure maxi-
mizing CLL, called a discriminative model, provides more accurate classification than that
maximizing the ML because the CLL reflects only the class variable posterior, whereas the
ML reflects the posteriors of all the variables. Nevertheless, ML is known to have asymp-
totic consistency, which guarantees that the structure which maximizes the ML converges
to the true structure when the sample size is sufficiently large. Sugahara and Ueno (2021)
demonstrated experimentally that the BNC performance achieved by maximizing the ML
is not necessarily worse than that achieved by maximizing CLL for large data. Unfortu-
nately, their experiments also demonstrated that the classification accuracy of the structure
maximizing the ML worsens rapidly as the sample size becomes small. They explained the
reason: the class variable tends to have numerous parents when the sample size is small.
Therefore, the conditional probability parameter estimation of the class variable becomes
unstable because the number of parent configurations becomes large. Then the sample size
for learning a parameter becomes sparse. To resolve this difficulty, they proposed exact-
learning-augmented naive Bayes classifier (ANB) for which the class variable has no parent
and for which all feature variables have the class variable as a parent. Their method is
guaranteed to estimate the identical class posterior asymptotically to that of the exactly
learned BN. They demonstrated the effectiveness of their method empirically. However,
the exact learning approach is limited to learning dozens of variables. It cannot be applied
to cases with numerous variables. Therefore, we propose an approach that can learn large
BNCs.

3. Proposed Method

3.1 Constraint-based learning Bayesian networks based on Bayes factor

Constraint-based approaches relax computational costs and learn huge networks. Such ap-
proaches learn by conditional independence (CI) tests and by direction using orientation
rules. Among these approaches, the Peter and Clark (PC) algorithm (Spirtes et al., 2000),
max-min hill climb (MMHC) algorithm (Tsamardinos et al., 2006), and recursive autonomy
identification (RAI) algorithm (Yehezkel and Lerner, 2009) are well known. Of those, the
RAI algorithm is the state-of-the-art algorithm adopting this approach. The salient benefit
of the RAI algorithm is that it decreases the number of conditional variables of CI tests
in the constraint-based approach because it decomposes the entire structure into partial
structures based on observed V-structures. However, this approach relies on CI tests con-
ducted between each pair of variables using statistical tests or information theory tests.
The statistical test necessarily has type I error (detecting the dependency when the true
structure is independent) even for large data. The information theory test also depends
on the user-determined threshold. Therefore, earlier methods using this approach have no
asymptotic consistency.

However, Steck and Jaakkola (2002) proposed a conditional independence test with an
asymptotic consistency: a Bayes factor with BDeu. For two variables X,Y ∈ V and a set
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of conditional variablesZ ⊆ V \ {X,Y }, the log Bayes factor with BDeu for X and Y given
Z is defined as

logBF (X,Y | Z) = logLocalBDeu(X | Z)− logLocalBDeu(X | Z ∪ {Y }),

where

LocalBDeu(X | Z) =

qZ∏
j=1

Γ( αqZ )

Γ( αqZ +NZ=j)

rX∏
k=1

Γ( α
rXqZ

+NX=k,Z=j)

Γ( α
rXqZ

)
.

When there exists a variable set Z such that logBF (X,Y | Z) > 0, then the edge between
X and Y is deleted.

Moreover, Abellán et al. (2006) and Natori et al. (2017) proposed constraint-based
learning methods using the RAI with a Bayes factor, which can learn large networks. We
will apply the constraint-based learning methods using a Bayes factor to our proposed
method to accommodate much greater numbers of variables in our method.

3.2 Learning ANB using the RAI algorithm with the CI test using Bayes
Factor

This section presents the algorithm of the constraint-based learning method of ANB with
RAI algorithm. Let the graph be G = (V,E), where V is the set of variables in G and E is
the set of edges in G . In addition, G has both directed and undirected edges. In addition,
let Gex = (Vex ,Eex ) be the subgraph partitioned by the RAI algorithm.

(1) Input data D, initial order of CI tests nz = 1, and initial graph Gucf = (Vs,Es),
which is a complete undirected graph consisting of all the feature variables.

(2) For all X ∈ Vs, Y ∈ Vs ∪ Vex,Z ⊆ Vs ∪ Vex \ {X0}, (|Z| = nz), when X and Y
given Z∪{X0} are determined to be conditionally independent by CI tests, the edges
between X and Y are removed.

(3) Apply the orientation rule to the graph obtained in (2).

(4) Partition the graph into subgraphs Gex based on the direction.

(5) nz = nz + 1; Recursively invoke RAI on each subgraph.

(6) Add X0 and the edges from X0 to all the feature variables to the resulting structure.

In Step (1), the initial graph Gucf does not include the class variable and the edges from
the class variable to all the feature variables. The proposed method starting without X0 is
more efficient than that with X0 because the former has smaller number of edges than the
latter does although they achieve the same results.

The proposed method is expected to improve the efficiency of the original RAI algorithm
without the ANB constraint for the following reasons. First, the proposed method performs
CI tests only among feature variables whereas the original RAI performs CI tests among
all variables. Second, the proposed method is guaranteed to accelerate decomposition of
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the structure in the RAI algorithm when the true Bayesian network has an ANB structure.
The CI tests given the class variable in Step (2) earlier detect the conditional independence
than those without the class variable do. As the number of removed edges is larger, the
number of the decomposition in the RAI algorithm increases. Consequently, it is expected
to decrease the number of conditional variables of CI tests in the RAI algorithm.

Moreover, the proposed method is guaranteed to estimate the true conditional proba-
bility of the class variable asymptotically although the proof is omitted due to limitations
of space.

If we assume ANB, then the number of parameters necessarily increases compared to
GBN because it forces addition of edges from class variables to feature variables. In this
case, convergence to the true value of the joint probability distribution represented by the
estimation structure is expected theoretically to be slower than that of GBN. However,
as described in Section 2, because the prior distribution parameter of the class variable
increases exponentially, GBNs are known to have unstable estimation accuracy when the
number of parent variables of a class variable is large (Sugahara et al., 2018; Sugahara and
Ueno, 2021). Although the number of parameters is greater with the ANB structure, no
parent of class variables is expected to improve the classification accuracy.

4. Experiments

This section presents evaluation experiments conducted to underscore the effectiveness of
the proposed method. First, we use the following nine methods to compare classification
accuracies for small networks.

• Naive Bayes

• TAN: Learn a TAN that optimizes the log likelihood (Friedman et al., 1997).

• GBN-CMDL: Greedy learning GBN method using the hill-climbing search by minimiz-
ing CMDL while estimating parameters by maximizing LL (Grossman and Domingos,
2004).

• BNC2P: Greedy learning method with at most two parents per variable using the
hill-climbing search by maximizing CLL while estimating parameters by maximizing
LL (Grossman and Domingos, 2004).

• TAN-aCLL: Exact learning TAN method by maximizing aCLL (Carvalho et al., 2013).

• exact-GBN: Exact learning of GBN with BDeu score (Silander and Myllymäki, 2006).

• exact-ANB: Exact learning of ANB with BDeu score

• RAI-GBN: Constraint-based learning GBN using Bayes factor

• RAI-ANB: Learning ANB using proposed method

The value of the pseudo-sample (hyperparameter) for the BDeu score and Bayes factor was
set as 1.0 to maximize the posterior variance, as suggested by Ueno (2010). For all methods,
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Table 1: Accuracies of the respective classifiers for small networks

dataset variable number of data classes
Naive
Bayes TAN

GBN-
CMDL BNC2P

TAN-
aCLL

exact-
GBN

exact-
ANB

RAI-
GBN

RAI-
ANB

1 magic 11 19020 2 0.7447 0.7767 0.7849 0.7806 0.7631 0.7865 0.7863 0.7793 0.7790
2 Flare 11 1389 9 0.7804 0.7976 0.8265 0.8315 0.8229 0.8430 0.8265 0.8423 0.8178
3 heart 14 270 2 0.8296 0.8407 0.8185 0.8037 0.8148 0.8444 0.8148 0.7666 0.8333
4 wine 14 178 3 0.9205 0.9212 0.9438 0.9157 0.9326 0.9424 0.9490 0.9212 0.9150
5 Cleve 14 296 2 0.8309 0.8175 0.8209 0.8007 0.8378 0.8144 0.8309 0.7771 0.8212
6 Australian 15 690 2 0.8362 0.8304 0.8312 0.8348 0.8464 0.8492 0.8449 0.8405 0.8463
7 crx 15 653 2 0.8391 0.8483 0.8346 0.8208 0.8560 0.8481 0.8482 0.8544 0.8436
8 EEG 15 14980 2 0.5774 0.6298 0.6787 0.6374 0.6125 0.6843 0.6937 0.6421 0.6709
9 Congressional 17 232 2 0.9137 0.9398 0.9698 0.9612 0.9181 0.9699 0.9699 0.9655 0.9438
10 zoo 17 101 5 0.9709 0.9427 0.9109 0.9505 1.0000 0.9900 0.9700 0.8809 0.9418
11 pendigits 17 10992 10 0.7998 0.8477 0.9062 0.8719 0.8700 0.9329 0.9326 0.8757 0.9254
12 letter 17 20000 26 0.4456 0.4866 0.5796 0.5132 0.5093 0.5777 0.5950 0.5560 0.6145
13 ClimateModel 19 540 2 0.9203 0.9314 0.9407 0.9241 0.9333 0.9259 0.9055 0.9074 0.9203
14 ImageSegmentation 19 2310 7 0.7324 0.7510 0.7918 0.7991 0.7407 0.8233 0.8290 0.7839 0.8121
15 lymphography 19 148 4 0.8523 0.8109 0.7939 0.7973 0.8311 0.8647 0.7909 0.6842 0.8514
16 vehicle 19 846 4 0.4266 0.5472 0.5910 0.5910 0.5816 0.5910 0.6417 0.4893 0.6028
17 hepatitis 20 80 2 0.8750 0.8750 0.7375 0.8875 0.8750 0.9250 0.9000 0.8125 0.8875
18 German 21 5000 2 0.7440 0.7340 0.6110 0.7340 0.7470 0.7320 0.7420 0.7000 0.7540
19 bank 21 30488 2 0.8542 0.8774 0.8618 0.8928 0.8618 0.8954 0.8956 0.8959 0.8926
20 waveform-21 22 5000 3 0.7894 0.7914 0.7862 0.7754 0.7896 0.7938 0.8048 0.7328 0.7870
21 Mushroom 22 5644 2 0.9962 1.0000 1.0000 1.0000 0.9995 0.9946 1.0000 1.0000 1.0000
22 spect 23 263 2 0.7868 0.8101 0.7940 0.7903 0.8090 0.7759 0.8207 0.7937 0.8096

classification accuracy average 0.7939 0.8094 0.8097 0.8143 0.8160 0.8366 0.8360 0.7955 0.8304
p-value 0.0024 0.0117 0.0324 0.0099 0.0574 > 0.1 > 0.1 0.0013 -

calculation time (s) average 0.00 2.58 30.53 21.11 10.05 1790.93 500.76 26.06 3.14
standard error 0.00 0.16 25.50 12.87 6.77 895.76 252.69 20.90 1.26

the conditional probability parameters of the BNCs after structure learning were estimated
using EAP.

This experiment used 43 classification benchmark datasets with 5–23 variables from the
UCI repository (Lichman, 2013). The continuous quantities in each dataset were discretized
into binary values around a median. For each method and dataset, we obtain the average
classification accuracy using ten-fold cross validation. To demonstrate the importance of
the proposed method, the p-value is obtained using multiple comparison using the Hommel
method (Hommel, 1988), which is used as a standard in machine learning studies (Demšar,
2006). In ”classification accuracy” shown at the bottom of Table 1, ”average” denotes the
average classification accuracy of each method for all datasets. Also, ”p-value” denotes the
p-value obtained by multiple comparison. For ”calculation time”, ”average” denotes the
average computation time for structure learning of each method for all datasets. ”Standard
error” represents the standard error of the computation time of each method. Table 2
presents the average maximum number of parents (MNP) for each method and the average
number of edges in the Markov blanket (MNB) of the class variable for each method.

Table 1 shows that the proposed method outperforms Naive Bayes, TAN, GBN-CMDL,
BNC2P, TAN-aCLL, and RAI-GBN at the p < 0.1 significance level. Because Naive Bayes,
TAN, GBN-CMDL, BNC2P, and TAN-aCLL limit the number of parent variables of feature
variables, Max Parents are fixed at 1 and 2, as shown in Table 2. However, the small upper
bound of the maximum number of parents tends to lead to poor representational power of
the structure (Ling and Zhang, 2003). As a result, the accuracies of Naive Bayes and TAN
tend to be worse than those obtained using the proposed method, such as the No. 8 and
No. 11 datasets. For large samples such as datasets Nos 11 and 19, RAI-ANB provides
higher accuracies than GBN-CMDL does, because RAI-ANB guarantees to asymptotically
estimate the true conditional probability of the class variable although GBN-CMDL does
not. Because Naive Bayes requires no structural learning, the computation time is 0.0.

7



Sugahara, Kishida, Kato and Ueno

Table 2: Number of Max parents and edges in the Markov blanket of the class variable for
small networks

dataset Naive Bayes TAN exact-GBN exact-ANB RAI-GBN RAI-ANB
NMP NMB NMP NMB NMP NMB NMP NMB NMP NMB NMP NMB

1 magic 1 10 2 19 4 20.4 4 30 4 10.7 5 29
2 Flare 1 10 2 19 2 1 3 18.9 1.9 1.3 2.7 17.6
3 heart 1 13 2 25 2 6.6 2 18.4 2 2 2 16.4
4 wine 1 13 2 25 2.2 9.5 2.1 19 3.2 3.2 2.1 16.6
5 Cleve 1 13 2 25 2 7.5 2 18.3 2 2 2 16.6
6 Australian 1 14 2 27 2.4 6.2 2.9 24.1 2 2 2.3 20.3
7 crx 1 14 2 29 3 5.3 2.2 23.9 2 1.9 2 21.1
8 EEG 1 14 2 27 5 34.2 5 57.5 5 9.1 5.3 51.9
9 Congressional 1 16 2 31 3.5 7.1 4 37.1 2.5 1.8 3 29.2
10 zoo 1 16 2 31 4.9 9.4 4.9 36.9 3.9 3.9 3 27.6
11 pendigits 1 16 2 31 5.5 63.4 5.6 66.5 9.1 9.1 6 61.2
12 letter 1 16 2 31 6 41.4 5 57.9 7.8 9.5 5.3 50.7
13 ClimateModel 1 18 2 35 14 32.1 14.1 69.7 3.1 3.1 1 18
14 ImageSegmentation 1 18 2 35 4.1 31.5 4 48 6 6 5.3 45
15 lymphography 1 18 2 35 8.7 16.6 9.9 36.7 2 1.5 2.3 23.9
16 vehicle 1 18 2 35 4.2 14.3 4.1 50.8 4 3.7 3.2 40.9
17 hepatitis 1 19 2 37 10.4 31.6 11.4 78.1 2.1 1.1 2.9 29.5
18 German 1 20 2 39 2 4.1 3 33.3 2 1 3 29.6
19 bank 1 20 2 39 5 13.1 6 63.9 5 5.1 5.8 52
20 waveform-21 1 21 2 41 4 39.8 4 60.3 4.8 4.7 3.5 43.5
21 Mushroom 1 21 2 41 2.4 6.7 7.6 83 5.2 14.9 5.2 74.6
22 spect 1 22 2 43 2.7 9.3 3 49.2 2.6 2.2 3.1 46.2

In addition, because TAN can be computed in polynomial time, its computation time is
shorter than those of the other methods (Friedman et al., 1997; Madden, 2009).

Table 1 also shows that the proposed method dynamically improves the classification
accuracy of RAI-GBN, although RAI-GBN has the lowest classification accuracy among
the compared methods. The reason might be that RAI-GBN tends to learn structures
with small Markov blankets of class variables. In fact, Table 2 shows that the edges in the
Markov blanket of the class variable are fewer than those of the other methods. In contrast,
because the proposed method has all the feature variables as children of the class variable,
the Markov blanket size is always the same as the number of feature variables. Moreover,
because the proposed method performs CI tests among only feature variables, it requires
less computational time than RAI-GBN, which performs CI tests among all variables.

The average classification accuracy of RAI-ANB is slightly worse than that of either
exact-GBN or exact-ANB. The exact learning methods are known to estimate network
structures more accurately than constraint-based approaches do when the sample size is
large (Scutari et al., 2019). However, the calculation time of RAI-ANB is much shorter
than that of either exact-GBN or exact-ANB.

Next, we compare the classification accuracies of intractable large networks for the exact
learning methods. This experiment used 16 datasets with 37-1301 variables. Table 3 shows
the average accuracies and p-values of Hommel’s tests. Table 4 presents the average number
of edges in the Markov blanket of the class variable for each method.

From Table 3, the average classification accuracy of the proposed method is the highest
among all the methods. The proposed method outperforms Naive Bayes, TAN, and RAI-
GNB at the p < 0.05 significance level. Similarly to the results for small networks, the
average computation time of the proposed method is shorter than that of RAI-GBN for the
reason described earlier.
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Table 3: Accuracies of the respective classifiers for large networks

dataset variables num of data classes
Naive
Bayes TAN

RAI-
GBN

RAI-
ANB

1 kr-vs-kp 37 3196 2 0.8773 0.9239 0.9405 0.9518
2 Connect-4 43 67557 3 0.7212 0.7643 0.7467 0.7973
3 Flowmeters D 44 180 4 0.8388 0.8388 0.8055 0.8277
4 movement libras 91 360 15 0.5027 0.5388 0.1611 0.5666
5 dota2 117 102944 2 0.5980 0.5810 0.5435 0.5957
6 Musk1 167 478 2 0.6538 0.7565 0.6658 0.8219
7 Musk2 167 6598 2 0.7443 0.8408 0.8808 0.9639
8 Epileptic Seizure 179 11500 5 0.2344 0.3650 0.1886 0.3820
9 mfeat-fac 219 2000 10 0.3520 0.4590 0.3030 0.4730
10 semeion 257 1600 10 0.8556 0.8719 0.4106 0.8794
11 madelon 501 2000 2 0.5905 0.5270 0.6280 0.5830
12 pd speech features 755 756 2 0.7182 0.7897 0.7657 0.8228
13 pure-spectra-matrix 1301 571 20 0.9088 0.8984 0.4833 0.9159

classification accuracy average 0.6612 0.7042 0.5787 0.7370
p-value 0.0044 0.0012 0.0015 -

calculation time (s) average 0.0 545.7 2002.1 1665.9
standard error 0.0 434.6 972.2 1112.6

Table 4: Number of edges in the Markov blanket of the class variable

dataset
Naive
Bayes TAN

RAI-
GBN

RAI-
ANB

1 kr-vs-kp 36 71 5.1 136.5
2 Connect-4 42 83 31.6 157
3 Flowmeters D 43 85 4.0 91.9
4 movement libras 90 179 2.1 210.2
5 dota2 116 231 2.9 215.8
6 Musk1 166 331 2.0 553
7 Musk2 166 331 6.1 1115.8
8 Epileptic Seizure 178 355 0 367
9 mfeat-fac 216 431 3.7 600.4
10 semeion 256 511 3.8 771.4
11 madelon 500 999 2.7 537.7
12 pd speech features 754 1507 2.1 2095.1
13 pure-spectra-matrix 1300 2599 6.6 2399.9

The classification accuracies of Naive Bayes and TAN are lower than those of the pro-
posed method for all datasets except for No. 3 and No. 5. Table 4 shows that the edges in
the Markov blanket of the class variable in RAI-ANB for No. 3 and 5 are few. Therefore,
the true structure of these datasets might resemble that of Naive Bayes.

The classification accuracies of the proposed method are higher than those of RAI-GBN
for all datasets except for No. 11, perhaps because RAI-GBN tends to learn structures
with small Markov blankets of class variables similarly to results of small networks. Table
4 shows that the edges in the Markov blanket of the class variable are fewer than those of
the other methods. However, because the proposed method assumes ANB structure, all the
feature variables are used for class variable estimation, which improves the classification
accuracy.
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Table 5: Numbers of edges, decomposed structures, and runtime for RAI-GBN and RAI-
ANB

dataset NE NDS Runtime
RAI-GBN RAI-ANB RAI-GBN RAI-ANB RAI-GBN RAI-ANB

1 kr-vs-kp 121 139 6 4 27 19.5
2 connect-4 155 158 13 14 1103.6 398.7
3 Flowmeters D 70 87 4 5 3.9 2.6
4 movement libras 125 202 3 8 9.7 21.4
5 dota2 188 227 4 6 320.5 218.3
6 Musk1 479 563 5 5 170.9 109.4
7 Musk2 1047 1152 10 9 12669.5 14624.2
8 Epileptic Seizure 357 379 3 13 2568.1 398.4
9 mfeat-fac 717 610 6 4 1010.5 304.4
10 semeion 880 781 5 4 419.9 134.9
11 madelon 234 529 134 2 267.3 306.3
12 pd speech features 1606 2072 15 14 2720.6 1656
13 pure spectra matrix 3101 2313 9 116 4735.5 3462.7

Finally, we demonstrate that the proposed method accelerates the structure decompo-
sitions that occur during the RAI algorithm execution when the class variable is the root
in the true Bayesian network. Table 5 presents the numbers of edges (NE), the number of
decomposed structures (NDS), and the runtimes for RAI-GBN and RAI-ANB. The num-
bers of edges (NEs) learned by RAI-ANB and RAI-GBN from the same data theoretically
become identical when the true Bayesian network has an ANB structure. When the class
variable is not the root in the true Bayesian network, the NE of RAI-ANB becomes larger
than that of RAI-GBN. From Table 5, the NE of RAI-ANB for No. 13, which provides the
largest difference of the accuracies between RAI-ANB and RAI-GBN, is less than that of
RAI-GBN. This result suggests that No. 13 approximately follows an ANB. Therefore, the
NDS of RAI-ANB for No. 13 is much larger than that of RAI-GBN. This result means that
the proposed method accelerates the structure decompositions that occur during the RAI
algorithm execution. As a result, it reduces the runtime of the proposed method.

In contrast, the NE of RAI-ANB for No. 11, for which RAI-GBN provides better
accuracy than RAI-ANB does, is much larger than that of RAI-GBN. Therefore, the NDS
of RAI-ANB for No. 11 is much less than that of RAI-GBN because the dense structure
of RAI-GBN interrupts the structure decompositions in the RAI algorithm execution. As
a result, it increases the runtime of the proposed method. Thus, it is important for the
proposed method to select the class variable so as to be the root variable.

5. Conclusions

As described herein, we proposed an extension of constraint-based learning method using
Bayes factor applied to the learning ANB. First, this study compared the classification
accuracies of proposed methods with exact learning methods using small networks. Results
indicate that the classification accuracy of the proposed method is nearly equivalent to that
of the exact learning approach. Second, this study compared the classification accuracies of
the proposed methods with BNCs using large networks that can not be learned using the
exact learning methods. Results indicated that the classification accuracy of the proposed
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method was significantly better than those obtained using the other BNC methods. Isozaki
et al. (2008, 2009) proposed an effective learning Bayesian network method by adjusting the
hyperparameter for small data. As a future work, we will employ their method instead of the
BDeu to improve the classification accuracy for small data. Sugahara et al. (2020, 2022)
also reported a Bayesian network model averaging classifier to improve the classification
accuracies. We expect to extend our proposed method to the model averaging classifier
using those methods described above.
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