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Abstract

Continuous pseudo-labeling (PL) algorithms such as slimIPL have recently
emerged as a powerful strategy for semi-supervised learning in speech recog-
nition. In contrast with earlier strategies that alternated between training a model
and generating pseudo-labels (PLs) with it, here PLs are generated in end-to-end
manner as training proceeds, improving training speed and the accuracy of the
final model. PL shares a common theme with teacher-student models such as
distillation in that a teacher model generates targets that need to be mimicked by
the student model being trained. However, interestingly, PL strategies in general
use hard-labels, whereas distillation uses the distribution over labels as the target
to mimic. Inspired by distillation we expect that specifying the whole distribution
(aka soft-labels) over sequences as the target for unlabeled data, instead of a single
best pass pseudo-labeled transcript (hard-labels) should improve PL performance
and convergence. Surprisingly and unexpectedly, we find that soft-labels targets
can lead to training divergence, with the model collapsing to a degenerate token
distribution per frame. We hypothesize that the reason this does not happen with
hard-labels is that training loss on hard-labels imposes sequence-level consistency
that keeps the model from collapsing to the degenerate solution. In this paper, we
show several experiments that support this hypothesis, and experiment with several
regularization approaches that can ameliorate the degenerate collapse when using
soft-labels. These approaches can bring the accuracy of soft-labels closer to that
of hard-labels, and while they are unable to outperform them yet, they serve as a
useful framework for further improvements.

1 Introduction and Related Works

The Deep Learning community has recently made significant progress in semi-supervised learning
via self-training or pseudo-labeling (PL) [1] in vision, speech and other domains [2, 3, 4, 5, 6, 7, 8,
9, 10, 11]. In this paper we focus on self-training in the context of automatic speech recognition
(ASR). ASR presents some unique challenges in self-training that are not seen in some other tasks
stemming from their sequential nature. Inputs and targets have different lengths and targets are not
produced with the same regularity, compared to the inputs. Further, ASR models are often coupled
with language models, that can be additionally used to aid the pseudo-labeling process.

In semi-supervised learning [12] we have access to labeled and unlabeled data, where the unlabeled
data is typically much larger, since it is often easier to find unlabeled data, compared to labeled
data. PL, in its simplest formulation, employs a base model trained with labeled data which is later
used as a “teacher” to generate predictions on the unlabeled data. The unlabeled data is converted to
“pseudo-labeled” data through the addition of these teacher generated targets. A student model is then
trained on the combination of labeled and pseudo-labeled data to yield a final model.

PL with ASR has recently been applied to three different types of end-to-end models – Connectionist
Temporal Classification (CTC) [13], Transducer [14], and sequence-to-sequence [15]. To achieve
state-of-the-art results, PLs are generated from the models using an external language model (LM)
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either with beam-search decoding [16, 6, 17] or through shallow fusion [18, 19, 20, 21]. Unlike in
vision, here PLs are sequences of tokens, such as characters1. With this setting, however, acoustic
models tend to overfit to the text training set of the LM used for PL [6, 20, 11].

Recent approaches on PL in ASR have attempted to rectify this problem through continuous train-
ing [22, 5], in which the model that is being trained is the same model that is used to generate PLs,
and PLs are generated without using an LM. The main challenge for continuous PL is stability, which
was reported independently by several authors [7, 9, 10, 11] and resolved partially by introducing
either a caching mechanism [7] which kept an evolving cache of PL data or by using an Exponential
Moving Average (EMA) of the model being trained to generate the PLs [8, 9, 10, 11]. This continuous
training greatly simplifies the pipeline, improves convergence speed and achieves state-of-the-art
compared to other semi-supervised approaches [7].

Interestingly, the above strategies in general use one (or a small number) of PLs from the teacher to
train the student. By contrast distillation [23] and soft-labeling [3, 4] approaches use the predicted
distribution over labels from the teacher as the target to mimic. Inspired by these works we expect
that specifying the whole distribution (aka soft-labels) over sequences as the target for unlabeled
data should improve performance and convergence. However, with CTC-based models for labeled
data we find experimentally that training with soft-labels leads to models where the distribution
converges to a degenerate solution, e.g. emitting only the blank token (this only happens in continuous
pseudo-labeling, while teacher-student exhibit stable soft-labeling, see Appendix E.2). By contrast,
hard-labels are more stable and collapse to a degenerate solution is not observed. We believe this
is because structured CTC loss used for hard-labels imposes sequence-level consistency while loss
on soft-labels (cross-entropy or L2) does not have this property, could destroy the sequence-level
representation and thus easily converge to the degenerate solution, quite bad for generalization. We
apply different regularization approaches to try and prevent degenerate solutions such as entropy
regularization, smoothing of the soft-labels, sampling from the teacher distribution [24, 25], blending
the soft-labels with hard-labels and PLs filtering. These approaches can bring the accuracy of soft-
labels closer to that of hard-labels, and while they are unable to outperform them yet, they serve as a
useful framework for further improvements.

2 Background on Pseudo-Labeling and slimIPL

Let L = {xi,yi} and U = {xj} be the labeled and unlabeled datasets respectively. We consider a
PL approach where an acoustic model A(x;θ) with model parameters θ is continuously trained on a
combination of L and a pseudo-labelled set derived from U . The model is trained by minimizing a
lossL(θ) = LL(θ)+λLU (θ) where λ ∈ R+ is a tunable hyper-parameter controlling the importance
of unlabeled data. The loss for labeled data is defined as LL(θ) = −E(x,y)∼L log pθ(y|x), where
pθ(y|x) is the conditional distribution defined by model A(x;θ). The loss for unlabeled data is
defined as LU (θ) = −Ex∼U log pθ(ŷ|x), where ŷ is the PL transcription for a data point generated
using the model being trained and a prior LM. Specifically,

ŷ = argmax
y

log pθ(y|x) + α log plm(y), x ∈ U, (1)

where plm(y) is an LM, and α ≥ 0 is a hyper-parameter controlling the reliance on the LM. The
above minimization is usually approximated with a beam-search decoding algorithm [19]. In recent
works it was found that α > 0 gives stable training but can lead to over-fitting to the language model
used [6] while α = 0 can lead to training instability and divergence [7].

To resolve these issues an LM free (α = 0) continuous PL approach called slimIPL was recently
proposed for ASR [7]. It also optimizes further the speed of the PL generation: instead of Eq. (1)
with α = 0 which defines hard-transcriptions, slimIPL uses hard-alignment defined in Eq. (2).
Models trained with the CTC loss output distributions over token set w (including an auxiliary
blank token) for every output frame, or timestamp, t = 1, T as ptθ(w|x), w ∈ w, where T is
the total number of frames in the sample. The CTC loss maximizes the probability pθ(y|x) of
a transcription y across all possible alignments2 a = (a1, . . . , aT ) which lead to y assuming

1We refer to them as hard-labels because only some sequences are used and not the whole distribution over
all sequences.

2E.g. for T = 12 one of the alignments for y ‘cat’ is ‘cc###aatttt#’, where # is a CTC blank token.
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factorization pθ(y|x) =
∑

a→y

∏T
t=1 p

t
θ(at|x). In order to get PLs generated by Eq. (1) (α = 0)

we would need to compute the total probability of the transcription y by summing probabilities of
every alignment a → y and then taking the most probable y. This is intractable but beam search
could be used in this case in order to approximate the argmax search. With slimIPL, the authors
decided to use a simpler approach – hard-alignment (or hard-path), obtained with:

ŷ = G(â), â = (â1, . . . , âT ), âi = argmaxw piθ(w|x) , (2)

where for every frame the most probable token is âi. From there, the final pseudo-label transcription
ŷ is obtained through the transformation denoted by G, which removes repeated tokens as well as
the CTC blank token3. This is equivalent to minimizing Eq. (1) with a (lexicon-free) beam search
constrained to a beam size of 1.

A schematic overview of slimIPL is presented in Appendix A Algorithm 1. slimIPL exploits a
dynamic cache, which cleverly facilitates access to PLs from previous model states (this can be
viewed as model ensemble for PL generation). This dynamic cache was proposed in order to stabilize
the optimization and to avoid sudden model divergence due to collapsing to empty transcription
predictions. slimIPL has several hyper-parameters: (i) λ, (ii) M , the training step at which PL
generation begins, (iii) C, the dynamic cache size and (iv) p, the probability of updating the cache.

Our goal in the next sections is to investigate how “soft”-labeling can further improve slimIPL as we
believe it may contain richer information compared to hard-labels. Interestingly, “soft”-labeling is
computationally cheap, similar to the cost implied by hard-paths obtained from Eq. (2), and much
cheaper than with pseudo-labels which would be obtained by minimizing Eq. (1) (via a beam search)
but requires more memory. We start our analysis from the best models found in slimIPL work [7].

3 Experimental Setup and Methods

Inspired by results on soft-labeling in vision [3, 4] and knowledge distillation [23] our empirical
hypothesis is the following: exploiting the whole distribution over sequences should be more powerful
for PL and bring benefit in either faster convergence and / or lower error at the end of training. In this
section we describe the data, the training setup and methods used to test this hypothesis.

Data We use the LibriSpeech dataset [26] and the train-10h subset of Libri-Light [27]. We use
the train-clean-360 and train-other-500 standard LibriSpeech subsets as unlabeled data and consider
either 10h (train-10h) or 100h (train-clean-100) as the labeled data. The standard sets dev-clean and
dev-other are used to tune all hyper-parameters and to select the best models. The sets test-clean and
test-other are used to report final token (TER) and word (WER) error rates.

Training setup We closely follow slimIPL experiments [7] with the same hyper-parameters,
including transformer model, CTC loss and character tokens (see Appendix B). We make only
few changes: a) to speed up training and decrease memory usage we get rid of relative positional
embedding [28] and use CAPE [29] instead; b) we train with larger batch per GPU but on 8 GPUs. In
our experiments we only vary C, p and the type of PL (soft-labels vs hard-alignment), while keeping
everything else fixed. We run experiments with 3 seeds and we report mean and standard deviation as
the final performance.

Soft-labeling slimIPL Even though speech recognition involves a sequence-to-sequence alignment
problem, we are going to perform “soft”-labeling on a per-frame basis. In that respect, the soft-label
strategy is similar than what is commonly used for non-sequential data. Formally, let’s denote
logits as ztw = log ptθ(w|x) and PL logits ẑtw = log ptθ′(w|x) for x ∈ U . We also denote as

qtw(x; τ) =
ez

t
w/τ∑

w′ e
zt
w′/τ

and q̂tw(x; τ) =
eẑ

t
w/τ∑

w′ e
ẑt
w′/τ

. Then the loss function on unlabeled data x ∈ U

is defined in a similar way than the distillation loss [23]: either as cross-entropy (CE) with temperature
τ > 0 or as a L2 regression (equivalent to CE when τ =∞, see [23]):

LU,ce(θ) = −βEx∼U

∑
t,w

qtw log q̂tw; LU,L2(θ) = −βEx∼U

∑
t,w

(ztw − ẑtw)
2. (3)

3This can be viewed as hard-alignment, obtained from per-frame hard-labels. In contrast, CTC decoding
considers all alignments leading to the same transcription to obtain this hard-alignment.
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Table 1: Comparison between different PL generation ways with their best hyper-parameters: “hard-
path” denotes Eq. (2) PLs, “hard-beam” denotes approximation of Eq. (1) (α = 0) via beam search,
“soft” denotes PLs from Sec. 3. Upper and lower bounds denote training on labeled data only.

PL type Cache PL vs golden label PL vs hard-alignment WER %

C TER % WER % TER % WER % dev-clean dev-other test-clean test-other

lower bound (sup. LS) - - - - - 2.6 ± 0.1 6.9 ± 0.1 2.7 ± 0.1 6.9 ± 0.1

100h, hard-path 1k 1.5 ± 0.1 4.8 ± 0.1 0.0 0.0 3.9 ± 0.1 8.6 ± 0.1 4.1 ± 0.1 9.2 ± 0.2
100h, hard-path 100 1.3 ± 0.1 4.2 ± 0.1 0.0 0.0 3.7 ± 0.1 8.0 ± 0.1 3.9 ± 0.1 8.2 ± 0.1
100h, hard-beam (beam 10) 100 1.3 ± 0.1 4.1 ± 0.1 0.007 ± 0.001 0.04 ± 0.01 3.7 ± 0.1 7.9 ± 0.1 3.9 ± 0.1 8.3 ± 0.1

100h, sampling (τ = 0.4) 100 1.4 ± 0.1 4.2 ± 0.1 0.04 ± 0.01 0.2 ± 0.1 3.7 ± 0.1 8.0 ± 0.2 3.9 ± 0.1 8.3 ± 0.2

100h, soft (τ = 10, β = 1) 1k 1.6 ± 0.1 5.3 ± 0.3 - - 4.7 ± 0.4 9.0 ± 0.5 4.8 ± 0.4 9.5 ± 0.5
+hard (δ = 0.1) 100 1.4 ± 0.1 4.5 ± 0.1 - - 4.1 ± 0.1 8.6 ± 0.2 4.2 ± 0.1 9.2 ± 0.1
+hard (τ = 1, β = 0.01, δ = 0.1) 100 1.4 ± 0.1 4.4 ± 0.1 - - 4.0 ± 0.1 8.3 ± 0.1 4.2 ± 0.1 8.7 ± 0.2

10h, hard-path 1k 4.3 ± 0.1 14.7 ± 0.3 - - 14.4 ± 0.3 18.8 ± 0.4 15.1 ± 0.4 19.3 ± 0.3
10h, hard-beam (beam 100) 1k 3.8 ± 0.1 13.1 ± 0.1 0.008 ± 0.001 0.05 ± 0.01 13.0 ± 0.1 16.8 ± 0.2 13.5 ± 0.1 17.3 ± 0.1

10h, sampling (τ = 0.15) 1k 4.3 ± 0.3 14.7 ± 1.0 0.01 ± 0.02 0.08 ± 0.02 14.2 ± 0.8 18.5 ± 1.2 15.1 ± 0.9 19.1 ± 1.1

10h, soft (τ = 1, β = 0.01) 1k-3k we are not able to train, blowing up
+hard (δ = 0.1) 1k 4.6 ± 0.2 15.5 ± 0.2 - - 14.9 ± 0.4 19.8 ± 0.2 15.7 ± 0.3 20.4 ± 0.5

upper bound (sup. 100h) - - - - - 5.9 ± 0.1 17.9 ± 0.1 6.2 ± 0.1 18.1 ± 0.1
upper bound (sup. 10h) - - - - - 37.1 ± 0.1 58.4 ± 0.1 37.7 ± 0.3 58.4 ± 0.2
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Figure 1: Comparison between different soft-labels for 100h supervision where additional regulariza-
tions are used, default parameters are p = 0.1, τ = 10, β = 1, NU = 3.

In order to keep the same λ (ratio between labeled and unlabeled data losses, introduced in Section 2)
for both hard-labels and soft-labels experiments, we add a re-scaling factor β > 0 in Eq. (3), which
provides a way to keep gradients computed for LU and LU,ce/LU,L2

at the same scale4.

4 Empirical Study and Discussion

Training with soft-labels is unstable First experiments with both soft-labels losses reveal some
training instability, when using the same cache size C and probability p than with hard-labels:
training diverges, with WER increasing on validation sets as well. The WER between PLs and their
corresponding golden transcription also diverges. By increasing the cache size by 10x (from 100 to
1k) and lowering its probability (0.1) the training is however stabilized (Figure 1). We performed
similar experiments with EMA [8, 11] and observed the same trend: the EMA decay factor needs
to be increased (from 0.999 to 0.9999/0.99995) compared to the one used with hard-alignments.
Previously it was reported that EMA and slimIPL are robust to hyper-parameters and that using a
small cache or a larger value of p would still lead to stable training, and similar WER results. All our
experiments demonstrate that this is not the case with soft-labeling. Moreover, the best soft-labeling
performing model (τ = 10 and β = 1) has worse WER performance than when using hard-alignment,
as shown in Table 15. The same 1k cache for hard-alignment gives worse WER performance than
with 100 cache (as PLs are then more slowly updated), but it is still better than with soft-labels.

Soft-labeling easily collapses to blank To understand instability issues in soft-labeling, we track
how the PLs of a subset of the unlabeled samples evolve over the training with C = 100, p = 0.1,

4As we use adaptive optimizer, we tried also to use two different optimizers for different losses as their
dynamics are different. However, experiments with two optimizers were significantly worse, not to mention it
brings complexity in practice.

5Temperatures τ and scaling factor β were searched in the range [0.0001, 100]. Different cache size were
tried (10, 100, 1k, 10k). Cache probability was picked in (0.1, 0.5, 1).
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Figure 2: Comparison between hard-transcription approximated with a beam (hard-beam) of different
size and hard-path for 100h (top) and 10h (bottom) of supervision. Left: dev-other WER for different
beams; middle: best hard-beam vs hard-path across 3 different seeds on dev-other (solid) and their
PL quality (dashed). Right: PL quality (dashed) and WER(PL, hard-path) (solid) for different beams.

see Appendix C Figure 8 (top). Interestingly, only several (2-3) tokens dominate every frame during
the training. When the model diverges, e.g. the blank token probability increases over all frames,
ultimately taking over the whole distribution mass of soft-labels.

Hard-labels frame-level transitions are noisy. Sequence-level ones are smooth. Compared
to soft-labels, hard-path dynamics (Appendix C Figure 6) exhibit non-smooth transition between
alignments. Instead of looking at each sample individually, we summarize the evolution of the same
subset of unlabeled samples in Figure 4 (for hard-labels) and Figure 5 (for soft-labels). We track
the average distance between the PLs generated for the same sample, for two consecutive iterations.
We report the frame-level Levenshtein distance of these consecutive PLs, after converting them into
hard-alignments â (whether the PLs were soft or hard). We also report the Levenshtein distance at the
sequence level ŷ. When tracking individual samples, we observe more transition noise in hard-labels,
than for soft-labels. However, at the sequence level, hard-labels PLs transitions are significantly
smoother as the training goes.

Sequence-level PLs may lead to better WER We now consider Eq. (1) with beam sizes from
10 to 500 to understand if a richer sequence-level representation can be helpful, by turning off the
LM (α = 0). Figure 2 top shows that beam and hard-path perform similarly. Moreover, the WER
between PLs generated from beam search and PLs generated from hard-path becomes smaller than
2% (right plot) very quickly (after 30k updates). However, Figure 2 bottom, shows that if we switch
to using only 10h of supervision, we observe a 1.5-2% absolute decrease in WER from increasing the
beam size to 50-100, while the PLs from beam and hard-path are still similar (WER is 1-3%).

Based on the above observations we decided to investigate several ways to improve soft-labeling:
regularizing the soft-label distribution in the hope to avoid blank collapses, sampling as a way to
regularize soft-labels transitions, and finally combining soft and hard-labels.

4.1 CTC blank regularization does not solve instability issue

To resolve the issue of collapsing to blank tokens we start with different regularization schemes
to constrain the predictive distribution to be close to a specified prior distribution. All variants we
tried slow down divergence, but were unable to improve on our best slimIPL results (Figure 1). The
different prior distribution we tried are as follows:
Entropy regularization: This prior attempts to maximize the entropy of the predictive distribution.
Sequence-level prior: The average predicted probability vector across all time steps for a sample
is regularized to be close to (using KL-divergence) either (i) a uniform prior across tokens, or (ii) a
token distribution computed from train-clean-100 text. Since text does not have a blank token, the
prior for the blank token is estimated by a supervised model trained on train-clean-100.
Frame-level prior: Each frame is regularized to either match a target blank probability, or the
predictions and/or targets as label-smoothed by averaging with a uniform distribution with weight γ,
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Figure 3: Sampling for 100h (top) and 10h (bottom) of supervision. WER on dev-other (left)
depending on temperature τ and WER between transcriptions obtained with sampling (and different
temperature τ ) and golden transcription (left) / hard-alignment (middle).

which is varied from 0.01 to 0.1.
Logits averaging: Logits from neighboring frames are smoothed with window w = 1 · · · 10 frames.

4.2 Sampling as stable soft-labeling

Next, we investigate how sampling [24, 25] from the model performs because sampling encapsulates
the uncertainty in the predictions. We generate ŷ = G(â1, . . . , âT ) where ât ∼ ptθ(w|x) for t = 1, T .
A temperature τ is varied from 0.0001 to 10 to change the peakiness of the distribution, and CTC loss
is used on PL data. For τ → 0 sampling corresponds to the hard-path while τ →∞ corresponds to
the uniform distribution over tokens6. We can see from Figure 3 that sampling converges to hard-path
in the end (top) while in limited supervision (bottom) only τ = 1 does not. As with hard-transcription
we observe that sampling is similar to hard-path for 100h and is better for 10h of supervision. Unlike
soft-labels, sampled PLs are stable like the hard-path PLs.

4.3 Blending soft-labels with hard-labels as regularization

We observed and discussed above, when models are trained with hard-alignments, hard-transcriptions
or sampling, their frame-level predictions vary a lot from step to step during training. In contrast
soft-labels do not display such rapid changes in the predictive distribution (compare Appendix C
Figure 4 vs Figure 5). We hypothesize that soft-labeling loss is trivial to optimize to degenerate
solutions and the model over-fits to it easily while memorizing the entire labeled set (see Appendix D).
Meanwhile, hard PL versions provide sequence level targets which might prevent a collapse. So we
combine hard-path PL and soft-PL using δLU + (1− δ)LU,ce, δ = {0.01, 0.1, 0.5, 0.9, 0.99}. This
is the most effective way to stabilize training: e.g. see Appendix E.3 Figure 15 with τ = 1, C = 100.
Further, with this blend models can be trained with 10h of labeled data which was not possible with
soft-labels alone (see Table 1). The strategy also works better than the other soft-PL variants (Table 1)
while converging 1.5-2x faster (see Figure 1). However some issues still remain as it slowly starts to
diverge at the very end of training, and the results are slightly worse than hard-path.

5 Conclusion

At first glance, a change from hard-labels to soft-labels for continuous pseudo-labeling in ASR
seemed simple and obvious, but our experiments revealed entirely unexpected results. Soft-labeling
was found to quickly drive the PLs that are generated continuously to trivial, degenerate solutions
while memorizing the entire labeled data at the same time. We found that different regularization
approaches help to improve stability of soft-label training but are unable to match the accuracy of
hard-label trained models. Hard-transcription and sampling from the distribution on the other hand
show stability and improved results in lower supervision setting. We found that combining both
hard-alignment PLs with CTC loss and soft-label PLs with cross-entropy loss on unsupervised data
leads to improved results. This almost matches hard-alignment and speeds up convergence by 1.5-2x.

6With τ > 1 a distribution is closer to uniform and models do not train.
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A slimIPL Algorithm Overview

Algorithm 1: slimIPL algorithm where arbitrary algorithm for PL generation is used
Data: labeled L = {xi,yi} and unlabeled U = {xj} data, x̃ = augmentation(x),

initialization θ0 and cache C = {}, learning rate ηk, losses LL and LU .
Result: Acoustic model A(x;θ)
1. Train A on (x,y) ∈ L for M steps: θk+1 = θk − ηk∇LL(A(x̃;θk),y), k = 1,M ;
2. Decrease model’s A(x,θ) dropout;
3. for k = M + 1,M + C do

For random x ∈ U generate ŷ = PL(Ainference(x;θ
k)) and C ← C

⋃
{x, ŷ} ;

θk+1 = θk − ηk∇LL(A(x̃;θk),y), (x,y) ∈ L;
end
repeat

if rand(0, 1) < NL/(NL +NU ) then
Take random (x,y) ∈ L and θk+1 = θk − ηk∇LL(A(x̃;θk),y)

else
Take random b = (x,y) ∈ C and θk+1 = θk − ηk∇LU (A(x̃;θk),y);
if rand(0, 1) < p then

For random x′ ∈ U generate ŷ′ = PL(Ainference(x;θ
k)) and C ← C \ b

⋃
{x′, ŷ′}

end
end
k ← k + 1;

until convergence or maximum iterations are reached;

Table 2: Comparison between slimIPL and fully supervised prior works: the same model architecture
(transformer with learnable relative positional embedding), loss and token set is used. This gives
lower and upper bounds on the WER one can expect with semi-supervised approaches.

Cache C
WER %

dev-clean dev-other test-clean test-other

lower bound (sup. 960h) [30] - 2.6 7.0 2.7 6.8

slimIPL 100h, hard-path [7] 100 3.7 7.3 3.8 7.5
upper bound (sup. 100h) [7] - 6.2 16.8 6.2 16.8

slimIPL 10h, hard-path [7] 1000 11.4 14.0 11.4 14.7
upper bound (sup. 10h) [7] - 31.9 52.3 32.6 52.4

B Empirical Setup

We keep the original 16kHz sampling rate from LibriSpeech, and compute log-mel filterbanks with
80 coefficients for a 25ms sliding window, strided by 10ms. All features are normalized to have
zero mean and unit variance per input sequence before feeding them into the acoustic model. We
closely follow the architecture and training pipeline from slimIPL, including same hyper-parameters,
CTC loss, transformer-based architecture, token set (26 English alphabet letters augmented with the
apostrophe and a word boundary token), SpecAugment [31] parameters, Adagrad optimizer [32] and
dynamic batching. We make only few changes: a) to speed up the training and decrease memory
usage, we replace relative positional embedding [28] by CAPE positional embedding [29] (only a
global shift of 30s is used); b) we train all models on 8 A100 40GB GPUs with dynamic batching of
∼ 290 audio per GPU, and FP32 tensor core computations for up to 500k updates. In all experiments
we only vary the PL type and few slimIPL hyper-parameters (cache size C and cache probability
update p), while keeping everything else fixed. Most of experiments are run with 3 different seeds,
and we report mean and standard deviation as the final performance. We start with models where
C = 100,M = 20, 000, NU = 3, p = 0.1 for 100h and C = 1000,M = 60, 000, NU = 10, p = 0.1
for 10h of supervision.
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C Frame-Level and Sequence-Level Evolution in PLs
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Figure 4: Levenshtein distance at the frame level (first and second columns) and sequence level (third
column) between PLs for the same subset of unlabeled data for two consecutive steps for hard-path
hard-beam, sampling and soft PLs.
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column) between PLs for the same subset of unlabeled data for two consecutive steps for hard-path,
soft, soft blended with hard (“soft + hard”) soft blended with hard diverged to blank only (“soft,
collapse to blanks”), soft with prior on target diverged to uniform distribution (“soft, collapse not to
blanks”) PLs.

To further analyse convergence to a degenerate solution for soft-labels, we keep tracking of PLs
for the same subset of unlabeled samples as training goes (200 samples). We then compute the
average distance between the PLs generated for the same sample, for two consecutive iterations.
We report the frame-level Levenshtein distance of these consecutive PLs, after converting them into
hard-alignments â (whether the PLs were soft or hard). Here we consider also top-2 distance: we
check whether âj

t is in top-2 tokens set of pt
θk(w|x), where k and j are two consecutive iterations,

and k < j. We also report the Levenshtein distance at the sequence level ŷ. Results (for cache
C = 100 and p = 0.1) are shown for hard-path, beam and sampling in Figure 4, and for different
variants of soft-labels with regularization in Figure 5. When tracking individual samples, we observe
more transition noise in hard-labels, than for soft-labels. However, at the sequence level, hard-labels
PLs transitions are significantly smoother as the training goes. Moreover, for models converged to a
degenerate solution (Figure 5) we observe first sequence-level and later also frame-level consistency
destruction between PLs for two consecutive iterations.

Below in Figures 6,7,8,9,10,11 we show detailed per-frame token distribution evolution during
training with 100h labeled data, C = 100, p = 0.1. Top part of these Figures displays evolution
in training of output token distribution per frame for one particular random sample from unlabeled
set U . Every sub-figure is a time frame t of the sample. For every sub-figure: x-axis is a training
step when we trained on the sample, y-axis is the probability of a token in range [0, 1]. CTC blank
token is denoted by #. Bottom left part shows total probability of top-3 tokens per frame for set of
unlabeled samples averaged across training steps, while bottom right shows percentage of CTC blank
token in hard-path PLs (solid) and percentage of empty hard-alignment PLs (dashed) during training.
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Figure 6: Training dynamics for hard-path with 100h labeled data, C = 100, p = 0.1.
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Figure 7: Training dynamics for sampling with 100h labeled data, C = 100, p = 0.1, τ = 0.4.
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Figure 8: Training dynamics for soft-labels with 100h labeled data, C = 100, p = 0.1, τ = 10, β = 1.
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Figure 9: Training dynamics for best model with blending hard and soft-labels. We use 100h labeled
data, C = 100, p = 0.1, τ = 10, β = 1, δ = 0.1.
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Figure 10: Training dynamics for blending hard and soft-labels together when divergence to blank
distribution happens. We use 100h labeled data, C = 100, p = 0.1, τ = 10, β = 1, δ = 0.1.
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Figure 11: Training dynamics with soft-labels and target prior when divergence to non-blank distribu-
tion happens. We use 100h labeled data, C = 100, p = 0.1, τ = 10, β = 1, γ = 0.05.
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D Collapsing to a Degenerate Solution and Labeled Set Memorization

For some models where the WER between hard-alignment and golden transcription increases, we
keep training for a very long time. In all cases, while we observe different dynamics, all models
converge to some degenerate solution, while memorizing the labeled training set. Convergence
to a degenerate solution can be very slow and may take a huge number of training steps. For all
experiments we observe in some cases tendency to converge to blank prediction only (Figure 10) or
to e.g. uniform distribution (Figure 11). In case of convergence to these trivial solutions we observe
that the training loss on pseudo-labeled data becomes zero while the loss on labeled data is non-zero
(and decreasing), as shown in Figure 12. When we look at the model’s generated transcriptions, we
see empty transcriptions for unlabeled data and close to ground truth (WER is a few percentages) for
labeled data. This indicates that the model is in the regime of labeled data memorization.
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Figure 12: Example of a model trained with soft-labels that diverged during very long training to
blank only token distribution (the same model as in Figure 10). By the time of this convergence to a
trivial solution the model has perfect zero loss on unlabeled data (solid, blue) while having non-zero
and still decreasing training loss on labeled data (dashed, green) what indicates memorization of
labeled data. The percentage of top blank tokens is presented too (dashed-dot, red).
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Figure 13: Comparison between hard-PL (left) and soft-PL (right) for 100h supervision, C =
100, p = 0.1, NU = 3, τ = 10, β = 1. We generate hard-path pseudo-label for a sample and
compute this hard-path probability and transcription (to which this hard-path leads) probability from
the logits of the current model state. We can see that one-path itself never dominates and there are
other alignments which lead to the same transcription and have significant probability mass.

E Ablations

E.1 Labeled Data Exclusion from PL Phase

To confirm experimentally that there is no optimization problem (leading to trivial solutions) coming
from the joint usage of different losses (CTC for labeled data, cross-entropy for unlabeled data), we
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Figure 14: Comparison between different pseudo-labels for 100h supervision, p = 0.1, NU = 3, τ =
10, β = 1 for models from Figure 1. We generate hard-path from a pseudo-label for a sample and
compute this hard-path probability from the logits of the current model state. We can see that best
one-path probability decreasing (− log p is also growing) for unstable models.

stop to train on labeled data as soon as the cache is filled. With a cache size set to 100, we again
observe model divergences with soft-labels, while cache size of 1000 is able to stabilize training.
Both cases have worse performance than their hard-path counterpart with the same hyper-parameters.

E.2 Teacher-Student Training as a Stable Soft-Labeling

We tried also to disentangle continuous PL from soft-labels, and performed ablations with teacher-
student PL and soft-labels. We first train a supervised only model on 100h of LibriSpeech (gets 18%
WER on dev-other), use it to generate soft-labels for all unlabeled data and then train a new model
from scratch on joint labeled and pseudo-labeled data. This model reduces WER on dev-other to
14.1-14.3% WER for different values of τ and β while being very stable in training. We perform then
the second round of teacher-student training using the latter model as a new teacher. Training a new
model from scratch gives on dev-other 12.8-13.4% WER being stable again. Hence, we conclude that
unstable training with soft-labels may come from continuous training dynamics. It is still an open
question how to make continuous pseudo-labeling stable with soft-labels.

E.3 Regularization: Blending Soft-Labels with Hard-Labels
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Figure 15: Comparison between soft-PL (solid) and blending soft-PL with hard-labels with δ = 0.1
(dashed). Training is done with temperature τ = 1 and 100h of labeled data, with cache parameters
C = 100, p = 0.1.

E.4 Sequence-Level Consistency: Pseudo-Labels Filtering

As we discovered issues with sequence-level consistency for soft-labels (Figure 4 vs Figure 5) for
continuous training we tried regularization based on simple filtering pseudo-labeled data which
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Figure 16: Training behaviour for PL filtering for sequence level consistency. We report three
different thresholds on token distance between PLs across two consecutive training steps (5%, 10%,
15%) and the baseline soft-labeling without any filtering (red) for C = 100, p = 0.1, τ = 10, β = 1.
Left: log probability of hard-path transcription of PLs, middle: percentage of samples filtered from
the batch, right: WER between PL hard-path and golden transcription.

breaks this consistency: we measure Levenshtein distance (on the token level) between hard-path
transcriptions of current pseudo-label for a sample x ∈ U and of previously used pseudo-label to
make a training step of the same sample; if the distance is larger than some threshold we filter a
sample from the unlabeled batch for the current update step. Our preliminary experiments show that
this filtering is able to stabilize the training with a proper threshold, see Figure 16, however it reaches
quite bad performance yet.
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