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Abstract

Whole-body MRIs are commonly used to screen for early signs of cancer. In addi-
tion to the small size of tumours at onset, variations in individuals, tumour types,
and MRI machines increase the difficulty of finding tumours in these scans. Using
patches, rather than whole-body scans, to train a deep-learning-based segmentation
model with a custom compound patch loss function, several augmentations, and ad-
ditional synthetically generated training data to identify areas where there is a high
probability of a tumour provided promising results at the patch-level. However,
applying the patch-based model to the entire volume did not yield great results
despite all of the state-of-the-art improvements, with over 50% of the tumour
sections in the dataset being missed. Our work highlights the discrepancy between
the commonly used patch-based analysis and the overall performance on the whole
image and the importance of focusing on the metrics relevant to the ultimate user
− in our case, the clinician. Much work remains to be done to bring state-of-the-art
segmentation to the clinical practice of cancer screening.

1 Introduction

Finding small anomalies in large images is challenging for many reasons. Especially within medical
imaging, the small relative sizes of the regions of interest, lack of large amounts of data, paucity of
positive cases (anomalies such as cancer), heterogeneity in the data and the anomalies, and variation
in expert labels exacerbate the effectiveness of machine learning approaches in detecting anomalies.
Patch-based approaches are commonly used in the field to boost the success of detection [1, 2, 3, 4].

In pediatric whole-body MRIs (wbMRIs), early detection of cancers at onset (i.e. at a very small size
within the body) is crucial for a good prognosis, especially in children with cancer predisposition
syndromes [5]. Variations in the child, the type of cancer, and the type of MRI must be considered
during the evaluation of wbMRIs. A screening tool that can be used by radiologists and oncologists
with varying expertise to assist them in finding regions where there is high likelihood of a tumour can
save time and improve tumour detection capabilities.

Deep-learning-based segmentation approaches have seen great advancements in recent years, es-
pecially within the field of medical imaging. In this paper, we present our modified patch-based
approach for tumour segmentation to overcome the challenges with having few positive cases (i.e.
cancers) and vast data heterogeneity. Even after attempting to address these issues (see Table 1 in
Section 2) by splitting the data into patches, using the U-Net model, training with asymmetric unified
focal loss, dice loss, contour perimeter loss, and contour difference loss (see Section 4), selecting
different proportions of positive and negative cases, and utilizing data augmentations and synthetic
data, there is still room for improvement in the tumour segmentation performance in wbMRIs.

I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.



Our results indicate the need to consider several metrics to understand how patch-based performance
and overall performance affect each other and that given a set of patches related to a larger task, the
patch-based performance may not be fully indicative of how the overall performance may turn out.

2 Related Work

There has been a lot of work in recent years in tumour detection and localization in MRIs, however
the amount of work in pediatric whole-body MRIs focused on finding tumours at onset in any part
of the body continues to be rare. Non-segmentation-based deep learning techniques for tumour
detection and localization include classification [6, 7, 8, 9], anomaly detection with generative
adversarial networks [10, 11, 12, 13, 14] or variational auto-encoders [15, 16, 17], or a combination
of these approaches [18, 19]. Segmentation-based deep learning techniques for tumour detection and
localization [20, 21, 22] perform well within organ-specific domains due to the well-defined nature of
the body regions and anomalies (i.e tumours). However, all of these methods have trouble in domains
with very few positive cases and vast data heterogeneity, especially when the size of the anomalies
is very small within the data. Patch-based techniques can incorporate any of the above methods
[1, 2, 23, 24, 3, 4, 25, 26, 27], but aggregating patch-based results and metrics for meaningful and
effective overall results is not always trivial [28].

Problem Attempted Solution Outcome
volumes are 3D 3D models (varying slice thickness), + larger relative tumour

work with slices and 2D models [29] size with 2D slices
volumes are very large work with patches [2] + larger relative tumour

size with patches
tumours are very rare generative modeling [11, 15] − difficult due to low-data

and data heterogeneity
tumours are very small work with patches [1, 3], + works better in

segmentation [20, 21, 22] low-data domains
varying bands of contrast-limited adaptive + better contrast and

brightness in wbMRIs histogram equalization [30] tumour visibility
some volumes are noisy denoising techniques [31] + improved clarity

and contrast
varying positions registration [32] − difficult due to

data heterogeneity
varying age and sex conditioning on age and sex [33] − slower and more

unstable training
varying size, shape, augmentations [34], add synthetic + increased diversity

and location of tumours tumours to training set [23, 24] of training data
Table 1: The problems encountered, the attempted solutions, and their + or − outcomes.

3 Dataset

Our dataset contains 675 wbMRI volumes (coronal STIR) from the imaging database of The Hospital
for Sick Children in Toronto. On average, there are around 40 slices per volume, since the thickness
of the slices varies across MRIs based on the MRI machine and settings. The number of slices ranges
from 25 to 50 slices per volume. The dimensions of each slice also vary based on the MRI settings
and the age, size, and height of the child, but on average, they are ∼3000 pixels × ∼800 pixels.

Only 27 volumes contain tumours and there are a total of 60 tumours. Out of the 27,437 slices in
the dataset, only 120 slices contain tumour sections, with the number of slices spanning a tumour
ranging from 1 to 7 slices. The approximate diameter of each tumour ranges from 10 pixels to 100
pixels, which is very small compared to the size of a whole-body MRI volume.

After de-identification was used to remove all confidential information from the wbMRIs, the
corresponding radiology reports, which indicated cancer locations within the body, were used by
our radiologist fellows to perform manual annotations (i.e. segmentations) of tumours using a
segmentation tool. These were the masks that were used to train our tumour segmentation model.

We split the volumes into 4 folds for 4-fold cross-validation, with approximately the same number of
slices with tumours in each, and also leave out a test set of volumes to evaluate performance.
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3.1 Patches and Augmentations

As discussed before, due to the vast variation in tumours and wbMRIs and the paucity of tumours
across the dataset, we relied on 2D patches and augmentations to train our model to find tumours
efficiently and effectively. First, we find the number of tumours in each segmentation mask label
along with their locations by finding the total number of contours. Then, for each tumour, we take a
patch with the tumour at its centre and employ combinations of the following augmentations:

• Take multiple patches containing tumours with the centre uniformly randomly moved around
by a few pixels in the x- and y- dimensions in a given slice to be able to find tumours that
are not at the exact centre of a given test patch.

• Take multiple patches containing tumours with small zooms in or out of the slice to be able
to find tumours occupying various proportions of a given test patch.

Then, we take patches without tumours in the following manner:

• Take multiple patches from anywhere within the volume to introduce patches with no
tumours (i.e. negative samples) into the dataset.

• Take multiple patches from brighter parts of the volume (brain, bones, and parts of the
abdomen) to avoid the model from learning all bright spots as tumours. This is done
automatically by randomly taking patches with above a certain average brightness threshold.

• Take multiple patches from the same approximate location in the current volume in several
different volumes that do not have a tumour in that location so that the model can learn to
identify parts of the body with and without tumours more effectively.

Then, for 25% of all of the patches, we employ the following augmentations:

• Take multiple patches with the entire patch multiplied by a value smaller than and close to 1
for invariance in small changes to the brightness.

• Take multiple patches with the each pixel in a patch multiplied by a value smaller than and
close to 1 for invariance to small amounts of noise.

We applied these augmentations in conjunction with each other, rather than separately, to increase the
variation in the location, shape, texture, and size (relative to the body and relative to the patch) of the
tumour and allow the model to focus on learning to find tumours while remaining invariant to these
factors. Note that the patch from the volume and its corresponding mask are taken from exactly the
same location. All patches are 128 pixels × 128 pixels or resized to those dimensions in the case of
the small zoom in and zoom out augmentations.

The patches are obtained from the cross-validation set and split by volume. We use 5707 patches
with a 70%-30% training/validation split. 25% of the training and validation sets contain tumours.

Figure 1: The generation and insertion of a synthetic tumour as described below.

3.2 Synthetic Tumour Generation

To increase the prevalence of positive cases (tumours) within the dataset of patches, we use the
following process to generate patches with synthetic tumours (see Figure 1):

1. Create a tumour mask of random size by generating a random number of points, using
Graham’s scan [35] to find the convex hull, and interpolating smoothly between the points.

2. Choose a patch from within the volume without any tumours.
3. Choose a random brightness for the generated tumour and blend the generated tumour mask

from step 1 onto the patch chosen in step 2 to match the texture.

This method allows us to generate synthetic tumours of varying shape, size, brightness, and location
within the body to augment the training dataset.
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4 Model and Loss Function
We use the U-Net model [20] along with a loss function that includes asymmetric unified focal loss
[36], Dice loss [37], contour perimeter loss [38], and contour difference loss. The coefficients of each
of these loss functions in the total patch loss (see Equation 1) are tunable hyperparameters.

LossPatch = α ∗ LossAsymmetricUnifiedFocal

+ β ∗ LossDice

+ γ ∗ LossContourPerimeter

+ δ ∗ LossContourDifference

(1)

Each of the four parts of the patch loss function (Equation 1) serve a specific purpose:

• LossAsymmetricUnifiedFocal as defined in [36] is based on the combination of:
– asymmetric Focal Tversky loss, which is similar to Dice loss but assigns weights to

false positives and false negatives to better balance of precision and recall (enhances
the hard class, suppresses the easy class)

– asymmetric Focal loss, which is similar to cross-entropy loss but works better with
imbalanced sets (suppresses the hard class, enhances the easy class)

• LossDice as defined in [37] is the pixel-based F1-score, which is the harmonic mean between
precision and recall (to deal with the imbalance between foreground and background pixels)

• LossContourPerimeter =
(∑

p∈Ω ŷFp −
∑

p∈Ω yFp

)2

as defined in [38] measures the differ-
ence between the perimeter of the true tumour and the predicted tumour to ensure that the
model does not over-guess or under-guess the size of a tumour.

• LossContourDifference =
(∑

p∈Ω(ŷ
F
p − yFp )

)2

, which we introduce based on the previous
loss, measures the number of the pixels where the perimeter of the true tumour and the
predicted tumour do not overlap to ensure that the model properly localizes tumour borders.

For the contour-based losses, note that Ω ⊂ R2 is the spatial image domain and yFp (or ŷFp ) is the
true (or predicted) value of pixel p if it belongs to the true (or predicted) contour and 0 otherwise −
F is the function that extracts the contour from an image, as detailed in [38].

The number of patches and augmentations (discussed in Section 3.1), the batch size (16), the optimizer
(Adam [39]), the learning rate (1e− 5), and the learning rate scheduler (ReduceLROnPlateau) are
the other tunable hyperparameters.

5 Experiments

Model Dice Score TPR FPR TPR > 10%
U-Net w/ LossDice 0.9097 / 0.8200 0.9874 / 0.9391 0.0080 / 0.0096 0.9926 / 0.9550
U-Net w/ LossPatch 0.8328 / 0.7644 0.9834 / 0.9457 0.0179 / 0.0139 0.9908 / 0.9651
U-Net w/ LossPatch

+ Augmentations 0.8014 / 0.7577 0.9754 / 0.9527 0.0167 / 0.0155 0.9858 / 0.9704
+ Synthetic Tumours

Table 2: Average of the patch-based results across the folds for training / validation. TPR > 10%
signifies the percent of patches that matched the predicted mask with the true mask by over 10% of
the size of the true mask. True negative patches count towards this number.

We take the best trained patch-based model from Table 2, i.e. the U-Net model trained with LossPatch

+ Augmentations + Synthetic Tumours, and use a sliding window approach with 25% overlap to
get a prediction mask for each slice in every volume of every fold using MONAI [40]. The whole-
body results on the cross-validation set for the volumes with tumours are as follows: 27/53 tumour
detections in 16/21 volumes. For the test set, we have: 6/7 tumour detections in 5/6 volumes.

The false-positive rate in a given volume ranges from 0.5% to 2% of the pixels, but tumours, if they
exist, account for approximately 0.01% to 0.0001% of a given volume, which means that there are
50-20,000 times more false-positive pixels than true-positive pixels. False positive pixels usually
occur in the brighter parts of the body.
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Although it is important for both the false-positive rate and the false-negative rate to be low and there
is a trade-off in trying to minimize both, it is more important to not miss too many tumours (i.e.
lowering the false-negative rate is a bit more crucial). However, if it is at the expense of a very high
false positive rate, then there will be too many areas highlighted with high tumour probability, which
would make it challenging to differentiate between the true positives and the false positives to find
the actual tumours. It is also important to note that the Dice score is easily affected by the size of the
tumours and it is therefore more insightful to consider a variety of metrics to evaluate patch-level
performance. See Figure 2 to see examples of patch-level performance and Figure 3 to see examples
of performance on entire slices.

Figure 2: Examples of a true positive, true negative, false positive, and false negative when identifying
a tumour (from left to right). Each pair of images contain the contours of the true and predicted
masks, respectively (red outline).

Figure 3: Four examples of whole-body MRI slices in pairs of true mask overlays and predicted mask
overlays, respectively. Top left: part of the knee tumour is identified. Top right: entire brain tumour is
identified. Bottom left: tumour above lung is identified. Bottom right: tumour in the liver is missed.
False positives exist in every example, usually in the brighter parts of the image.
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For each of the 120 tumour sections in the cross-validation set, we compare the average brightness
and overall size of the tumour in Figure 4 when a tumour is detected or missed. Note that a tumour is
classified as a “detect” when there is any overlap between the ground truth label and the prediction of
the segmentation model and as a “miss” otherwise. There are no clear patterns, but we can notice that
very large and very bright tumours are usually detected, whereas very small and very faint tumours
are usually missed by our segmentation model. A total of 58/120 tumour sections are detected, which
means that just more than half of the tumour sections are missed.

Figure 4: Average tumour brightness vs. tumour size (log scale) when a tumour is detected or missed.

The discrepancy between the results in the 3rd row of Table 2 and Figure 4 suggest that strong
performance at the patch-level does not necessarily translate to the whole-body-level due to the fact
that we curate the dataset of patches, have a much higher imbalance at the whole-body-level, and may
be unable to properly foresee the false-positive rate at the whole-body-level when only considering
the patch-level performance.

For example, the following approaches improved patch-based results but worsened the whole-body-
based results by either increasing the false-positive rate or the false-negative rate: more proportion of
augmentations, more proportion of patches with synthetic tumours, and more weighting in the loss
function to the parts which deal with lowering the false-positive rate (i.e. asymmetric unified focal
loss and Dice loss).

6 Discussion & Future Work

We employ many tools to make use of the small amount of positive cases and large amount of negative
cases. We split the data into patches, use the U-Net model, select the appropriate proportions and
types of patches, utilize a compound loss function consisting of losses dealing with each issue in the
domain, augment large portions of the data, and add patches with synthetic tumours. Although each
of these approaches consistently improved the results at the patch-level from the baseline, we noticed
that the whole-body-level results did not see major improvements and, in some cases, worsened.

Our work highlights the need for future methods to follow through on finding a more holistic approach
to consolidate strong patch-based results into consistently strong whole-image-based results. Similar
results have been found in other domains utilizing patch-based learning such as for cancer detection
in whole slide images [28]. This is because even if patch-based results seem promising, they may not
be clinically relevant. Machine learning practitioners must continue to address the issues of large
data heterogeneity and small relative sizes of the regions of interest in the medical domain and report
the appropriate user-relevant (clinician-relevant) metrics [41, 42, 43].
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