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1. Detailed Experiment Setup

Below we provide a detailed description of the model architectures and the datasets used
in our experiments in order to help reproducibility of the results.

1.1. Experimental Setup

All our experiments were run on a GPU system with 16 GB RAM and a single GeForce RTX
2080 GPU. The codes are implemented in Python 3.7 with Tensorflow v2.2. We have used
the ‘matplotlib’ library in Python to generate all the plots and used the ‘polyfit’ function
in ‘numpy’ library to regress a curve in the plots wherever necessary. As a preprocessing
step, we normalize the input images in the range [0,1].

1.2. Model Architecture Detail

In all our experiments, we have used custom CNN architectures, the specifications for which
are provided in Table 1 of the paper. Below we provide the additional details that can help
in properly reproducing the model architectures from the description provided in Table 1
of the paper. For each dataset, all the experiments were run by maintaining an identical
experimental setup for all the models. Input images from all the models except the IDRiD
dataset were resized to the shape 96x96 while those belonging to the IDRiD dataset were
resized to the shape 250x175. The number of filters used in each convolutional layers of
these architectures is given in Table 1 of the paper. Every convolutional layer is followed
by a batch normalization layer and later by a dropout layer (except for the Brain MRI
dataset). We use a dropout(DO) value of 0.3. The last dropout layer is followed by a
convolutional layer with 1×1 filter size and 16 filters in the case of CFCN-F models and ‘C’
filters in the case of CFCN-C, where ‘C’ is the number of classes in the given dataset. As
IDRiD is a multi-label classification dataset, the 1x1 convolutional layer in this case has 3
filters, for both CFCN-F and CFCN-C. The 1×1 convolutional layer is then followed by a
flatten layer in the case of CFCN-F, while for the CFCN-C models, we use global average
pooling. In the case of CFCN-F the flatten layer is followed by the output layer which is
a fully connected layer with ‘C’ neurons in it. In CFCN-C, global average pooling layer
acts as the output layer. We have used ‘ReLU’ activation in all the intermediate layers.
For output layer, we use ‘softmax’ activation in the case of multi-class classification and
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‘sigmoid’ in the case of multi-label classification (i.e for IDRiD dataset). Details about the
batch size (BS), learning rate (LR), number of epochs and the value for trade-off weight
parameter α introduced in Eq. 1 and 2, for each dataset are given in Table 1 of the paper.
Additionally, in order to calculate the justification loss as proposed in Eq. 1 and Eq. 2,
we expect the activation masks to be of the same size as that of the feature map outputs
from the last convolutional layer of the CNN. Accordingly, if the feature maps are of smaller
size as compared to the input images, we can either down-scale the input activation masks
to their size or up-scale the feature map outputs to the size of the input activation masks
before computing the justification loss. That said, our approach can be easily adopted with
modern CNN architectures like ResNet, VGG-16, VGG-19, etc. with slight modification
only in the loss computation method.

1.3. Dataset Details

Table 1: Brief summary of the datasets used in the experiments.
Dataset Classes Size Input Size Significance

Oxford IIIT Pets 2 7349 96x96 Large annotated dataset.
Aeroplane-Cow 2 718 96x96 Small and biased dataset cre-

ated from ‘aeroplane’ and
‘cow’ classes in Pascal VOC
2012 dataset.

Brain MRI 3 3064 96x96 Small medical dataset.
IDRiD 3 82 250×175 Very small medical dataset.

We have particularly selected the following four datasets - Oxford IIIT Pets , Aeroplane-
Cow, Brain MRI and IDRiD - for performance comparison with the baseline. Below is a
brief description of these datasets. Summary of these details is provided in Table 1.

Oxford IIIT Pets
We use this dataset for animal species classification into two classes: cat (2371 samples)

and dog (4978 samples). It is an imbalanced dataset with 7349 images in total. We use
the segmentation annotations available in this dataset, by converting them into binary
activation masks.

Aeroplane-Cow
This is a biased dataset that we generated from the images belonging to the aeroplane

and cow classes in the Pascal VOC 2012 dataset. We created the training set with 225
aeroplane images containing sky in the background and 143 cow images containing grassland
in the background. The test set consists of the remaining 220 aeroplane and 130 cow images.
We have manually generated the activation masks for all these images.

Brain MRI The Brain MRI dataset contains 3064 images belonging to three tumor
classes: meningioma (708 samples), glioma (1426 samples), and pituitary tumor (930 sam-
ples). The ground-truth tumor locations for all the images are available which we have used
as the input activation masks. The dataset comes with five subsets for cross validation, of
which we have used the first four folds as our training data and the fifth fold as the testing
data.
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IDRiD
We use the segmentation data available in the publicly available Indian Diabetic Retinopa-

thy image Dataset as a second example of a medical dataset. We use the following three
disease classes available in this dataset: haemorrhages, hard exudates and soft exudates.
This is a multi-label dataset with just 55 images in the training set and about 27 images in
the testing set, which is an additional challenge brought up by this dataset.

2. Additional Qualitative Results

Below we present a few additional qualitative results for various experiments discussed in
Section 4 of the paper.

Table 2: (Paper Section 4.3): Effect of varying the trade-off parameter(α) in
jCNN loss: Below are the results reporting accuracy values for different models
trained using different value of trade-off parameter α in the justification loss. One
observation that we can make from it is that, we obtain similar performance in
terms of classification accuracy for different values of α, but the qualitative results
from Figure 5 of the paper help us in highlight the importance of our method.

α 0 0.2 0.5 1.0 2.0

jCNN-C 93% 88% 93% 91% 91%

Table 3: (Paper Section 4.4): Experimenting with Different Mask Types: Below
are the quantitative results comparing accuracy values for different models trained
using different mask types on the penguin dataset that we manually collected. In
comparison to the below results, if we observe the qualitative results from Figure
6 of the paper, we can effectively assess the performance of the proposed method
in learning more meaningful justifiable features.

Mask Type Coarse Fine-Grain Important-Region Non-Important Region

jCNN-C 80% 85% 85% 85%
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Figure 1: (Paper Section 4.6): Learn more with less data: For better visualization
purpose, we present the quantitative results for this experiment in the form of two
plots rather than a matrix of metric values for different experimental settings. We
can observe similar trends as mentioned in the observations for this experiment in
the paper using the combined loss plot. The motivation for using the combined
loss plot to present the results for this experiment in the paper was that, it
captures both the performance for classification and justifiable feature learning
simultaneously in a single plot. Also, please note that for the below plots, one
unit on the x-axis represents 1000 training samples.

Table 4: (Section 4.7 (a)): Varying background for the images: Below table shows
the quantitative results for the experiment in which we vary the background of
the test images in the Oxford IIIT Pets dataset. We created 5 copies of the same
test set by changing the background image in each set. We present the average
accuracies for these five sets. If we compare these values with those presented
in Table 2 of the paper, we observe that there is little to no variation in jCNN
performance. But at the same time the performance for CNN and GAIN varies a
bit. This highlights the influence of background features in the class predictions
from these models.

Model CNN GAIN jCNN-F jCNN-C

Accuracy 88% 84% 87% 90%

Table 5: (Section 4.7 (b)): Varying brightness of the images: Below are the results
for experiment in which we vary the brightness values for the input images. Even
though we see performance variation in these values and those presented in Table
2 of the paper, we observe from Figure 11 of the paper that the jCNN has only
slight variations in terms of features learnt. The results also suggests that we still
have a scope of improvement in order to keep the quantitative performance stable
in this case and we would like to work on it in our future work.

Model CNN GAIN jCNN-F jCNN-C

Accuracy 90% 84% 83% 87%
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