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Abstract

Dog vs. hot dog and dog vs. wolf, which one tends to be a harder comparison task? While
simple, this question can be meaningful for few-shot classification. Few-shot learning en-
ables trained models to recognize unseen classes through just a few labelled samples. As
such, trained few-shot models usually have to possess the ability to assess the similarity
degree between the unlabelled and labelled samples. In each few-shot learning episode,
a combination of the labelled support set and unlabelled query set are sampled from the
training dataset for model-training. In the episodic settings of few-shot learning, most al-
gorithms draw the data samples uniformly at random for training. However, this approach
disregards concepts of difficulty of each training episode, which may make a difference.
After all, it is usually easier to differentiate between a dog and a hot dog, versus the dog
and a wolf. Therefore, in this paper, we delve into the concept of episodic difficulty, or
difficulty of each training episode, discovering several insights and proposing strategies to
utilize the difficulty. Firstly, defining episodic difficulty as a training loss, we find and
study the correlation between episodic difficulty and visual similarity among data sam-
ples in each episode. Secondly, we assess the respective usefulness of easy and difficult
episodes for the training process. Lastly, based on the assessment, we design a curricu-
lum for few-shot learning to support training with incremental difficulty. We observe that
such an approach can achieve faster convergence for few-shot algorithms, reducing the av-
erage training time by around 50%. It can also make meta-learning algorithms achieve
an increase in final testing accuracy scores. Our major implementation is available at:
https://github.com/WendyBaiYunwei/EpisodicDifficulty.

Keywords: Few-Shot Learning; Curriculum Learning; Deep Learning; Machine Learning;
Data Selection

1. Introduction

While deep learning has empowered the salient progress of machine learning performance,
the large models are data-hungry (Ford, 2018). Usually, data can be hard or expensive
to collect (Zhou et al., 2018), thus keeping deep learning away from numerous real-life
applications. Few-shot learning (FSL) algorithms enable trained models to classify unseen
tasks based on just a few reference samples, which mitigates the data collection problems.

Most of the FSL algorithms sample query and support data points from a dataset
uniformly at random (Wang et al., 2020). However, different query and support data point
combinations can lead to vastly different training loss even for a converged model. This
can be intuitively explained by the fact that, it is easier to differentiate between a dog
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and a hot dog, versus a dog and a wolf. Through utilizing the concept of difficulty, we
may enhance existing sampling approaches, data selection or other related techniques for
few-shot learning. For example, curriculum learning (CL) rearranges the order of training
data for faster convergence and better generalization.

Essentially, instead of chasing another state-of-the-art performance of few-shot learn-
ing models, we study the concept of difficulty behind episodic training. In this paper, we
demonstrate that the similar-looking support set samples are more difficult than the con-
trary. Meanwhile, the similar-looking queries and their targets are the easier queries. Easy
episodes can help achieve fast convergence. Hard episodes may hinder a model from fast
convergence. Moreover, curriculum learning can cut down training time for FSL algorithms
by a large margin and improve meta-learning performance by a small margin.

On the whole, the contribution of this paper can be summarized as follows:

• Propose and study a new definition for FSL episodic difficulty;

• Study the usefulness of easy and hard episodes respectively;

• Design a procedure to support FSL training with incremental difficulty. Demonstrate
its effectiveness for model performance, in terms of both convergence and generaliza-
tion.

2. Related Works

Few-shot learning algorithms aim to classify query samples based on just a few labelled
reference samples. There are different approaches to FSL, including algorithm-based, model-
based methods and data-augmentation approaches (Wang et al., 2020). Model-based FSL
algorithms learn a similarity function which can output a similarity score for a combination
of support set data points and a query data point (Sung et al., 2018). Algorithm-based
algorithms typically include meta-learning algorithms (Ye et al., 2020; Vinyals et al., 2016),
which ”learn how to learn”. For example, Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) does not assume a fixed model, and can prepare a fast-adapting initialization for
few-shot classification tasks. If we view few-shot learning in a hypothesis space, model-based
methods constraints hypothesis space through prior knowledge whereas algorithm-based
methods alter search strategies in the hypothesis space through prior knowledge (Wang
et al., 2020). Data-augmentation approaches like (Miller et al., 2000) and (Hariharan and
Girshick, 2017) serve to generate more data samples to improve generalization in few-shot
learning.

Curriculum learning experimentally demonstrates that the same model can achieve bet-
ter performance in terms of testing accuracy scores and convergence speed, when the easy
data points are fed first, followed by the harder ones (Bengio et al., 2009). However, most of
the curriculum learning approaches rely on the training loss or accuracy scores of a trained
model to differentiate between the easy and hard training samples (Soviany et al., 2021;
Wang et al., 2021). There are alternative measurements of difficulty. For example, (Ster-
giadis et al., 2021) defines difficulty as the size of support set images, and (Spitkovsky et al.,
2010) measures the difficulty of language tasks through sentence lengths.
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There are a few works indirectly associating few-shot learning with episodic difficulty. (Sun
et al., 2019) proposes a new approach for meta few-shot learning while introducing a cur-
riculum for the proposed approach. The curriculum, known as hard-task training, consists
of difficult classes wrongly classified by the model. (Zhou et al., 2020) points out that some
data points are better than others in training. Therefore, they introduce a class-wise simi-
larity ratio to select the effective classes for training. A recent work, (Zhang et al., 2021),
proposes a curriculum-learning approach for meta-learning to be coupled with a new model
called the BrotherNet. Another recent work (Arnold et al., 2021) observes a normal distri-
bution in uniform sampling, and believes that the uniform sampling can lead to the best
accuracy scores of models.

3. Preliminary

Episodic sampling sub-samples few-shot tasks from a large base dataset. In every episodic
sampling, one task represented by T is obtained as the output. We define each task T as
a concatenation of support set TS and a query TQ. In this paper, we refer to data points
involved in each of the episode as a ”combination”.

To obtain T , we first sample from the class distribution p(C), and then sample from data
distribution p(x, y|C) conditioned on C. Here, x represents one datapoint and y represents
one label. In few-shot learning, a n-way-k-shot episode is sampled in n classes to obtain k
support data samples for each class. The query data point class belongs to one of the n
support set classes. For one support set, there are n x k data points (Arnold et al., 2021).

4. Definitions and Existence of Episodic Difficulty

During every training episode, we have a combination of support set data points and query
data points. It is intuitive that the similar-looking support set data points are more difficult
because the model may get confused by other similar-looking but actually-wrong support
set data points. Meanwhile, the different-looking support set target data points and query
data points are more difficult. For example, in figure 1, the support set on the left side is
arguably easier than the right side.

To define difficulty level Difficulty formally, we define the input data points as {xi ∈
X|1 ≤ i ≤ |X|}, where X is the entire training dataset. Next, we use a metric sim(xi, xj)
to measure the degree of similarity of a pair of input data points xi and xj ; the higher the
metric value, the higher the pairwise similarity. In this work, we adopt cosine similarity as
the similarity metric for images. In addition, we define the target data point corresponding
to the query data point as xtarget. Furthermore, we denote the support set as S ∈ S, where
S denote the entire support set, where each element corresponds to the prototype of each
class. We further define the sum of similarity scores among one set of support set as a
similarity score sum Ω(S), i.e: Ω(S) =

∑
i,j sim(xi, xj), ∀x ∈ S. We have another support

set S′ for comparison, defined in the same way. Finally, we can define the difficulty level
Difficulty which satisfies following constraints:

Difficulty(S, x) ∈ R (1)
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Figure 1: Given the same query image, the support set on the left is easier compared to the
right, according to our definition of difficulty. As all the images are taken from the
mini-imagenet dataset, both of the two sample combinations may appear during
real training.

Difficulty(S, xi) > Difficulty(S′, xj) iff

(sim(xj , xtarget) > sim(xi, xtarget)) ∧ (Ω(S) > Ω(S′))
(2)

After defining the difficulty measure, we verify experimentally whether it corresponds to
the traditional definition of difficulty. Specifically, we measure the training accuracy scores
of a converged model when the model is fed with data point combinations of different
difficulty levels. The finding is positive as we discover that there is a correlation between
our definition of difficulty and the traditional definition of difficulty in curriculum learning,
as illustrated in figure 2.

A visualization of the difficulty contrast can also be illustrated by UMAP (McInnes
et al., 2018b) projection in figure 3. We project the entire mini-imagenet training data
points to a two-dimensional space. In the projection space, similar data points tend to stay
closer. As such, it is expected that for harder combinations, the support set points tend to
be near while the queries tend to be further away from their targets in the projection space.
The projection results support our definition of difficulty.

Difficulty measurement in curriculum learning is usually reliant on a trained model; the
higher the training accuracy scores of data samples, the lower their difficulty levels are.
However, with the intuitive definition, we can omit the process of training an extra model
to predict episodic difficulty.

We believe that the concept of difficulty is useful because of the intuition as follows.
Given two models fa, fb and their corresponding parameters θa, θb, where a is for a randomly
initialized model and b is for a nearly converged model. Suppose that we have two episodes
of training tasks T1 = (S1, x1), T2 = (S2, x2), where Difficulty(T1) < Difficulty(T2), and
there is a loss function L s.t L(fa, T1) < L(fa, T2) and L(fb, T1) < L(fb, T2). The gradient
descent update with learning rate α will be θ ← θ− α∇θL. Given that fa is a naive model
while fb is a mature model, the assumption is that loss of all task combinations will be
high towards fa and low towards fb. Hence, task T1 will be more suitable to fa as T2 has
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Figure 2: Illustrates the correlation between our definition of difficulty level and training
accuracy of a converged model. In general, the higher the difficulty level, the
lower the training accuracy scores. The training accuracy scores is obtained from
a converged relation network (Sung et al., 2018) model on the mini-imagenet
dataset. Here, 5 is the maximum difficulty level.

Figure 3: UMAP (McInnes et al., 2018a) projection of the entire training data points, with
an easy combination of data samples highlighted on the left side, and a difficult
combination on the right side. On the left side, the support set, represented by
the larger dots, tend to be far away from each other, and the queries represented
by the small colored dots generally stay near to their support set targets. On
the right side, the support set, represented by the larger dots, tend to be nearer
to each other, and the queries generally stay further away from their support set
targets. Each color represents one class.
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a chance of divergence. Meanwhile, task T2 will be more suitable to fb as the loss of T1
approaches zero when the model nears convergence. As such, we study whether focusing
on easy episodes at the beginning and adding to the difficulty later will make a difference.

5. Usefulness of Easy Episodes

Based on experiments, we find out that starting training on easy samples will allow FSL
models to achieve a higher testing accuracy scores given a limited training time. For exam-
ple, when given just 10,000 episodes of training, focusing on easy tasks allows an FSL model
to achieve higher testing accuracy scores when compared to standard episodic training. We
report the difference in table 1, based on which we can deduce that the easy episodes are
more effective especially at the beginning. This observation can be explained by the fact
that the easy episodes illustrate the concept of similarity in the most typical way. There-
fore, when given limited computation resources, we can select the relatively easy samples
to achieve relatively better model performance.

Table 1: Accuracy Achievable with 10,000 Episodes of Training

Task Dataset Method Backbone With CL (%) Without CL (%)

5-way-1-shot mini-imagenet Relation Net conv4 46.00 40.62
5-way-5-shot mini-imagenet Relation Net conv4 60.65 58.64
5-way-1-shot cifar-fs Relation Net conv4 51.31 47.09
5-way-5-shot cifar-fs Relation Net conv4 65.72 63.14
2-way-1-shot ARSC Induction Net BRNN (Lin et al., 2017) 78.55 69.75

6. Usefulness of Hard Episodes

In our work, we feed harder examples to the model during the training and study the effect
of these hard episodes. In our experiment, we define 5 different difficulty levels, with 1 being
the easiest and 5 being the hardest. More details on the implementation are given in the
later section. We train the chosen FSL model from scratch on hard tasks (difficulty level 4,
5) alone. We report the result in figure 6. As shown in the figure, while the model can still
achieve convergence, the convergence is slower. We further record the training loss for the
hard training against standard episodic training. We find that the training loss for hard
training tends to be high in general as shown in figure 4. This can be accounted for by the
simplicity of our chosen model backbone and the lack of common patterns among the hard
combinations. We visualize these combinations and find that, interestingly, some of them
tend to be meaningless for training. Figure 5 is a real example of hard combination that
appears during training. The query image on the right matches one target class on the left,
but the combination is too difficult for even humans to discern. Therefore, we suspect that
these hard-tasks should appear less frequently or even be omitted during training.

7. Leverage Curriculum Learning to Speed Up Convergence

Based on our understanding of easy and hard tasks, we design a curriculum for FSL and
study its effects. Essentially, we feed the combinations of support set and query data points
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Figure 4: Average train loss for hard tasks consistently remains high when compared to the
train loss of curriculum learning. The results were obtained from 5-way-1-shot
training of mini-imagenet on relation network.

query

Hard Support Set

Where is 
the 

target?

Figure 5: A real example of hard combination during 5-way-1-shot training. The training
is done on mini-imagenet dataset.
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in an order where the easiest ones are fed first, followed by the harder ones. To implement the
difficulty differentiation, we rely on preprocessing the training dataset, which is elaborated
on in the experiment section. After differentiating the difficulty level of different sample
combinations, we build a data sampler, Sampler which takes in difficulty level and produces
a combination of samples corresponding to the input difficulty level. We define one support
set and query combination as (S, x), and the Sampler fulfills the following relationships:

Sampler(diff) := (S, x) (3)

diffi > diffj ⇒ Difficulty(Sampler(diffi))

> Difficulty(Sampler(diffj))
(4)

When designing the scheduling algorithm for curriculum learning, we first expose the
learner to the 1

MaxDifficulty easiest subset of data points, or data points of difficulty 1, while
hiding the rest. We increment the difficulty level one by one. In the end, the learner will
be exposed to the full training set, which is of the highest difficulty level.

The overall training algorithm for curriculum learning can be simplified as algorithm 1.

Algorithm 1: Curriculum Training Algorithm with a Baby Step Scheduler
Input: Model, Sampler, interval
Output: Model
difficulty← minimum-difficulty
for episode in {1...max-episodes} do

Update Model with Sampler(difficulty)
if (episode ≡ interval) = 1 and max-difficulty-not-reached then

difficulty← difficulty+ 1
end

end
return Model

Based on our experiments, easy-to-hard curriculum learning can significantly reduce
training time for FSL algorithms. Figure 6 demonstrates the faster model convergence
achieved through our approach. We take convergence speed as the number of episodes
taken for the model to reach its highest testing accuracy score. As the speed of convergence
is affected by initialization, we use 3 different manual seeds for initialization and calculate
the average convergence episodes. No matter what seed we use, the convergence speed
improvement is consistent without compromising any final testing accuracy scores. Table 2
illustrates the faster convergence on different tasks and algorithms. For example, for mini-
imagenet dataset, the average episodes needed for 5-way-1-shot tasks convergence are cut
down from 150,000 episodes to 80,000 episodes, reducing by near 50% on average. Table
2 also demonstrates the faster convergence in the NLP model. On average, the number of
training episodes is reduced from 5,000 episodes to 3,000 episodes.

8. Leverage Curriculum Learning to Achieve Better Accuracy

Aside from the faster convergence for FSL algorithms, we notice that curriculum learn-
ing can slightly boost algorithm-based meta-learning accuracy scores, and we report the
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Figure 6: Illustrates that the proposed approach, represented by the red line, can achieve
faster convergence as compared to the grey-line traditional approach. The illus-
tration on the left is obtained from 5-way-1-shot tasks. The other illustration
is obtained from 5-way-5-shot tasks. The algorithm is the relation network and
the dataset is mini-imagenet. We train all models until the validation accuracy
consistently drops. The extra episodes with dropping validation accuracy are
truncated from the plot.

Table 2: Number of Episodes Needed for Convergence
Task Dataset Method Backbone Accuracy with CL (Episodes) Without CL (Episodes)

5-way-1-shot mini-imagenet Relation Net conv4 50.23 80,000 150,000
5-way-5-shot mini-imagenet Relation Net conv4 65.52 37,500 72,500
5-way-1-shot cifar-fs Relation Net conv4 55.21 30,000 70,000
5-way-5-shot cifar-fs Relation Net conv4 69.09 20,000 50,000
2-way-1-shot ARSC Induction Net BRNN 81.25 3,000 5,000
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improvements in table 3. We note that the improvement is not very significant, which is
reflected among other works related to curriculum learning (Bengio et al., 2009; Soviany
et al., 2021; Zhang et al., 2021).

Table 3: Accuracy Achievable with and without Curriculum Learning of Training

Task Dataset Method Backbone with CL (%) Without CL (%)

5-way-1-shot mini-imagenet MAML cnn4 43.85±1.30 43.66±1.75

5-way-5-shot mini-imagenet MAML cnn4 59.01±0.95 58.27±1.05

5-way-1-shot mini-imagenet Prototypical Net res12 60.75±0.18 60.12±0.21

5-way-5-shot mini-imagenet Prototypical Net res12 74.14±0.16 73.94±0.16

5-way-1-shot mini-imagenet FEAT res12 62.50±0.19 62.17±0.25

5-way-5-shot mini-imagenet FEAT res12 78.83±0.29 78.76±0.34

5-way-1-shot mini-imagenet DeepSet res12 61.20±0.19 60.34±0.17

5-way-5-shot mini-imagenet DeepSet res12 74.85±0.30 74.82±0.33

5-way-1-shot cifar-fs MAML cnn4 49.10±1.35 48.79±1.45

5-way-5-shot cifar-fs MAML cnn4 62.70±0.95 62.17±1.25

8.1. Experiment Set-ups in CV

Datasets: We use the mini-imagenet dataset sampled from imagenet dataset (Deng
et al., 2009). This dataset consists of 84x84 colored images. There are 100 classes, and 64
are for training, 16 for validation and 20 for testing. There are 600 data points for each
class. Besides, we also used the cifar-fs (Bertinetto et al., 2019) sampled from cifar-100
dataset (Krizhevsky et al., 2009), which consists of size 32x32 colored images. We follow
the splits for this dataset according to (Bertinetto et al., 2019).
Baseline Methods: We use the standard Relation Network (Sung et al., 2018), Proto-
typical Network (Snell et al., 2017), FEAT and its variant DeepSet (Ye et al., 2020) and
MAML (Long, 2018) with random episodic sampling our baseline models. All models have
a randomly-initialized resnet-12 (Ye et al., 2020) backbone, except the relation network,
which has a light-weighted 4-layer CNN backbone. We compare results obtained from cur-
riculum learning against results obtained from random sampling for each of these models,
which we refer to as ”standard episodic training”.
Implementation Details: When implementing the Sampler, we first preprocess the
dataset by converting all the images to 512-vectors via image to vector techniques, with
a resnet-18 (He et al., 2016) backbone pretrained on the Imagenet dataset (Russakovsky
et al., 2015; pyp). After that, we build a sorted adjacency list for each image vector. Each
image vector (represented by an identifier) is mapped to a list of image identifiers within
the same class. The list of neighbour images are sorted based on cosine similarity between
the key-neighbour pair. The most similar neighbours are sorted to the front of the list. For
approximating support set difficulty, we randomly sample a list of support sets and sort
them according to their similarity levels. We determine the “difficulty” according to two
parts, one is the similarity degree between the query and the target, and another one is the
intra-support-set similarity degree. The difficulty assignment is rank-based. We first create
a set of support set combinations and sort them based on the intra-support-set difference.
After that, for sampling an episode, we first sample a support set. Suppose that the difficulty
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score is 2 out of 5, then we will randomly sample a support set among the first 2
5 of the

sorted list. Given the support set, we proceed to sample the queried data point based on
a similar method; we will also sample the query set from first 2

5 of the aforementioned
sorted adjacency list, given each support set image. As such, we can approximately fulfill
the concept of difficulty designed in our paper. When handling multiple shots, we first
calculate the average embeddings of the multiple images of the same class in the support
set, and then selected the query according to the average embedding.
Training Details: For both 5-way-1-shot training and 5-way-5-shot training of the relation
network, we use a learning rate of 0.001 throughout the training. For 5-way-1-shot training,
we set the number of queries per episode to 15. For 5-way-5-shot training, the number of
queries per episode is 10. For training of meta-learning models, we follow training hyper
parameters specified in (Long, 2018) and (Ye et al., 2020). In our experiments, we define
the total number of difficulty levels as 5, with the last 2 levels representing the harder
combinations, or the hard tasks. The initialization seeds we use for measuring convergence
are 0, 42 and 222. For measuring meta-learning performance, we use seed 0. Lastly, we
increase the difficulty level after every ”interval” number of episodes, where ”interval” is
the only hyper parameter to be tuned. The ”interval” value we choose is between 1,000 and
20,000 episodes.

8.2. Experiment Set-ups for NLP

Datasets: For NLP experiment, we use the Amazon Review Sentiment Classification
(ARSC) (Yu et al., 2018), which consists of either positive or negative English reviews for
23 types of products on Amazon. We follow the train-test split specified in (Geng et al.,
2019). For each product domain, there are three different binary classification tasks. These
buckets form 23 x 3 = 69 tasks in total. Four categories, namely Books, DVD, Electronics
and Kitchen, are selected as test domains, 12 other categories are selected as validation
domains and 57 are selected as the train domains (Geng et al., 2019).
Implementation Details: The experiment setup for NLP is similar as that for CV tasks,
except in a few aspects. In this NLP experiment, we use the Induction Network as the
training algorithm and baseline (Geng et al., 2019). When preprocessing the data, we
consider each sentence as one data point. Due to the large amount of data points, we only
randomly sample 30 sentences within the same category. When measuring the similarity
between data points, we transform the original sentence texts to vectors using the MiniLM-
L3-v2 (Reimers and Gurevych, 2019) model, before measuring the cosine similarity between
the vectors.

9. Further Discussions

This section discusses the ablation variants of the aforementioned implementations and
some other observations.
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9.1. Choice of Scheduler

Apart from the baby-step scheduler we employ for SimCL, we also implement a one-pass
scheduler and a combination of one-pass and baby-step scheduler called ”half normal sched-
uler”. We perform experiments on these schedulers and compare their performance.
One-Pass Scheduler: Just like baby-step scheduler, one-pass scheduler divides samples
to bins of different difficulty levels. One-pass scheduler starts with the lowest difficulty bin,
choosing increasingly difficult bin over the training. Unlike baby-step scheduler that expands
the training range, one-pass scheduler only focuses on one bin at a time (Soviany et al.,
2021). Based on our experiments, this scheduler does not work well even when compared to
standard episodic sampling. This can be explained by catastrophic forgetting (Lopez-Paz
and Ranzato, 2017; Laenen and Bertinetto, 2021; Tian et al., 2020).
Half-Normal Scheduler: In this work, we invent a half normal scheduler as illustrated
in figure 7, which increases the overall difficulty level for training while reviewing the easier
samples. In this scheduling algorithm, the sampler samples from the dataset with a ”half
normal distribution”. The mean of the normal distribution is the current difficulty limit, and
the standard deviation is a hyperparameter. We only take the difficulty level with values
below the mean, or the difficulty level limit. We gradually increase the difficulty limit
along the training procedure, placing a greater weight on sampling the current-highest-
possible difficulty level. This procedure is illustrated in figure 7. With this design, the
model can learn from harder and harder sample combinations while not forgetting the easier
ones. When the difficulty level reaches the maximum, the sampler will focus on the harder
combinations and occasionally revise the easier ones to prevent catastrophic forgetting. This
scheduler has similar performance as the baby-step scheduler performance. The difference
between a one-pass scheduler and a half-normal scheduler is that the latter revises easy
examples while the former does not. The better performance of the latter also corroborated
with catastrophic forgetting (Lopez-Paz and Ranzato, 2017; Laenen and Bertinetto, 2021;
Tian et al., 2020).

9.2. Effect of ”Oversampling” Easy Data points

Our work could result in oversampling of certain easy data points. Due to more training
time allocated to easier tasks, data points which are nearer to class centroids tend to be
oversampled while the outliers have less chance of being sampled.

We record the number of times each data point is used for training, and find out that
the inter-class variance at the end of curriculum training is much larger when compared to
standard episodic training. Let N denote the number of times each class is sampled from,
K be all classes in a dataset, c be a particular class, the inter-class variance is calculated
according to formula 5.

V ar(ci) =

∑
(N(ci)−

∑
cj∈K N(cj)

|K| )

|K| − 1
(5)

When the number of given labelled samples is large, the variance also gets larger, re-
sulting in data imbalance and harming the model training in terms of both convergence
and generalization (Ochal et al., 2021). As such, we try adding in a ”variance control unit”
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Figure 7: Illustrates the idea of how the sampler samples data with increasing difficulty.
Combinations of support set and query data points of different difficulty levels are
divided into buckets. A sampler starts from an easy difficulty level and increases
the difficulty value until the maximum value is hit. The thick black line represents
the approximate probability distribution of sampling. The higher the height of
the black line, the higher the probability that the sampler will sample from that
particular bin.

for curriculum learning. The reduction in variance is implemented through sampling with
weighted probability, which placed a greater weight on less-sampled classes. The weight is
calculated according to formula 6. In the formula, w(xi) is the probability of sampling a
particular data point xi. The term ϵ is a small positive constant to prevent division by zero.
Through the weighted-sampling, the final inter-class variance is reduced by almost half.

w(xi) ∝ 1/(N(xi) + ϵ) (6)

9.3. Extra Computation Cost of Curriculum Learning

While curriculum learning in itself just rearranges data without introducing extra compu-
tation cost, one needs extra computation for difficulty measurement. However, we believe
that the extra computation cost can be negligible using our previously proposed definition
of difficulty. In our implementation, we build a buffer to store support sets and query sets
as a list of image name combinations. To sample and rank 100,000 episodes of training
combinations according to their difficulty, one only needs less than one minute on a stan-
dard CPU. Our CPU model is Intel(R) Xeon(R) Silver 4310 CPU @ 2.10GHz, and it takes
47.57 seconds to finish all the 5-way-5-shot sampling, and 35.36 seconds for 5-way-1-shot,
which is almost all the extra computation cost involved with curriculum learning.

Due to the approximation nature of our proposed difficulty measurement, one can use
low-precision hardwares with, for example, 16-bit or even 8-bit adders or multipliers to cut
down the computation cost. In our calculation of similarity scores, we use 16-bit represen-
tations for floating numbers.
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10. Conclusion

To conclude, this work looks into the concept of difficulty behind FSL. It firstly demon-
strates the existence of varying difficulty levels during FSL training, proposes an intuitive
difficulty measurement and investigates how one can make use of the difficulty. For exam-
ple, we may cut down unnecessarily difficult episodes to save computation resources, utilize
easy episodes to achieve higher testing accuracy scores within limited training time and
design a curriculum to speed up the full training procedure or achieve a better performance
among meta-learning models. There may be other potentially useful applications leverag-
ing the concept of difficulty. For example, one can consider incremental difficulty for data
augmentation during FSL training. While simple and overlooked, the concept of difficulty
can enhance FSL training in different ways.
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