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1. APPENDIX

Details of Benchmark Datasets : We use commonly used benchmarks to evaluate
AMP, these include the following datasets – iSUN (Xu et al., 2015), LSUN (R), LSUN (C)
(Yu et al., 2015), Places365 (Zhou et al., 2017), Texture (Cimpoi et al., 2014), and SVHN
(Netzer et al., 2011)

Consistency training details The transformation T was applied to the anchors using
a pre-specified schedule, every 5th batch for CIFAR-10/100 and every 10th batch for Ima-
geNet, while the clean anchors were used directly in the other batches. However, from our
experiments, we found that the choice of this schedule is not sensitive and the detection
performance was similar even with other schedules. During the inference step, we did
not utilize any transformation T , and fixed the number of anchors K = 5 while making
predictions for a test image. We performed an ablation on the number of anchors (reported
at the end of the section), and observed that even a small number of random anchors
was sufficient to obtain good detection performance, thus making our approach efficient in
practice.

During training we always use K = 1 anchor, which is typically chosen by randomly
shuffling the current batch so that every input sample is assigned a random anchor from
that batch. During training we use RandomCrop, RandomHorizontalFlip augmentations
in Pytorch. For the test set and the OOD set, we normalize data to the same mean and
standard deviation as the training set without any additional transformations.

Hyperparameter settings CIFAR-10/100: We use standard training protocol for both
CIFAR-10/100 datasets using all our networks – WideResNet, ResNet-18, ResNet-34 (He
et al., 2016). We use an SGD optimizer with an initial learning rate of 0.1, momentum of
0.9, and weight decay of 5e − 4. This learning rate is scaled down by a γ = 0.2 using a
schedule of [60, 120, 160] epochs out of the total 200 epochs for training. We use a batch
size of 128 in all our training experiments for CIFAR datasets. ImageNet: We also follow
standard training protocol for ResNet-50 on ImageNet as well. We use an SGD optimizer
with a learning rate of 0.1, weight decay of 1e− 4, momentum of 0.9. We decay the learning
rate by 0.1 every 30 epochs, and train for a total of 120 epochs. We use a batch size of 128
to train the model.
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Method AUROC ↑

ResNet-18 (He et al., 2016) 91.77 ± 1.85
DUQ (Van Amersfoort et al., 2020) 92.70 ± 1.30
Deep Ens (Lakshminarayanan et al., 2017) 94.70

AMP 97.41 ± 0.72

Table 1: OOD Detection with uncertainties on CIFAR-SVHN with ResNet-18.

1.1. Modification to anchor a model

We demonstrate with more detailed pseudo-code, the simple modification to be able to train
with anchoring.

1.2. Additional Results

We report detailed results for individual datasets on various benchmarks used in the paper
here. Table 3 and Table 2 report 4 performance metrics for the SCOOD benchmark (Yang
et al., 2021), where we use the re-sampled OOD set following the SCOOD protocol. We
observe competitive performance on CIFAR-10 and state-of-the-art on CIFAR-100 with AMP.
Next, Table 4, we report detailed performance numbers on the second OOD benchmark
used in the paper. We note that our method consistently performs either the best or second
best as compared to GM (Sastry and Oore, 2020), while being better on average across the
various datasets. In particular, we see that on challenging datasets like near-OOD AMP is
significantly better than all competing baselines. Finally, in Table 1 we show uncertainty
based OOD on a CIFAR-10 vs SVHN benchmark, compared to other uncertainty based
approaches. We see once again that AMP is significantly better than sophisticated methods
including Deep Ensembles that requires multiple models to be trained.
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Algorithm 1: PyTorch-style pseudo-code for anchoring.

def create anchored model(model):
model.conv1 = nn.Conv2d(in channels=6, 64)

return model

Tx = transforms.Compose([

transforms.RandomResizedCrop(size=224),

transforms.RandomHorizontalFlip(),

transforms.RandomApply([color jitter ,blurr], p=0.8),

])

## load model and change the f i r s t conv layer

model basic = ResNet50(pre trained=False,n class=1000)

model = create anchored model(model basic)

## load datasets , setup optimizer , define cr i ter ion etc .
for images, targets in train loder:

batch order = np.arange(images.shape[0])

np.random.shuffle(batch order)

anchors = images[batch order ,:,:,:]

diff = images−anchors
if i % 10 ==0:

tx anchors = Tx(anchors)

else:
tx anchors = anchors

batch = torch.cat([tx anchors ,diff],axis=1)

output = model(batch)

loss = criterion(output, target)

optimizer.zero grad()

loss.backward()

optimizer.step()
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Method Dataset FPR95 ↓ AUROC ↑ AUPR(In/Out) ↑

ODIN

Texture 42.52 84.06 86.01 / 80.73
SVHN 52.27 83.26 63.76 / 92.60

CIFAR-100 56.34 78.40 73.21 / 80.99
Tiny-ImageNet 59.09 79.69 79.34 / 77.52

LSUN 47.85 84.56 81.56 / 85.58
Places365 53.94 82.01 54.92 / 93.30

Mean 52.00 82.00 73.13 / 85.12

EBO

Texture 52.11 80.70 83.34 / 75.20
SVHN 30.56 92.08 80.95 / 96.28

CIFAR-100 56.98 79.65 75.09 / 81.23
Tiny-ImageNet 57.81 81.65 81.80 / 78.75

LSUN 50.56 85.04 82.80 / 85.29
Places365 52.16 83.86 58.96 / 93.90

Mean 50.03 83.83 77.15 / 85.11

MCD

Texture 83.92 81.59 90.20 / 63.27
SVHN 60.27 89.78 85.33 / 94.25

CIFAR-100 74.00 82.78 83.97 / 79.16
Tiny-ImageNet 78.89 80.98 85.63 / 72.48

LSUN 68.96 84.71 85.74 / 81.50
Places365 72.08 83.51 69.44 / 92.52

Mean 73.02 83.89 83.39 / 80.53

OE

Texture 51.17 89.56 93.79 / 81.88
SVHN 20.88 96.43 93.62 / 98.32

CIFAR-100 58.54 86.22 86.17 / 84.88
Tiny-ImageNet 58.98 87.65 90.9 / 82.16

LSUN 57.97 86.75 87.69 / 85.07
Places365 55.64 87.00 73.11 / 94.67

Mean 50.53 88.93 87.55 / 87.83

UDG

Texture 20.43 96.44 98.12 / 92.91
SVHN 13.26 97.49 95.66 / 98.69

CIFAR-100 47.20 90.98 91.74 / 89.36
Tiny-ImageNet 50.18 91.91 94.43 / 86.99

LSUN 42.05 93.21 94.53 / 91.03
Places365 44.22 92.64 87.17 / 96.66

Mean 36.22 93.78 93.61 / 92.61

AMP (ours)

Texture 52.43 88.74 91.91 / 80.48
SVHN 12.53 97.60 95.58 / 98.83

CIFAR-100 48.10 89.61 88.99 / 88.47
Tiny-ImageNet 50.40 90.26 92.01 / 85.74

LSUN 23.01 95.17 94.94 / 94.78
Places365 34.45 93.25 83.95 / 97.19

Mean 36.82 92.40 91.23 / 90.91

Table 2: Detailed results on SCOOD benchmark (Yang et al., 2021) using CIFAR-
10/ResNet-18. AMP performs very close to methods that use outlier exposure,
while outperforming all the baselines that do not. We use results for baselines as
reported in (Yang et al., 2021)
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Method Dataset FPR95 ↓ AUROC ↑ AUPR(In/Out) ↑

ODIN

Texture 79.47 77.92 86.69 / 62.97
SVHN 90.33 75.59 65.25 / 84.49

CIFAR-10 81.82 77.90 79.93 / 73.39
Tiny-ImageNet 82.74 77.58 86.26 / 61.38

LSUN 80.57 78.22 86.34 / 63.44
Places365 76.42 80.66 66.77 / 89.66

Mean 81.89 77.98 78.54 / 72.56

EBO

Texture 84.29 76.32 85.87 / 59.12
SVHN 78.23 83.57 75.61 / 90.24

CIFAR-10 81.25 78.95 80.01 / 74.44
Tiny-ImageNet 83.32 78.34 87.08 / 62.13

LSUN 84.51 77.66 86.42 / 61.40
Places365 78.37 80.99 68.22 / 89.60

Mean 81.66 79.31 80.54 / 72.82

MCD

Texture 83.97 73.46 83.11 / 56.79
SVHN 85.82 76.61 65.50 / 85.52

CIFAR-10 87.74 73.15 76.51 / 67.24
Tiny-ImageNet 84.46 75.32 85.11 / 59.49

LSUN 86.08 74.05 84.21 / 58.62
Places365 82.74 76.30 61.15 / 87.19

Mean 85.14 74.82 75.93 / 69.14

OE

Texture 86.56 73.89 84.48 / 54.84
SVHN 68.87 84.23 75.11 / 91.41

CIFAR-10 79.72 78.92 81.95 / 74.28
Tiny-ImageNet 83.41 76.99 86.36 / 60.56

LSUN 83.53 77.10 86.28 / 60.97
Places365 78.24 79.62 67.13 / 88.89

Mean 80.06 78.46 80.22 / 71.83

UDG

Texture 75.04 79.53 87.63 / 65.49
SVHN 60.00 88.25 81.46 / 93.63

CIFAR-10 83.35 76.18 78.92 / 71.15
Tiny-ImageNet 81.73 77.18 86.00 / 61.67

LSUN 78.70 76.79 84.74 / 63.05
Places365 73.86 79.87 65.36 / 89.60

Mean 75.45 79.63 80.69 / 74.10

AMP (ours)

Texture 68.39 83.76 90.69 / 72.16
SVHN 34.12 94.21 90.11 / 97.24

CIFAR-10 80.47 78.74 81.36 / 74.07
Tiny-ImageNet 80.70 78.34 86.95 / 63.03

LSUN 83.60 76.64 85.80 / 60.63
Places365 74.77 81.67 69.97 / 90.09

Mean 70.34 82.22 84.14 / 76.20

Table 3: Detailed results on SCOOD benchmark (Yang et al., 2021) using CIFAR-
100/ResNet-18. AMP consistently outperforms all methods including those that
use outlier exposure. We use results for baselines as reported in (Yang et al., 2021)



In-dist
(model)

OOD
TNR at TPR 95% ↑ AUROC ↑ Detection Acc. ↑

MSP / ODIN / Gram Matrices / Ours

CIFAR-10
(ResNet-34)

iSUN 44.6 / 73.2 / 97.3 / 91.8 91.0 / 94.0 / 99.1 / 98.2 85.0 / 86.5 / 96.2 / 93.8
LSUN (R) 49.8 / 82.1 / 98.2 / 92.4 91.0 / 94.1 / 99.2 / 98.7 85.3 / 86.7 / 96.7 / 94.9
LSUN (C) 48.6 / 62.0 / 91.7 / 98.5 91.9 / 91.2 / 98.3 / 99.5 86.3 / 82.4 / 94.1 / 97.0
TinyImgNet (R) 41.0 / 67.9 / 95.9 / 88.8 91.0 / 94.0 / 98.9 / 97.0 85.1 / 86.5 / 95.6 / 92.1
TinyImgNet (C) 46.4 / 68.7 / 77.6 / 94.5 91.4 / 93.1 / 96.2 / 98.7 85.4 / 85.2 / 90.8 / 94.9
SVHN 50.5 / 70.3 / 95.3 / 91.2 89.9 / 96.7 / 99.0 / 98.1 85.1 / 91.1 / 95.2 / 93.7
CIFAR-100 33.3 / 42.0 / 40.2 / 56.5 86.4 / 85.8 / 83.6 / 90.2 80.4 / 78.6 / 76.4 / 83.5

CIFAR-100
(ResNet-34)

iSUN 16.9 / 45.2 / 66.2 / 48.7 75.8 / 85.5 / 94.6 / 90.2 70.1 / 78.5 / 88.3 / 82.6
LSUN (R) 18.8 / 23.2 / 61.4 / 54.2 75.8 / 85.6 / 94.4 / 91.7 69.9 / 78.3 / 88.6 / 84.3
LSUN (C) 18.7 / 44.1 / 43.7 / 67.8 75.5 / 82.7 / 89.7 / 94.0 69.2 / 75.9 / 82.4 / 86.4
TinyImgNet (R) 20.4 / 36.1 / 66.8 / 45.9 77.2 / 87.6 / 94.7 / 89.2 70.8 / 80.1 / 88.6 / 81.3
TinyImgNet (C) 24.3 / 44.3 / 41.4 / 61.5 79.7 / 85.4 / 89.7 / 92.9 72.5 / 78.3 / 82.8 / 85.4
SVHN 20.3 / 62.7 / 54.5 / 56.5 79.5 / 93.9 / 92.1 / 91.9 73.2 / 88.0 / 84.9 / 83.7
CIFAR-10 19.1 / 18.7 / 16.9 / 17.5 77.1 / 77.2 / 74.5 / 79.9 71.0 / 71.2 / 68.9 / 73.8

Table 4: Detailed results on the OOD detection benchmark with ResNet-34. Note, different
from the main paper we report TNR here (instead of FPR95) which is 100-FPR95,
as this was used in (Sastry and Oore, 2020). We observe that AMP performs
comparably to Gram Matrices, while being better on average. Our method has
significant advantages on more challenging datasets like near OOD.
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