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Abstract

In numerous applications, for instance in predictive maintenance, there is a pression
to predict events ahead of time with as much accuracy as possible while not delaying the
decision unduly. This translates in the optimization of a trade-off between earliness and
accuracy of the decisions, that has been the subject of research for time series of finite length
and with a unique label. And this has led to powerful algorithms for Early Classification
of Time Series (ECTS). This paper, for the first time,

investigates such a trade-off when events of different classes occur in a streaming fashion,
with no predefined end. In the Early Classification in Open Time Series problem (ECOTS),
the task is to predict events, i.e. their class and time interval, at the moment that optimizes
the accuracy vs. earliness trade-off. Interestingly, we find that ECTS algorithms can be
sensibly adapted in a principled way to this new problem. We illustrate our methodology
by transforming two state-of-the-art ECTS algorithms for the ECOTS scenario. Among the
wide variety of applications that this new approach opens up, we develop here a predictive
maintenance use case that optimizes alarm triggering times, thus demonstrating the power
of this new approach.

Keywords: early decision-making; predictive maintenance; monitoring

1. Introduction

In intensive care units (Shekhar et al., 2021), in control rooms of electrical power grids
(Dachraoui et al., 2013), in government councils assessing emergency situations, in many
kinds of contexts therefore, it is essential to make timely decisions in absence of complete
knowledge of the true outcome. The issue facing the decision-makers is that, usually, the
longer the decision is delayed, the clearer is the likely outcome (e.g. whether the patient
is critical or not) but, also, the higher the cost that will be incurred if only because earlier
decisions allow one to be better prepared. Formally, this problem translates into optimizing
online the trade-off between the earliness and the accuracy of the decision. Early Classifi-
cation of Time Series (ECTS) deals with time series of finite length, and a single decision
per time series.
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In this paper, we study this trade-off in a new context, one where events of different
classes occur in a streaming fashion, i.e. in an open time series with no predefined end.
We want to predict, at the optimal time, each of them with their associated time intervals.
For instance, in predictive maintenance, events may be associated with types of mechanical
parts malfunctions that can be expected at given times.

Interestingly, we find that the powerful algorithms that have resulted from research on
ECTS can sensibly be adapted to the new problem. In particular, this paper proposes a
principled way to adapt ECTS approaches to deal with the early classification in open time
series (i.e. with no time bounds). We show how the classification problem in ECTS can be
transformed into a new classification problem for Early Classification in Open Times Series
(ECOTS) and how the decision triggering condition should be modified.

In the classical setting, the Farly Classification of Time Series (ECTS) problem assumes
that measurements, possibly multivariate, become available over time in a time series which,
at time ¢, is x; = (x1,...,7;) € X* where z; is the current measurement and each Tj1<j<t)
belongs to some input domain X (e.g. the temperature and the blood pressure of a pa%ie_nt
at time step j). It is further supposed that each time series can be ascribed to a class y € Y
(e.g. patient who needs a surgical operation or not). The task is to predict the class of
an incoming time series by optimizing the trade-off between the expected accuracy of the
prediction and the increasing cost of delaying the decision.

Formally, the ECTS problem can be stated as trying to find the best (possibly future)
time 7* to make a prediction, given that only x; has been observed:

T = Argi\i[in {Cm(hT(xTﬂy) + Cd(T)} (1)
T

where Cp,(h-(x;)|y) is the cost of misclassification incurred at 7, and y is the true class,
and Cy4(7) is the delay cost. What makes the problem possible to tackle, in the ECTS
scenario, is the availability of a training set S = {(x%,y:)}1<i<m of complete time series,
with their associated labels. For each time step ¢, t € {1,...,T}, using S, a classifier h;
can be learned h; : Xt — ), with X? being the space of truncated time series at time step
t. These classifiers are learned beforehand and are considered as an input to the ECTS
approaches, which essentially optimize the times at which predictions are triggered.

Overall, the ECTS problem can be seen as involving two components: (i) the set of
classifiers hy (1 <t < T) which is supposed pre-learned as seen above, and (i7) a trigger
system which decides whether to make the prediction at the current time ¢ or to wait for
at least one more measurement z;11 (see Figure 1).

While the ECTS framework is well suited to many real world problems, it is limited
in several ways, as has been underscored in (Bondu et al., 2022) which defines several
challenges that remain to be solved. In particular, one challenge relates to the fact that, in
ECTS, (i) the time series all have a finite length and (77) it is assumed that there is a single
class associated with each of them. However, applications abound where the measurements
come in an open time series with no time bounds and where different events may arise,
possibly of different lengths, each with its own class (see Figure 2). The setting is thus
different from ECTS. Should we then abandon the good properties and performances of the
best ECTS algorithms for the new ECOTS problem?

If not, adapting ECTS approaches to the ECOTS problem raises three issues:
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Figure 1: General schema of ECTS approaches

1. What should the classifiers in ECOTS do? In the ECTS framework, they take in-
complete time series x; as input and make prediction about the class of the associated
complete, but still unknown, time series xp. But, in ECOTS, the notion of complete
time series does not make sense anymore.

2. How to solve the earliness-accuracy trade-off in the ECOTS setting? In the ECTS
framework, the start and length of time series are known which allows one to measure
the earliness. But how to define it in ECOTS?

3. How to build the training sets in the framework of ECOTS where there are no more
individual time series with their associated class, but open time series with events of
different classes and durations?
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Figure 2: Example of a part of an open time series where events of possibly different lengths
are here labeled with ‘0s” and ‘1s’.

The goal of this paper is, first, to define properly the ECOTS problem and, second, to
present a methodology to adapt any ECTS approach to it by answering the three questions
raised above. As a result, we show how the role of the classifiers must be thought anew and
transformed and how the earliness-accuracy trade-off translates to the new scenario and
what the decision triggering system becomes. We illustrate our methodology by transform-
ing two state-of-the-art ECTS algorithms for the ECOTS scenario. Among the wide variety
of applications that this new approach opens up, we develop here a predictive maintenance
use case that optimizes alarm triggering times, thus demonstrating the power of this new
approach.

In order to avoid confusion, it is important to note that the data stream literature
(Silva et al., 2013) focuses on classification of incoming data points at fixed horizon under
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memory constraints and evolving properties of data. Whereas, in this paper, we focus on
identifying the optimal triggering moment of the classification, the one that optimizes the
earliness-accuracy trade-off in a stationary environment.

The paper is organized as follows. Section 2 formally draws a parallel between the ECTS
problem and the ECOTS one, leading to a generic approach capable of transposing any
ECTS algorithm into an ECOTS one. We then review, in Section 3, the main approaches
to ECTS, and outline two competitive methods: one described in (Mori et al., 2017b) and
the other, the ECONOMY method presented in (Achenchabe et al., 2021a). We then show,
in Section 4, how to adapt these methods to the ECOTS problem, before comparing their
performances on experiments in Section 5. The conclusion, in Section 6, underlines what
has been performed in this work, and provides directions for future research.

2. ECOTS in the perspective of ECTS

This section defines the ECTS and ECOTS problems in turn, and presents our proposed
methodology to adapt any ECTS approach to solve the ECOTS problem.

2.1. The ECTS problem

In the ECTS setting, each classifier h; (1 <t < T') is learned from the truncated training
time series up to time ¢: {(x7,%;)}1<j<m) With m is the number of time series (see Figure
3). It is expected that the accuracy of the classifiers grows as ¢ increases from the first time
step t =1 to the last one t =T

0 Xt t T

—+

Figure 3: In the ECTS setting, the classifier h; sees the incoming time series x; and predicts
a label 3 of the complete time series xp of true class y.

The problem, given an incoming time series, is to choose a time ¢ for which the expected
cost of misclassification C,,(9|y), where § = hi(x;) and y is the true class, plus the delay
cost Cg4(t), is minimal. Formally, the combined expected cost is given by:

— t 9 x
foe) = B! Culily)ix] +Calt)

= 3" Pylxe) 3 Pelily. xe) Conlily) + Calt)

yeY JeY

(2)

where E* (5 yey2 [C(9]y)|x:] is the expectancy at time ¢, over the variables y and 7.
P,(y|x) is the probability of the class y given an incomplete time series x;, and P;(9|y, x;)
is the probability that the classifier h; makes the prediction § given x; as input while y
would be its true label.
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The objective of the trigger function is to identify the best time t* for triggering the
decision while receiving online the measurements of the time series, the one that minimizes
Equation 2. Section 3 provides a state of the art of the existing approaches to solve this
problem, from very heuristic ones to more formally grounded.

2.2. The ECOTS problem

In this paper, contiguous instants with the same label are called chunks or events (see Figure
2). In the ECOTS scenario, we suppose that we have a training data set of m’ labeled chunks
{(x/, Yj)}(1<j<m’) coming from an open time series, where each x/ has length l,;, and where
y; is the corresponding label. The ECOTS problem consists in predicting as soon as possible
these events, i.e. their class label and time limits.

2.3. Proposed transposition of ECTS approaches into ECOTS ones

We propose to simplify the ECOTS problem by considering point-wise predictions instead of
predicting whole chunks (i.e. class and time limits), that is to make independent predictions
of the labels associated with each single timestamp ¢, in the open time series. From such
predictions, chunks could be reconstituted, for instance by gluing time stamps with the
same predicted class.

We posit that the unfolding time series is observed over a finite time interval which
depends on the present time ¢. In the following, we will use the term time window and note
it X(;—wy) at time ¢ when its size is w (w past measurements are available at time t).

Then, the target time stamp ¢, can be in the future (¢, > t), for example if there are
warning signs that a machine will break down, or in the past (¢, < t) if it was necessary
to wait until ¢, was in the observation time window to be able to identify its class, as it
can happen during a computer attack for example. Therefore, at any time ¢, for a target
timestamp t,, the transposed ECOTS problem is to decide whether ¢ is the best time for
the prediction ¢,, the class associated with ¢,, or whether to postpone this decision to the
next time step ¢ 4+ 1, which will bring a new measurement.

It is expected that, as the window of observation x(;_,, ) comes closer to t,, with in-
creasing t, it is easier to make a reliable prediction about its class, but, at the same time,
the cost of delaying prediction increases. (See Figure 4). Note that we assume that there is
a maximal value n,s for the horizon, above which no precursor signal can be detected, and
a minimal one 7, after which it is no longer useful to detect the event.

We now turn to the three questions raised in the introduction.

1- In the classical ECTS problem (see Section 2.1 and Figure 3), each classifier h; observes
a time series x; that is increasingly large as t approaches the time limit 7. In the ECOTS
setting, as we propose to see it, by contrast, each classifier h, observes a sliding window
X(t—w,) Of the same number w of observations. And each one makes a prediction about the
class of the time ¢, positioned at a given horizon 7 (positive or negative) from ¢ (see Figure
4). Given a maximal horizon nys > 0, the first classifier that can make a prediction about a
time ) is hy,, viewing the window Xy, _y, —w.t,—n)- And the last classifier is hy),, viewing
the window X(;, .. —w,t,—nn)- Lhus, instead of having a set of classifiers hy (1 <t < T)
as in the ECTS setting, we now have a set of classifiers h, (9, < n < nar) with various
horizons. (See Figure 4).
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Figure 4: The fixed point in time where to make a prediction is ¢,, of true label y;,. As
the measurements become available from t, — nas to t, — 1y, different classifiers
hy come into play with an advancing sliding window and a diminishing horizon.
The triggering system selects the best time to make a prediction g,

2- The second question to solve is to adapt the earliness-accuracy trade-off to the ECOTS
problem. In the proposed transposition, the gain of information over time is due to a time
window X(;_,, ;) that gets closer to the target timestamp ¢,, and no longer to additional
measurement gathered over time as in ECTS. In addition, the single prediction triggered
for each time series in ECTS is replaced by a prediction for each possible target timestamp
in the open time series. These two essential but easy to carry out modifications allow to
transpose most of the ECTS approaches, since the optimization criterion they use for their
triggering strategy can remain essentially the same. As a proof of concept, in Section 4, we
show how two state of the art methods for ECTS can be adapted to the ECOTS problem.

3- In the proposed approach, the values of the window size w, and of the bounds 7, and
1y of the horizon have to be chosen from a training set. But which training set?

In the ECOTS problem, it is assumed that the relationship between the symptoms of an
event and the event itself are stationary over time (e.g. a given malfunction of a machine
keeps the same telltale signs and the same characteristics whenever its appearance in time.
Or the symptoms associated with a patient who should undergo an urgent heart operation
stay the same, fortunately for the doctors, and for their training). From this property, in
the same way as doctors can be trained using independent episodes in an hospital history
about heart attacks, it is possible to use subsequences of the open time series, as long as
they are independent, to build training datasets in order to learn the classifiers h,, (see
Section 5.1).

3. Related work on trigger systems

While most of the proposed ECTS approaches rely on learning classifiers for different time
steps in the time series, they differ in the way they trigger the decision to make a prediction.

Two different approaches can then be used. In the myopic one, at each successive time
step t, the accuracy (or confidence) of the current classifier hy on its prediction can be
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assessed and it is possible to decide whether the time seems right to make a prediction. In
a non-myopic approach, given the current incoming time series x;, the expected accuracy
of all future classifiers h, (t < 7 < T') given the current input can be estimated and the
best decision time be computed taking into account the delay cost. Only if ¢ coincides with
this best instant, the prediction is performed

The earliest works on ECTS were heuristics in nature as well as myopic. They did not
try to explicitly optimize the cost defined in equation (2) but instead relied on the concept
of an estimated confidence in the current prediction. If this estimate was above a threshold,
then the decision was triggered. For instance, (Mori et al., 2017b) describes a method
where the accuracy of a set of probabilistic classifiers is monitored over time, which allows
the identification of time steps from whence it seems safe to make predictions. In (Parrish
et al., 2013; Hatami and Chira, 2013; Ghalwash et al., 2012), various stopping rules are
defined, some on them relying on a confidence level threshold. And in (Xing et al., 2009),
the best time step to trigger the decision is estimated by determining the earliest time step
for which the predicted label does not change, based on a 1-NN classifier.

More recently, approaches have been proposed that attempt to explicitly optimize the
trade-off between the earliness and the accuracy. A notable example is (Mori et al., 2017a)
where a single objective optimization criterion is defined. In (Mori et al., 2019), the authors
put forward the idea of a multi-objective criterion with an associated Pareto front with
multiple dominating trade-offs. However, whereas these methods are myopic in nature, the
EcoNomy approach described in (Achenchabe et al., 2021a; Dachraoui et al., 2015) goes
one step further by (i) directly optimizing the combined cost defined in equation 2 and
(ii) giving a way to estimate the combined cost for future time steps, thus leading to a
non-myopic approach that outperforms the best methods known to date.

For a recent survey, the interested reader can refer to (Gupta et al., 2020).

4. Adapting two state-of-the art ECTS approaches

In Section 2.3, we have shown how to translate an ECTS problem into an ECOTS one by
modifying the definition and purpose of the classifiers. In the following, we demonstrate
how the triggering strategy used in ECTS can be adapted to deal with ECOTS. For this,
we consider one of the best performing myopic strategies known to date, described in (Mori
et al., 2017a) and the best non-myopic approach in the literature: the ECONOMY-7y strategy
described in (Achenchabe et al., 2021a). The first one relies ultimately on confidence criteria,
while the second one explicitly optimizes the accuracy versus delay cost trade-off.

4.1. The SR approach

The SR approach (Mori et al., 2017a) uses a trigger-model which involves 3 parameters
v = (71,72,73) in order to decide if the current prediction is reliable (output 1) or if it is
preferable to wait for more data (output 0):

0 ifyip1+y2p2+734% <0
1 otherwise

Trigger” (hy(x¢)) = { (3)



ACHENCHABE BONDU CORNUEJOLS LEMAIRE

where p; is the largest posterior probability estimated by the classifier h;, po is the dif-
ference between the two largest posterior probabilities, and the last term % represents the
proportion of the incoming time series that is visible at time ¢. The parameters 1, y2, V3

are real values in [—1, 1] to be optimized using training data.

Algorithm 1 Adapted SR approach in the ECOTS scenario
Input: ¢: current moment.
tp: target that belongs to [t+mm,, t+na].
W, M, N window size, minimum and maximum horizon.
1: for allp=t, —t,...,nm (step=-1) do
2:  sliding-window = X(¢, y—w,t,—r) # sliding window: adds new measurement and deletes the
first one.
compute A = v p1 + Y2 p2 + 73 % using the updated sliding window.
if A> 0 orn==nmn,, then
return 7
end if
end for

In the ECOTS problem, the trigger function for a target at horizon n = ¢, —t becomes:

0 ifyipr+repe+ys; 250 <0

1 otherwise

Trigger” (hn(x(t—w,t)) = {

The last term of Equation (3) is replaced by -2="L = which represents the relative

position of the current horizon 7 in the considered range of horizons [m, nar]. Algorithm 1
highlights the adapted procedure of the SR approach to choose the optimal horizon for a
given target t,.

4.2. The ECONOMY-v approach

EcoNOMY-v is a non-myopic cost-based approach (Achenchabe et al., 2021b), which is
capable of estimating the expected cost of making a prediction for any time ¢t +7 (1 <7 <
T —t) in the future, defined as:

)= EUT [Cu(@ly)lxi] + Calt+17)

(9,9)€Y? A
= " Per(lx) 3 Pria (9l %) Con(ily) + Calt +7) @
yeY JeY

In practice, the terms P, (9|y,x:) and P, (y|x:) are not tractable. A partitioning of
the training data into K groups gr € G (see (Achenchabe et al., 2021b)) is required to
make them computable, yielding the following approximation:

Fr(xe) = Y Prar(Oklxe) D Prvr(ylor) D Prar(ily, 1) Cra(ily) + Calt +7)
9,E€G yey 9yey

The optimal decision time, at time ¢, is thus estimated to be:

77 = ArgMin fr(x) (5)
7€{0,...,.T—t}
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The idea is to estimate the cost of a decision for all future time steps, up until ¢ = T',
based on the current knowledge about the incoming time series x;. The decision is postponed
unless 7* = 0, that is when it is expected that there will be no better trade-off in the
future. If so, the prediction h;(x;) is returned and the classification process is terminated.
Otherwise, the decision is postponed to the next time step, and Eq. (5) is computed again,
this time with x;41 as input. The process goes on until a decision is made or t = T" at which
point a prediction is forced.

Algorithm 2 Adapted ECONOMY approach in the ECOTS scenario
Input: ¢: current moment.

tp: target that belongs to [t+7m,, t+na].

W, N, Mar: Window size, minimum and maximum horizon.

1: for allp=t, —1¢,...,ny do

2. compute fy(X(t—w+1,))

3: end for

4o = ArgMin, < cp, oy fo(X(e—wt10)
5. if n* == t,-t or t, —t == n,, then

6:  return n*

7: end if

8

: return None

In ECOTS, as time ¢ increases, the task is to label each time step ¢, as it appears in
the span of the horizon: [t 4 1, t + nar] (see Figure 4). While in Equation (4), the term
E**T g.ev? [Crm(9ly)] involves the calculation of the confusion matrices for future time
steps t + 7 knowing the current incoming time series x;, the adaptation to ECOTS requires
that the confusion matrices are now computed for the various horizons from 7, to nys and
then used to estimate the cost of decision for each horizon n:

—wpy) = E7 |Cp(y —wn] + C
So(X(t—w.p)) (g},y)ejﬂ[ (Gly) % ,t)] a(n)

and the best horizon:
n* = ArgMin fn(X(t—w,t))
Nm<n<tp—1

The decision to classify the data point ¢, is triggered at time ¢ either because t +7* = t,
(i.e. corresponding to the optimal cost) or when t, =t + 7, (i.e. it is not possible to wait
any longer), see Algorithm 2 for more details.

The cost of delay Cy(t), which is an increasing function of ¢ in ECTS is a decreasing
function Cg4(n) of the horizon n in ECOTS. Indeed, as the target that we want to label
approaches (n decreasing), the cost of the decision increases.

Note that the time and space complexities of the ECONOMY-vy approach adapted to

ECOTS are the same than in the original approach. In the ECTS setting, at testing phase,
computing the cost at each timestep is in O(T?) at worst case, and in ECOTS setting is in

O((nur — 1m)?).-
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5. Experiments

We have proposed a principled method to adapt any ECTS approach into an ECOTS one
(see Sections 2 and 4). The aim of the experiments is to validate that the adaptation of
the SR and EcoNoMY-v approaches is efficient in the ECOTS setting. In addition, we
illustrate the applicability of the proposed approaches for predictive maintenance using real
data from the industrial domain.

This section aims at answering the following questions:

1. How efficient is the proposed framework for adapting any ECTS approach to the
ECOTS problem compared to baseline algorithms designed for the ECOTS problem?

2. How do these approaches behave when the delay cost increases, and when the mis-
classification cost becomes very imbalanced?

3. How these approaches adapt their decision time to the observed data?

Our source code is shared! for full reproducibility of the experiments. This also allows
interested researchers to extend the experiments to other open time series datasets.

5.1. Experimental protocol
5.1.1. DATA DESCRIPTION:

We use an open real dataset (data, 2020) from one of the Schwan’s factories. It contains 100
multivariate time series corresponding to 100 machines monitored over time for a period
of 1 year (January 2015 to January 2016) with measurements collected every hour. Each
time series is a multi-dimensional data table whose rows indicate the temporal domain and
columns include telemetry features (pressure, rotation, voltage and vibration), 5 Boolean
columns encoding different types of device errors which are premises correlated with a future
failure and a last column which indicates the presence or absence of a failure (the variable
to be predicted). This makes 8761 rows and 10 columns for each machine. The whole
dataset contains 3919 errors and 761 failures for a total number 876,100 timestamps. This
dataset is extremely imbalanced with 0.08% of timestamps associated with the abnormal
class (i.e. failure). There is on average 7 failures per time series, with a minimum of 0 and
a maximum of 19 failures per machine during the observed year.

5.1.2. PROBLEM STATEMENT:

Traditionally, the problem of predictive maintenance is solved by fixing a horizon for pre-
dictions (e.g. if a technician needs at least 12 hours to take preventive actions before the
machine fails actually, then a fixed horizon would be chosen as n =12 hours). Our goal is
to use the ECOTS approaches to make this horizon adaptive to the observable part of the
time series at hand.

1. https://github.com/YoussefAch/ECOTS
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5.1.3. EVALUATION CRITERION:

Ultimately, the value of using an early classification method is defined by the average cost
incurred using it, as in (Achenchabe et al., 2021a). Given an open time series S (e.g. a
machine monitored over a year), observed on a finite time interval of sufficient length V.
This time period is composed of time stamps ¢ € [1, N], labeled by the class y;. As time
increases from 1 to N, the ECOTS system makes predictions for each time step ¢: ¢ while
the true class is y;. In addition, for each ¢ € [1, N, the prediction is made using a classifier
hy,. corresponding to the triggering horizon n+, thus incurring a delay cost Cq(n:+). Hence,
the formula:

N
1
AvgCost(S N; m(Jelye) + Cd(ﬁt*)) (6)

5.1.4. COMPUTING THE COSTS IN THE EXPERIMENTS:

In real applications, the decision costs would be provided by domain experts. In order to
study the behavior of the different ECOTS algorithms, a large range of values has been
considered for the misclassification and the delay costs.

The cost of misclassification: Since we deal with a predictive maintenance problem, we
make the assumption that the cost of missing a failure is much higher than the cost of
sending the technical team. We thus consider four different misclassification costs C

[?JI\D] ?JI\;] , by varying the importance of false negatives:
1 101 2 _ |0 10 ) _ [0 100 () _ |0 1000
Cm_[l 0]’Cm_[1 0 7Cm_l 0 ’Cm_l 0 |

The cost of delaying decision: The delay cost C4(n) is provided by the domain experts for
an actual use case, and could be of any form. In our experiments, we set it as a linear
function of horizon, with coefficient, or slope, a: Cg4(n) = «a X ”Mf_?n The larger «, the
higher the cost of postponing the decision and the greater the incentive to make prediction
for large horizons n. When « is very high, the gain in misclassification cost by waiting to
be closer to the target cannot compensate for the increase of the delay cost, and it is better
to make a decision early on, that is for large horizons, close to nys. If, on the contrary, « is
very low compared to the misclassification cost, it does not hurt to wait until the target ¢,
is close to the sliding window X(;, ;) _w,¢,—p)- Our experiments were run over a large range
of values of o €[10e-04, 10e-03, 10e-02, 1, 10, 100, 1000].

5.1.5. TRAINING THE COLLECTION OF CLASSIFIERS AND ECOTS ALGORITHMS

Data split and extraction: We splitted the set of time series into four parts: 50% for
training the classifiers, 20% for testing the ECOTS algorithms, 15% for validating the
ECOTS algorithms and 15% for estimating the confusion matrices. This split is inspired
from the original paper of ECONOMY (Achenchabe et al., 2021a). Subsequences of size w
were extracted from the training open time series by doing the following steps: (i) time
stamps t,, aka targets, were set within the time series, spaced with w + 7y time units in
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order to avoid overlaps between samples; (i7) 7y — 1 subsequences of size w were extracted
around each target, each one dedicated to the training of the classifier h,, (see Figure 4).

Choice of the parameters w, Nm, ny:  These parameters depend on the problem that is
being solved and the data associated with it. One of the key ingredients of early classification
methods is the information gain measured by the AUC. Generally, the expected cost of
misclassification decreases as the target being classified gets closer to the sliding window.
A window size of w = 10 has been chosen to study the behavior of the ECOTS problems,
since it shows a significant information gain over various horizons using AUC. We refer the
reader to the supplementary material for AUC curves as a function of horizon with different
sliding window sizes. They exhibit equivalent information gain curves, which means that
this dataset is not very sensitive to the choice of w. The parameter ny; can be chosen
according to the AUC, for our experiments we have chosen 7y, = 50 as the AUC reaches
0.5 which corresponds to the random model, while, for 7,,, we chose the end of the sliding
window: 7, = —w.

Training the collection of classifiers: As mentioned in Section 2.2, a set of classifiers h,, for
different horizons 1 such that (1,, <n < nr) has to be trained. Extracted features® from
sliding windows include simple statistics: min, maz, mean, median and the count of each
type of errors. For our experiments, we trained XGboost models by fine tuning parameters
within the following grid of values®: min chlid weight € [1,5,10], gamma € [0.5,1,1.5,2, 5],
subsample € [0.6,0.8,1], colsample by tree € [0.6,0.8,1], mazx depth € [3,4,5,10]. The
parameter scalePosWeight is set to the the ratio of positive examples over negative ones
in order to take into account the fact that the dataset is imbalanced. The combination of
parameters that minimize the total cost* is chosen on a validation set (20% of the set used
for training the classifiers), then the model is learned on the whole training set. For a fair
comparison, the same collection of classifiers is used for all ECOTS algorithms.

ECOTS algorithms:  The competing approaches considered in this paper are described
below as well as their optimized hyper-parameters.

e Late baseline: the last classifier in the collection ian is used. This is the last time
that a prediction can be made.

e Early baseline: the first classifier in the collection BWM is used. This corresponds to
the earliest possible prediction with the largest horizon in the future.

e Confidence-based Classifiers (CC): for a fixed target ¢,, this method takes a
decision as soon as the confidence of the classifier regarding the class of interest exceeds
a given threshold, optimized as a meta-parameter for each value of « using validation
set. If this never happens, then t, =t + 7, and the prediction is forced using ﬁnm.

e Economy-~ (see Section 4.2): for each value of «, the number of groups K used in
the method is optimized in the range [1,5] using a validation set.

2. Reproducible using our source code available in the supplementary material.

3. The interested reader can refer to the official documentation for more details: https://xgboost.
readthedocs.io/en/stable/

4. Given the cost of false positives and false negatives, the total cost is computed on a validation set as the
sum over wrongly predicted samples weighted by the corresponding cost.
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. (see Section 4.1): for each value of «, the parameters 1, 2 and 73 were optimized
in the range [—1,—0.5,0, 0.5,1]3 using a validation set.

Note that the “late” and the “early” baselines are not adaptive, while the “Confidence-
based” method adapts its decisions to the current input. One goal of the experiments is
to compare these methods with ones that have been translated from the ECTS framework:

Economy-vy and SR.

5.2. Results and analysis

In this section, detailed answers to the questions raised in the introduction of Section 5 are

given, supported by numerical results.
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Figure 5: AvgCost of ECOTS algorithms computed on the test set for different values of the
« parameter of the delay cost (x-axis), and for different values of misclassification
cost. The maximum value of alpha on the x-axis is chosen in each subfigure to
reach at least the maximum value in the misclassification cost matrix C,. Figures
with all values of alpha are provided in the supplementary material
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Distribution of the decision moments when a = 0.001
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Figure 6: Distribution of the decision moments for ECONOMY-v, SR and CC algorithms,

for « = 0.001 and o = 0.1 both for 0723) = [(1) 100} )

Efficiency of the proposed framework: In Figure 5, one can note interesting patterns for
the four matrices of misclassication costs and the large range of values of o and therefore
of delay cost functions. When the cost of delaying decision is high (o > 10), the optimal
strategy is to make predictions immediately (i.e. the “early” baseline), for the largest value
of the horizon n,,. When the delay cost is low, (o < 0.01), taking late decisions is a good
strategy even though it is not optimal (i.e. the “late” baseline). It is apparent that the CC
method essentially switches from one baseline strategy to the other one as « increases, and
therefore seems to realize the best of the two strategies adaptively.

At the same time, both methods “imported” from ECTS: Economy-v and SR, notice-
ably overcome CC. They are able to better control the horizon of decision when « is low,
thus achieving significantly better performance (see more on this in the discussion below
on the ability to adapt the triggering times), and they perform as well as the competitors
for high values of «. In particular, this shows that the often preferred, almost by default,
confidence-based methods (e.g. CC) are being overtaken by more formally based methods
translated from ECTS.

The experimentation on this dataset taken from a predictive maintenance problem, leads
to the conclusion that the adapted Economy-vy and SR methods seem to be specially
interesting under a wide range of conditions.

Effect of the delay and misclassification costs: In all the situations corresponding to the
subfigures of Figure 5, the average cost sharply increases when the delay cost become very
high (note the logarithmic scale on the z-axis). Indeed, decisions have to be made early so
as to avoid high delay costs, but this is at the price of false positives and negatives which

may incur high cost, specially for the CS and 07(721) cost matrices.

Ability to adapt the triggering moment according to observed data: In order to better un-
derstand the properties of the adaptive approaches, we show in Figure 6 the distribution



WHEN TO CLASSIFY EVENTS IN OPEN TIMES SERIES?

of the decision moments of the three methods: ECONOMY-v, CC and SR. We have chosen
the scenario C,,, = C’T(,%) (The method behaves similarly for other values of C), = C’,(,'@) and
additional figures are given in the supplementary material). One immediate finding is that
both ECONOMY-v and SR are more ready to consider intermediate horizons of prediction
than CC. For a = 0.1, SR is more prone to spread its decision horizons than ECONOMY-7,
which shows how this efficient approach adapts the horizon. It may explain its superior

performance in this instance.

6. Conclusion

The dilemma of having to take a decision under time pressure is present in a wide range
of domains. In the case of finite time series each involving a single decision, it has been
shown that it can usefully be expressed as the problem of optimizing a trade-off between the
earliness and the accuracy of the decision. In this paper, we offered ways to go beyond finite
time series to address the problem of early classification of multiple events in open time
series (ECOTS). We have formally defined this problem for the first time in the literature
and provided a recipe that allows the transformation of early classification of time series
(ECTS) approaches to the ECOTS problem. Adapting in this way two state-of-the-art
ECTS algorithms, we applied them to a real world dataset related to predictive mainte-
nance. The experiments attest that the new algorithms effectively optimize the earliness
vs. accuracy tradeoff, exceeding the performance of heuristic-based algorithms.

It is our hope that these results can impact a wealth of applications that include health-
care, predictive maintenance, autonomous driving, decision aid in agriculture, prediction of
failure in cold chains, to name but a few.

In summary, this work focuses on variable-horizon adaptive prediction in a stationary
environment, whereas most of the existing works on data streams consider fixed-horizon
prediction, but potentially in a non-stationary environment (Bifet et al., 2018). The com-
bination of the two problems remains to be studied.
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