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Appendix A. Proofs

A.1. Proof of theorem 1

Let at denotes the arm with the highest index at time t, i.e. at = argmaxa I
Bayesian-CPD-TS
a,t .

First note that at each time t, if the arm a is played, then the Bayesian-CPD-TS algorithm is
either sampling a random arm or playing the arm with the highest index. So the probability
that arm a is chosen at time t when a is not the optimal arm is written as:

P (At = a ̸= a⋆t ) ⩽
α

A
+ (1− α)P (at = a ̸= a⋆t )

Using the definition of Na,T , we have:

E
[
Na,T

]
⩽

T∑
t=1

P (At = a ̸= a⋆t )

⩽
T∑
t=1

(α
A

+ (1− α)P (at = a ̸= a⋆t )
)

⩽
α

A
T +

T∑
t=1

P (at = a ̸= a⋆t )︸ ︷︷ ︸
(a)

Now, we need to upper bound the term (a). For this purpose, let us consider an experiment
of the Bayesian-CPD-TS over T plays. Let Fa denote the number of false alarms up to time
T and Da,k denote the detection delay of k-th change-point on arm a, where a ⩽ NCa,T . By
the way, the total number of detection points, when the change detection algorithm RBOCPD
signals an alarm on arm a is upper bounded by NCa,T + Fa. Recall that τa(t) is the latest
detection time (which include also false alarms). For each arm a, we define Ta as the set of
times slots that no change-point occurs i.e.

Ta = {t ∈ [1, T ] : µa,s = µa,t and τa(t) + 1 ⩽ s ⩽ t, t ⩾ τa(t) + 1}

Following this, we have:

(a) ⩽ E

NCa,T∑
k=1

Da,k +
∑
t∈Ta

I
{
at = a ̸= a⋆t

}
Note that during a stationary period, we can easily use the regret upper control of

Thompson Sampling to control the quantity I
{
at = a ̸= a⋆t

}
. Thus, following analysis in

Kaufmann et al. (2012b), we have (in the case where Ta is a deterministic set related to
change-point k):
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∀ε ∈ (0, 1), ∃Ca,k > 0 :
∑
t∈Ta

P (at = a ̸= a⋆t ) ⩽ (1 + ε)× log |Ta|+ log log |Ta|

kl
(
θa,[k], θ

⋆
[k]

) + Ca,k

where |Ta| denotes the length of the period Ta.
Following this, since |Ta| ⩽ T we have naturally :

∀ε ∈ (0, 1), ∃Ca,k > 0 :
∑
t∈Ta

P (at = a ̸= a⋆t ) ⩽ (1 + ε)× log T + log log T

kl
(
θa,[k], θ

⋆
[k]

) + Ca,k

And then,

∀ε ∈ (0, 1),∃Ca,k > 0 :
∑
t∈Ta

P (at = a ̸= a⋆t ) ⩽ (1 + ε)× log T + log log T

min
k∈[1,KT ],a̸=a⋆k

kl
(
θa,[k], θ

⋆
[k]

) + Ca,k

Finally, by applying the expectation operator, we get:

E
[
Na,T

]
⩽

α

A
T +

T∑
t=1

P (at = a ̸= a⋆t )︸ ︷︷ ︸
(a)

⩽
α

A
T +
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E [Da,k] + (NCa,T + E [FT ])× (1 + ε)× log T + log log T

min
k∈[1,KT ],a̸=a⋆k

kl
(
θa,[k], θ

⋆
[k]

) + C

where E [FT ] denotes the expected number of false alarm raised up to horizon T and C a
problem dependant constant depending on all Ca,k.

A.2. Proof of Theorem 2

Regarding the false alarm control, it comes directly from Theorem 1 in the analysis of the
restarted Bayesian online changepoint detector in Alami et al. (2020).

Indeed, we have:

∀δ′ ∈ (0, 1) : E [FT ] ⩽
KT∑
k=1

P
(
∃ t ∈ [τk + 1, τk+1 − 1) : RBOCPD_Restart(YAt,1, ..., YAt,NAt,t

) = 1
)

⩽ KT δ
′.

Thus, by choosing δ′ = δ
KT

, we upper bound E [FT ] ⩽ δ.
Then, the control of the detection delay comes also from theorem 2 in the analysis of the

restarted Bayesian online change-point detector in Alami et al. (2020).
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Indeed we upper bound the detection delay of change point τa,k related to arm a (with
some δ′ ∈ (0, 1))

E [Da,k] = min

{
d ∈ N⋆ : d >

(
1−

Cτa,k,d+τa,k−1,δ

Λa,[k]

)−2

2Λ2
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×
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1 +
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(
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)2

}
,

(5)

where:

Cs,t,δ =
√
2

2

(√
1 + 1
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log
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2
√
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)
+

√
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ns:t
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2n1:t

√
ns:t + 1 log2 (n1:t)

log(2)δ′

))
.

(6)

with fs,t = log n1:s+ log ns:t+1− 1
2 log n1:t+

9
8 and the decreasing function ni:j = j− i+1

and η ∈ (0, 1).
Indeed assuming that we collect enough samples between two consecutive change-points,

we upper bound the detection delay of change point τa,k related to arm a by its behavior in
the asymptotic regime such that:

E [Da,k] = O

(
o
(
log 1

δ′

)
2α× Λ2

a,[k]

)
⩽ O

 o
(
log 1

δ′

)
2α× min

a:Λa,[k] ̸=0)
Λ2
a,[k]


Finally, by choosing δ′ = δ

KT
we get the result of Theorem 2.

A.3. Proof of Corollary 1

The result of corollary 1 comes directly by injecting the result of Theorem 2 into Theorem 1
after summing over all the arms.
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