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Abstract

Likelihood-based deep generative models have recently been shown to exhibit
pathological behaviour under the manifold hypothesis as a consequence of using
high-dimensional densities to model data with low-dimensional structure. In this
paper we propose two methodologies aimed at addressing this problem. Both are
based on adding Gaussian noise to the data to remove the dimensionality mismatch
during training, and both provide a denoising mechanism whose goal is to sample
from the model as though no noise had been added to the data. Our first approach is
based on Tweedie’s formula, and the second on models which take the variance of
added noise as a conditional input. We show that surprisingly, while well motivated,
these approaches only sporadically improve performance over not adding noise, and
that other methods of addressing the dimensionality mismatch are more empirically
adequate.

1 Introduction

The manifold hypothesis [Bengio et al., 2013], which states that high-dimensional data often lies
on an unknown low-dimensional manifold embedded in ambient space, aims to explain the success
of deep learning: neural networks would be unable to learn good low-dimensional representations
if there was no low-dimensional structure to begin with. There have also been empirical studies
estimating the intrinsic dimension of commonly-used image datasets, finding it is indeed much
lower than its corresponding ambient dimension [Pope et al., 2021, Tempczyk et al., 2022, Brown
et al., 2022]. Along with these empirical verifications of the low-dimensional structure present in
data, there has also been in a surge in research in deep generative models (DGMs) attempting to
directly account for the manifold hypothesis [Gemici et al., 2016, Dai and Wipf, 2019, Saremi and
Hyvärinen, 2019, Rezende et al., 2020, Brehmer and Cranmer, 2020, Mathieu and Nickel, 2020, Arbel
et al., 2021, Kothari et al., 2021, Caterini et al., 2021, Ross and Cresswell, 2021, De Bortoli et al.,
2022, Loaiza-Ganem et al., 2022, Ross et al., 2022]. This is a relevant line of research, especially
for likelihood-based models, which have been shown to suffer from manifold overfitting under the
manifold hypothesis [Dai and Wipf, 2019, Loaiza-Ganem et al., 2022], a surprising phenomenon
where likelihoods can become arbitrarily large without recovering the ground truth distribution, even
in the presence of an infinite amount of data.

Current DGMs that account for the manifold hypothesis require either non-trivial modifications from
their corresponding fully-dimensional counterparts [Brehmer and Cranmer, 2020, Arbel et al., 2021,
Kothari et al., 2021, Caterini et al., 2021, Ross and Cresswell, 2021, Ross et al., 2022], or require
training more models [Dai and Wipf, 2019, Loaiza-Ganem et al., 2022]. In this paper we propose
two slight modifications to existing full-dimensional likelihood-based models so as to enable them
to directly account for the manifold hypothesis. In our first proposed method, we train off-the-shelf
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models on data to which Gaussian noise has been added – so as to remove the dimensionality
mismatch which causes manifold overfitting in the first place – and then use Tweedie’s formula
[Robbins, 1956] as a denoising step, i.e. as a correction to account for the fact that we have learned a
noisy version of the target distribution rather than the ground truth distribution itself. In our second
proposal, we also add Gaussian noise with variance σ2 to the data, this time for a range of different
values of σ. We then leverage conditional DGMs [Sohn et al., 2015, Agrawal and Dukkipati, 2016]
to learn the conditional distribution of the (noisy) data given σ, and denoising is carried out by using
σ = 0 when sampling from the model.

In spite of being strongly motivated, both of our proposed procedures do not obtain consistent
improvements over simply using full-dimensional models, unlike some of the aforementioned more
involved manifold-aware models. We hope that this surprising result will lead into further research
aiming to understand the interplay between the manifold hypothesis and DGMs.

2 Background

2.1 Likelihood-based DGMs and Tweedie’s formula

Throughout this work we will assume that we have access to samples from a distribution p(x) in RD.
We will also assume that the manifold hypothesis holds; i.e., that p(x) is supported on an embedded
submanifold of RD of dimension less than D.1 Our discussions apply to all continuous likelihood-
based models such as variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al.,
2014], normalizing flows (NFs) [Dinh et al., 2017, Kingma and Dhariwal, 2018, Behrmann et al.,
2019, Chen et al., 2019, Durkan et al., 2019, Cornish et al., 2020], energy-based models [Du and
Mordatch, 2019], and continuous autoregressive models [Uria et al., 2013, Theis and Bethge, 2015],
in which a density pη(x) over RD is constructed through neural networks parameterized by η, and
trained through maximum-likelihood

η∗ = argmax
η

Ep(x)[log pη(x)] (1)

with the intention of recovering p(x). Note that we slightly abuse notation, as depending on the
model being used, pη(x) might not be directly available. For example, VAEs maximize a lower
bound of the log-likelihood, and energy-based models do not directly have access to pη(x) although
they still aim to solve (1) through gradient estimates. We nonetheless keep the notation pη(x) for the
sake of generality and provide a review of the DGMs that we will use in our experiments section in
appendix A.1. Likelihood-based DGMs do not properly account for the manifold hypothesis, since
pη(x) is a high-dimensional density. As we will see in subsection 2.2, this modelling choice results in
pathological behaviour, which we aim to address through Tweedie’s formula and conditional DGMs.

Tweedie’s formula Assume we are given a sample xσ, obtained by first sampling x from p(x),
and then adding Gaussian noise xσ := x+ σϵ, where σ > 0 and ϵ ∼ N (0, ID). Tweedie’s formula
[Robbins, 1956] provides the best estimate x̂σ (in mean squared error) of x obtainable from xσ:

x̂σ := Ep(x|xσ)[x] = xσ + σ2∇xσ
log p(xσ). (2)

Surprisingly, computing x̂σ does not require access to p(x) nor to p(x|xσ), only the marginal of xσ ,
p(xσ), is involved.

Conditional models Many DGMs, including VAEs and NFs, admit conditional variants [Sohn
et al., 2015, Agrawal and Dukkipati, 2016]. These models are trained to maximize

η∗ = argmax
η

Ep(x,c)[log pη(x|c)], (3)

where c is a conditioning variable. For example, c might be a class label, in which case p(x, c) =
p(x)p(c|x) where p(c|x) is a point mass at the class label corresponding to x; or c could also
specify a subset of coordinates of x, in which case p(c|x) selects the conditioning coordinates,
often independently of x, i.e. p(c|x) = p(c). Here pη(x|c) is now a density defined through neural
networks parameterized by η, whose inputs now also include c. Once again, we include details of the
conditional models that we use in appendix A.2.

1While the notation p(x) suggests this is a density in the Lebesgue sense, we highlight that formally p is a
probability measure as it is supported on a low-dimensional manifold. We nonetheless opt for this notation for
consistency with most of the DGM literature.
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2.2 Manifold overfitting

Figure 1: Illustration of manifold overfitting, where
the ground truth distribution p(x) in the 1-dimensional
curve (purple) is poorly approximated by the 2-
dimensional density pη(x) (orange), which nonetheless
achieves large log-likelihoods Ep(x)[log pη(x)].

Manifold overfitting [Dai and Wipf, 2019,
Loaiza-Ganem et al., 2022] shows that solv-
ing (1) will in general not result in pη∗(x)
recovering p(x), as the likelihood pη∗(x)
can achieve arbitrarily large values by con-
centrating around the manifold over which
p(x) is supported, without getting the cor-
rect distribution on the manifold. Figure 1
illustrates this phenomenon. Here p(x) is
supported on a 1-dimensional curve (mani-
fold) in R2, and the plotted choice of pη(x)
concentrates around the correct manifold,
but does so in an incorrect way, assigning
more probability to the wrong region of the
the curve. If pη(x) is flexible enough, this
spiking behaviour can increase, resulting
in unbounded likelihoods even if the model
is not close to p(x). Manifold overfitting strongly motivates the development of likelihood-based
DGMs which properly account for the manifold hypothesis.

3 Methods

3.1 Tweedie Denoising DGMs

Here we propose to train a DGM not to learn p(x) directly, but rather its noisy version p(xσ), which
is the density obtained after convolving p(x) with Gaussian noise with variance σ2, where σ is treated
as a hyperparameter. This amounts to solving

η∗ = argmax
η

Ep(xσ)[log pη(xσ)] (4)

instead of (1). The intuition is simple: by adding noise, the target distribution p(xσ) is not supported
on a low-dimensional manifold anymore (formally, it becomes absolutely continuous with respect
to the Lebesgue measure in RD), which should theoretically avoid manifold overfitting. We point
out that adding Gaussian noise is a common practice (see section 4), although Loaiza-Ganem et al.
[2022] found that, by itself, doing so does not fully avoid manifold overfitting in practice. We thus
propose to add an additional denoising step through Tweedie’s formula in the hope of improving
empirical performance by properly accounting for the fact that the learned distribution is not directly
p(x). Once we have the trained model pη∗(xσ), given a sample xσ from the model, we correct it
through Tweedie’s formula (2):

x̂σ ← xσ + σ2∇xσ
log pη∗(xσ). (5)

We highlight the simplicity of using Tweedie denoising DGMs: we only have to add Gaussian noise
to training data, train an off-the-shelf likelihood-based DGM pη(xσ), and do a post-hoc correction
through (5) at sample time.

3.2 Conditional Denoising DGMs

We also propose to use conditional models (3) to learn the conditional distribution of noisy data,
conditional on the standard deviation of the added noise by maximizing

η∗ = argmax
η

Ep(xσ|σ)p(σ)[log pη(xσ|σ)], (6)

where p(σ) is an arbitrary distribution over σ, e.g. uniform on (0, C) for some hyperparameter
C > 0. Note that since we are now treating σ as random instead of a fixed hyperparameter, we
write p(xσ|σ) instead of p(xσ) for the distribution of noisy data at a given noise level. We also
highlight the simplicity of using conditional denoising DGMs: during training we sample σ along
with each datapoint, add corresponding Gaussian noise to the data, and condition the DGM on
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σ. When sampling from a trained model, we simply sample from pη∗(xσ|σ = 0). The intuition
is similar to that of Tweedie denoising DGMs: by adding noise, we hope the model manages to
properly learn p(xσ|σ) for every σ in the appropriate range, e.g. (0, C), and that the σ = 0 case
p(x) = p(xσ|σ = 0) is also learned by “continuity” over σ.

4 Related work

As mentioned in the introduction, most deep generative modelling methods that account for the
manifold hypothesis without explicitly adding noise to the data deviate substantially from their
full-dimensional counterparts. While not in itself a problem, this property does prevent “plugging in”
any likelihood-based DGM from the vast existing literature to our context of interest. Dai and Wipf
[2019] and Loaiza-Ganem et al. [2022] propose to first obtain low-dimensional representations of
the data, and then train a likelihood-based DGM on these representations, which results in the added
complexity of having to specify two models and not having a single end-to-end training procedure.
Indeed, our original motivation was to tackle the same problem in a simpler way.

Adding noise to data before training DGMs is a common practice [Vincent et al., 2008, Vincent, 2011,
Alain and Bengio, 2014, Theis et al., 2016, Chae et al., 2021], albeit not always directly motivated as a
way to account for the manifold hypothesis. In the context of accounting for the manifold hypothesis
within likelihood-based DGMs, several methods based on adding noise have been proposed, although
these tend to be model-specific. For example, the method of Zhang et al. [2020] can only be applied
to VAEs, those of Horvat and Pfister [2021a,b] and Cunningham and Fiterau [2021] to NFs, and that
of Meng et al. [2021a] to autoregressive models. Song and Ermon [2019] follow a similar approach
for score-based models [Hyvärinen, 2005]. Similarly, Tweedie’s formula has been used in the context
of DGMs before [Saremi and Hyvärinen, 2019, Meng et al., 2021b], although these uses are once
again model-specific. Our motivation for this paper was to propose a widely applicable methodology,
compatible with any likelihood-based DGM.

We were also motivated by diffusion models, which have extremely strong empirical performance.
These models can be understood as likelihood-based models [Ho et al., 2020, Song et al., 2021a], or
as score-based models in a stochastic differential equation setting [Song et al., 2021b]. Diffusion
models learn how to slowly transform noisy samples into samples from the data distribution (i.e., to
denoise them). In our notation this roughly translates to transforming samples xσ2

from p(xσ2
|σ2)

into samples xσ1
from p(xσ1

|σ1) for a multitude of values σ1 < σ2. Importantly, the structure
of diffusion models implies that these models learn not only the target distribution p(x), but also
noisy versions of it p(xσ|σ) at different noise levels σ. Furthermore, in contrast to likelihood-based
models which can experience manifold overfitting, diffusion models are known to converge under the
manifold hypothesis [Pidstrigach, 2022, De Bortoli, 2022]. All these properties of diffusion models
motivated our conditional models, with the hope that learning p(xσ|σ) for a continuum of values of
σ could address manifold overfitting.

5 Experiments

5.1 Results

Although as mentioned previously our methods can in principle be applied to any likelihood-based
model, in this section we focus on VAEs and NFs as both have commonly-used conditional versions.
For example, energy-based models [Du and Mordatch, 2019] keep a sample buffer during training,
and naïvely adding the conditioning variable as input to the energy function would result in the buffer
containing samples at different noise levels: this would confound any observed poor performance of
conditional denoising, and attempting to improve upon the buffer falls outside of the scope of this
work. Similarly, we also omit autoregressive models from our experiments, as most well-performing
versions of these models are discrete rather than continuous [van den Oord et al., 2016, Salimans et al.,
2017] (and are thus not susceptible to manifold overfitting), and proposing performant continuous
autoregressive models also falls outside the scope of our work. We use the prefixes “ND-”, “TD-”, and
“CD-” to denote models trained with added Gaussian noise with no denoising step, Tweedie denoising,
and conditional denoising, respectively. All experimental details are provided in appendix A.3,
and our code is publicly available at https://github.com/layer6ai-labs/denoising_dgms.
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Table 1: FID scores (lower is better). Means ± standard
errors across 3 runs are shown. Best models and those
whose standard errors overlap with those of the best
model are bolded.

MODEL MNIST FMNIST SVHN CIFAR-10

VAE 197.4± 1.5 188.9± 1.8 311.5± 6.9 270.3± 3.2
ND-VAE 199.9± 1.4 185.7± 2.0 317.8± 8.3 264.5± 0.5
TD-VAE 199.1± 0.8 190.4± 3.3 310.9± 8.9 263.9± 0.9
CD-VAE 197.4± 0.2 195.8± 2.1 290.0± 4.4 262.4± 0.3

NF 137.2± 3.4 110.5± 0.9 231.9± 22.0 222.7± 3.9
ND-NF 103.2± 0.4 72.3± 0.8 222.0± 5.7 222.9± 1.2
TD-NF 105.6± 0.5 70.6± 0.4 224.2± 4.4 222.8± 2.2
CD-NF 87.4± 0.5 73.3± 0.3 206.0± 7.1 225.4± 0.7

Table 1 shows comparisons of all the
considered models using the FID score
[Heusel et al., 2017] for the MNIST [Le-
Cun, 1998], FMNIST [Xiao et al., 2017],
SVHN [Netzer et al., 2011], and CIFAR-
10 [Krizhevsky et al., 2009] datasets. We
opted to use FID scores as a measure of
how well the models recover p(x) instead
of test log-likelihoods since the latter are,
by definition, unable to detect manifold
overfitting. We highlight that we tuned σ
for the Tweedie denoising models, as well
as C for the conditional denoising models.
We can see that, surprisingly, the TD-VAE
(TD-NF) and CD-VAE (CD-NF) models
do not consistently outperform their VAE (NF) and ND-VAE (ND-NF) baselines: the only instances
of denoising models obtaining a non-marginal improvement over their baselines are the CD-VAE on
SVHN and the CD-NF on MNIST. We also tried annealing σ (for Tweedie denoising models) and
C (for conditional denoising models), but found results did not significantly change. Not only do
our denoising models not outperform simply adding Gaussian noise, but in some cases denoising
can even hamper performance: for example CD-VAEs on FMNIST and TD-NFs on MNIST both
significantly – albeit marginally – underperform their non-denoised alternatives.

5.2 Discussion

We conjecture that the issue with these methods remains related to manifold overfitting: the target
noisy distribution might still be very peaked around the manifold and difficult to learn, in which case
pη∗(xσ) (or pη∗(xσ|σ) for conditional models) might not be close to its target p(xσ) (or p(xσ|σ))
and just concentrate around the manifold. If this is the case, we should expect neither Tweedie’s
formula nor conditioning on σ = 0 to properly sample from p(x). In other words, the noise being
added might not be enough to numerically overcome manifold overfitting. We hypothesize that using
more powerful models and further tuning how the noise is added might alleviate the situation.

Another potential explanation for the performance of Tweedie denoising models is that the value
of σ that we used (0.01 for most models, which as previously mentioned was found by tuning this
hyperparameter) is too small, and thus the update from (5) ends up barely correcting the samples.
We find this explanation is not fully satisfactory as due to manifold overfitting, one should expect
||∇xσ log pη∗(xσ)||2 term to become larger as σ becomes smaller (since the density should become
“spikier” around the manifold), potentially offsetting the small correction size σ. Additionally, this
explanation does not provide any intuition for the observed performance of our conditional models.

Yet another explanation would be that the manifold hypothesis does not hold, and that thus manifold
overfitting does not happen to begin with. We find this hypothesis particularly hard to believe: first,
the manifold hypothesis is a sensible and intuitive way to think about high-dimensional data [Bengio
et al., 2013] that been empirically verified in various ways [Pope et al., 2021, Tempczyk et al., 2022,
Brown et al., 2022]. Second, the works of Dai and Wipf [2019] and Loaiza-Ganem et al. [2022] show
very clear empirical improvements by avoiding manifold overfitting.

Finally, it is also likely the case that observed data already represents noisy observations from a true
low-dimensional manifold, and that injecting further noise to accommodate our approaches makes
the problem significantly harder at the outset. However, the relative good performance of the no
denoising (ND) models over their vanilla versions without any added noise suggests that adding noise
is not making the problem harder.

6 Conclusions

In this paper we propose Tweedie denoising and conditional denoising with the goal of alleviating
manifold overfitting. Our methodologies are based on adding Gaussian noise to the data before
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training a likelihood-based DGM, along with a way of denoising samples from the resulting trained
models. Unexpectedly, our denoising approaches do not provide meaningful empirical improvements;
we suspect that manifold overfitting remains a culprit in the failure of these models. We hope that our
work will incentivize the community to further understand this intriguing result, as well as the role of
the manifold hypothesis in DGMs.
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A Appendix

A.1 Likelihood-based DGMs

VAEs Variational autoencoders [Kingma and Welling, 2014, Rezende et al., 2014] model x ∈ RD

through a lower-dimensional latent variable z ∈ Rd. A prior p(z), often taken as a standard
Gaussian, is specified, and the conditional distribution pθ(x|z) is parameterized by a neural network
with parameters θ. In Gaussian VAEs, pθ(x|z) (often referred to as the decoder) is given by a
Gaussian whose parameters are given by the output of the neural network parameterized by θ. Since
the x-marginal of the model,

∫
p(z)pθ(x|z)dz, is not tractable, VAEs cannot be trained through

maximum-likelihood directly. Instead, an auxiliary distribution qϕ(z|x) (the encoder) is introduced,
with the aim of approximating the posterior pθ(z|x). The approximate posterior qϕ(z|x) is often
taken as a low-dimensional Gaussian whose parameters are given by the output of a neural network
parameterized by ϕ. A lower bound to the low-likelihood is then maximized over η = (θ, ϕ):

η∗ = argmax
η

Ep(x)

[
Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z))

]
. (7)
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NFs Normalizing flows [Dinh et al., 2017] construct pη(x) as the density obtained by transforming
x = fη(z), where fη : RD → RD is a bijective neural network parameterized by η, and z ∼ p(z),
where p(z) is often taken as a standard Gaussian. By the change of variable formula, we have that

pη(x) = p(z)

∣∣∣∣∣det ∂f−1
η

∂x

∣∣∣∣∣ , (8)

where z = f−1
η (x) and ∂f−1

η /∂x is the Jacobian matrix of f−1
η evaluated at x. As long as fη is

constructed in such a way that its inverse and the determinant in (8) can be efficiently computed,
NFs can be trained through maximum-likelihood (1). In practice, f−1

η is constructed (rather than
fη) by stacking coupling layers. Each coupling layer is itself a bijective transformation with the
aforementioned properties enabling tractability. Coupling layers proceed by partitioning their input
into two blocks x = (xA, xB), and the corresponding output z = (zA, zB) is given by:{

zA = xA

zB = g(xB ;hη(xA)),
(9)

where g(·;h) : R→ R is an invertible function parameterized by h which is applied element-wise to
xB , and hη is a neural network mapping xA to the parameters of g. For example, g could be an affine
transformation [Dinh et al., 2017] parameterized by two scalars h ∈ R2, or a monotonic rational
quadratic spline [Durkan et al., 2019]. It is easy to check that the determinant of a coupling layer is
triangular (up to a permutation), and can thus be computed efficiently. Finally, f−1

η is constructed by
stacking multiple coupling layers, each with its own partition, on top of each other.

A.2 Conditional likelihood-based DGMs

VAEs Variational autoencoders can straightforwardly be made into conditional models [Sohn et al.,
2015] by modifying (7) as follows:

η∗ = argmax
η

Ep(x,c)

[
Eqϕ(z|x,c)[log pθ(x|z)]−KL(qϕ(z|x, c)||p(z|c))

]
, (10)

where the prior p(z|c) can now also depend on the conditioning variable c, although this dependency
can be omitted, i.e. p(z|c) = p(z). In practice, this change amounts to having the encoder and decoder
neural networks take c as input in addition to x and z, respectively. We omitted the dependency of
p(z|c) in our experiments for the sake of simplicity, although in some preliminary experiments we
did not observe any significant changes by including this dependency.

NFs Similarly to VAEs, NFs can be made into conditional models [Agrawal and Dukkipati, 2016]
defining a conditional density pη(x|c) simply by using the conditioning variable c as an input to
coupling layers, i.e. modifying (9) to{

zA = xA

zB = g(xB ;hη(xA, c)),
(11)

which then enables the model to be trained through (3). This strategy has been used in different
contexts [Atanov et al., 2019, Ardizzone et al., 2019, Winkler et al., 2019].

A.3 Experimental details

For all experiments, we used the Adam optimizer [Kingma and Ba, 2015], and gradient clip-
ping with a value of 10. For ND- models, we tuned σ by reporting the best value out of
σ ∈ {0.005, 0.01, 0.05, 0.1, 0.5}. We use the same value of σ for the TD- versions of the models.
For the CD- models, we similarly tune C by selecting the best value in {0.005, 0.01, 0.05, 0.1, 0.5}.

VAEs We preprocessed the data by scaling it to [0, 1]. The latent space is 20-dimensional, the
learning rate is 0.001, and we train the models for 100 epochs. We use fully-connected architectures
for MNIST and FMNIST, both for the encoder and decoder, which both have a single hidden layer
with 256 units. For SVHN and CIFAR-10, we use convolutional encoders and decoders, which have
(32, 32, 16, 16) and (16, 16, 32, 32) hidden channels, respectively, with a fully-connected layer at the
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end of the encoder, and one at the beginning of the decoder. We use ReLU activations throughout.
For the conditional versions on MNIST and FMNIST, we found that simply concatenating the 1-
dimensional σ with a 784-dimensional datapoint x resulted in the network just ignoring σ. In order
to provide the inductive bias that the conditioning is a relevant feature to the model, we used two
additional networks, which we call conditioning networks. The encoder conditioning network takes σ
as input and outputs a 64 dimensional representation, which is then concatenated with x before being
fed into the encoder. Similarly, for the decoder, the conditioning network takes σ as input and outputs
an 8-dimensional representation, which is concatenated with z before being fed into the decoder.
Both conditioning networks have a single hidden layer with 256 units and use ReLU activations.
The conditioning network for the encoder on SVHN and CIFAR-10 remains the same, although the
conditioning network for the encoder now outputs a 32× 32 channel, which is concatenated with the
input x before being fed to the encoder.

NFs We also preprocessed the data by scaling it to [0, 1] for MNIST and FMNIST, and by whitening
it for SVHN and CIFAR-10. We used a learning rate of 0.0005, and train for 100 epochs with early
stopping on validation log-likelihood with a patience of 30 epochs. We use rational quadratic spline
flows [Durkan et al., 2019] with 128 units, 4 layers, and 3 blocks per layer. For the conditional models,
as in VAEs, we use a conditioning network which takes σ as input and outputs a 64-dimensional
representation, which is used as additional input in the coupling layers (11). The conditioning network
has a single hidden layer with 256 units and uses a ReLU activation.
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