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Abstract

We consider the problem of modelling high-dimensional distributions and generating new
examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by
the specific graph structure of each data point by splitting the task into two phases. In the
first it models the distribution of features associated with the nodes of the given graph,
in the second it complements the edge features conditionally on the node features. We
follow the strategy of implicit distribution modelling via generative adversarial network
(GAN) combined with permutation equivariant message passing architecture operating
over the sets of nodes and edges. This enables generating the feature vectors of all the
graph objects in one go (in 2 phases) as opposed to a much slower one-by-one generations
of sequential models, prevents the need for expensive graph matching procedures usually
needed for likelihood-based generative models, and uses efficiently the network capacity by
being insensitive to the particular node ordering in the graph representation. To the best of
our knowledge, this is the first method that models the feature distribution along the graph
skeleton allowing for generations of annotated graphs with user specified structures. Our
experiments demonstrate the ability of our model to learn complex structured distributions
through quantitative evaluation over three annotated graph datasets.

Keywords: Graph, Annotation, Generative Model, GAN, adversarial.

1. Introduction

Modern deep learning approaches for learning high-dimensional data distributions and syn-
thesizing new data examples have achieved great successes in a number of domains. We focus
here on the particularly challenging problem of generating new data examples xi ∈ Rmi with
different dimensionalities mi between individual instances and complex relational structures
in the feature spaces organized in graphs.

© 2022 Y. Boget, M. Gregorova & A. Kalousis.
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More concretely, we focus on learning the distributions and generating new examples
of features associated with nodes and edges of annotated graphs conditioned on the graph
structure.

We formulate the problem as that of modeling a conditional distribution, where we
learn to generate the node and edge features conditionally on the given graph skeleton
(non-annotated graph). In this respect, our paper complements the existing tool-set of
models for non-annotated graph generations (e.g. You et al. (2018); Liao et al. (2019)).
The non-annotated graph can be generated by one of those or, more interestingly, can be
provided by the user based on the needs of a downstream task that requires a specific graph
structure (e.g. basis for scaffold-based de novo drug discovery or molecular docking, types
and interactions of particles in high energy physic, individual features and types of relations
in a social network).

The graph annotation generative adversarial networks (GrannGAN) method that we
propose follows the strategy of implicit distribution modeling via adversarial training Good-
fellow et al. (2014), allowing us to sample new graphs from a distribution p approximating
the true p∗ without explicitly formulating the p distribution function. In principle, the
method can generate node of edge features independently. In practice, we generate the
node and edge features in two phases depicted in Figure 1. In the first phase, our model
samples the node features conditioning on the graph skeleton. In the second phase, it
uses the generated node features as an additional conditional variable to sample the edge
features.

The entire model architecture relies on the permutation equivariant transformations of
message passing neural networks (MPNN) Gilmer et al.. Thanks to these, we circumvent
the difficulties related to the ordering of graph objects in their representation. This critical
property of the method allows for efficient use of the model capacity, which needs to learn
neither a particular heuristic for unique representation ordering (as in the case of linearized
representations) nor the complete set of equivalent permutations.

In the following, we describe the newly proposed GrannGAN method and provide some
details of the technical implementation in sections 2. We then position the method within
the existing state of research and document its performance competitive with the best of
the well-established methods for graph generations on a set of experiments in section 3 and
4. We conclude with a discussion of possible future directions in section 5.

2. GrannGAN

Let G = {V, E , V, E} be an undirected graph with a set of nodes (vertices) V and a set of
edges E between pairs of nodes in the graph, V and E are the corresponding node and edge
features. Let νi denote a node i and vi ∈ Rd the features associated with that node. An
edge ϵij is connecting the pair of nodes νi and νj and eij ∈ Rc are features corresponding to
that edge. We consider only the case where the edges are undirected so that ϵij = ϵji and
eij = eji, but the model can be easily extended to the case with directed edges. We further
use the term skeleton and the letter S to refer to the non-annotated graph S = {V, E}
corresponding to G.
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2.1. Model factorization

In our approach, we model the underlying graph distribution in the following factorization

p(G) = p(S, V, E) = p(S)p(V |S)p(E|S, V ) . (1)

Our model consists of modeling p(V |S) and p(E|S, V ) with conditional GAN. Note that
we could equivalently reverse the conditioning order and model p(E|S) and p(V |S, E). In
our experiments, we found the first option yielding better results. So, we keep this ordering
for the following.

During training, we sample the graph skeleton from the data distribution p∗(S). At
inference, we can either sample the graph skeleton or keep it fixed depending on the task.

2.2. Implicit data generation

We use the Wasserstein-GAN (WGAN) Arjovsky et al. (2017) formulation of adversarial
training with spectral normalization Miyato et al. (2018) in all linear layers of the critic
to enforce 1-lipschitzness. To sample new examples of data x from a model distribution
pθ(x) WGAN uses a generator gθ mapping from a random latent variable z to the output
x = gθ(x). The generator is learned to minimize the Wasserstein-1 (or Earth-Mover)
distance W (pθ(x), p

∗(x)) between the implicit model distribution and the true generative
distribution through a min-max optimization.

min
θ

max
φ

E(y)∼p∗fφ(y)− Ez∼p(z)fφ
(
gθ(z)

)
, (2)

where fφ is the K-Lipschitz critic function mapping from the data y (real or generated) to
a real-valued score fφ(y) ∈ R.

We use the conditional WGAN formulation twice in the GrannGAN pipeline sketched
out in figure 1. Following the factorization in equation (1) we first model the conditional
distribution p(V |S) in a node-annotation phase. Here, the method generates the node
features V̂ = gV,θ(Z,S) from the set of latent noise variables Z and the skeleton S. So,
equation 2 becomes

min
θ

max
φ

E(V,S)∼p∗fV,φ(V,S)− Ez∼p(z),S∼p∗fV,φ
(
gV,θ(Z,S),S

)
. (3)

Similarly in the following edge-annotation phase, we model the conditional p(E|S, V ).
The edge features Ê = gE,θ(Z, V,S) are generated conditionally on the previously generated
node features by including these as an additional input variable to the generator and critic.
In this phase, equation 2 becomes

min
θ

max
φ

E(E,V,S)∼p∗fE,φ(E, V,S)− Ez∼p(z),(V,S)∼p∗fE,φ

(
gE,θ(Z, V,S), V,S

)
, (4)

Note that the conditioning on the skeleton S = (V, E) acts on the computational graph
of the critic f and of the generator g, i.e. on the structure of the Message Passing Neural
Network (MPNN, explained in detail in the section 2.4). This special way of conditioning
through the computational graph is one of the novelties of our method.
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2.3. Implementation

In practice, we start by sampling the skeleton S = {V, E} from the data. For all node νi ∈ V,
we sample a random noise vector zi. So, we get Z = {zi}n1 and, by construction |V| = |Z|.
Doing so, we obtain a graph with random noise vectors as initial latent representation of
the node features G0 = {V, E ,Z} (and without edge feature). This graph is the input of the
node-annotation generator. Similarly, for the edge generation, we sample a graph from the
data without edge feature. We also sample Z = {zi}m1 , where m = |E|. The input of the
edge-annotation generator is the graph G0 = {V, E , V,Z} with latent random noise vectors
as initial latent edge representation. The generators are permutation-equivarient functions.
They output node or edge features following the order of the input.

The critics receive alternatively real or generated graphs (without edge feature during
the annotation step). The critics are permutation-invariant functions. We provide details
the generators and the critics in the next subsection.

The two steps (the two conditional GANs) are trained independently. Using teacher
forcing, we use real data for the conditioning during training. For inference, we generate
the edges features by conditioning on the previously generated node features. The Figure
1 illustrates the model architecture.

The software implementation of our method together with instructions for replicating
our experiments are available at https://github.com/yoboget/GrannGAN. In this section
we provide some details of the implementation to help the reader understand important
design decisions.

Figure 1: GrannGAN architecture: grayscale boxes represent random noise, colored boxes
represent node and edge features.

2.4. Message passing neural network

In both the node- and the edge-annotation phases described in section 2.2 all GrannGAN
generator g and critic f functions are message passing neural networks (MPNN) Gilmer
et al.. As mentioned here-above, the node-neighbourhood structure of the MPNNs is derived

https://github.com/yoboget/GrannGAN
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from the conditioning on the graph skeleton {VE}. Therefore, the skeleton acts on the i
and j indices.

We use the following equations to perform L update steps over the hidden states h
(l)
i

and r
(l)
ij of each node and edge in the graph respectively

r
(l+1)
ij = ϕ(l)

r ([h
(l)
i ,h

(l)
j , r

(l)
ij ]) (5)

h̃
(l+1)
i =

∑
j∈Ni

1√
di
√
dj

r
(l+1)
ij (6)

h
(l+1)
i = ϕ

(l)
h ([h

(l)
i , h̃

(l+1)
i ]) . (7)

Here ϕ are learned differentiable functions (we use small feedforward networks), Ni is the
first order neighbourhood of node vi as given by the graph skeleton S, di is its degree, and
[a, b] is the concatenation of vectors a and b.

We outline the whole generative pipeline in figure 1. In the generator of the node-
annotation phase gθV we initiate the node hidden states with a latent random noise vectors

h
(0)
i = zi, ∀vi ∈ V (and drop r

(0)
ij from inputs to ϕ

(0)
r ). The generated node features are the

hidden states of the last update step v̂i = h
(L)
i . In contrast, in the edge-annotation generator

gθE the latent random noise is used for initiating the edge hidden states r
(0)
ij = zij , ∀eij ∈ E

while the node hidden states are the node features generated from the previous phase

h
(0)
i = v̂i. The generated edge features are the hidden edge states of the last update step

êij = r
(L)
ij .

The critic functions MPNNs are initiated from the real data examples as h
(0)
i = vi and

r
(0)
ij = eij or from the synthetic examples of the generators respectively. To produce the

critic scores, the last-step update functions (ϕ
(L)
h for the node critic and ϕ

(L)
r for the edge

critic) have scalar outputs that are averaged to enter the loss in equation (2). Therefore,
the critic evaluates each node, aggregating information from all the nodes included in a
radius of 2(L − 1). While this receptive field may not cover the whole graph, we assume
that the node and edge features can be evaluated locally.

It has been shown Arvind et al. (2020) that MPNN cannot capture graph substructures
other than forests of stars. To alleviate this issue, we further embody the graph topology
into the MPNNs by extending the node representation by a set of skeleton-related features.
Similarly to Bouritsas et al. (2020), we complement the node hidden states at the initial

step h
(0)
i of all generators and critics by the node degree di and the number of k-cycles

(cycles of length k the node is part of) extracted from the graph skeleton.

2.5. Graph representations

An important property of graph representation G are their non-uniqueness. There are in
general n! possible permutations π determining the ordering of the nodes. The particular
choice of the representation ordering from the complete set Π = {πi}n!i=1 is therefore another
source of stochasticity so that

p(G) = p
( ⋃
π∈Π

π(G)
)
=

∑
π∈Π

p
(
π(G)

)
. (8)
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From equation (8) we observe that when relying on the ordered graph representations
G, one shall in principle model the complete set of distributions p(π(G)) for all the n!
permutations π to capture the unordered-set graph distribution p(G). However, operating
over the individual permutations π(G) would lead to inefficient use of the model capacity.
As an alternative, previous methods often fallback to operating over a single representation
of each graph using some heuristic to fix the canonical ordering (such as the minimum
depth-first-search Goyal et al. (2020), the unique breadth-first-search You et al. (2018) or
the further sequentiallized domain driven SMILES Daylight Chemical Information Systems
(2011)). In result, the model has to learn not only the distribution of the graphs but also the
ordering heuristic which is again inefficient from the perspective of generating the unordered
graph sets G.

A fundamental property of GrannGAN is that it is completely insensitive to the or-
dering π(G) that can in result be chosen arbitrarily. This permuation equivariance1 of the
message passing operations is pivotal for our method as it solves the problem of the graph
representation non-uniqueness while allowing for efficient use of the model capacity.

3. Related work

GrannGAN is closely related to the broad category of graph generative models, an area
which has attracted significant attention of the research community resulting in a flurry of
papers in the last several years. A systematic review of the major advancements in the field
can be found for example in the excellent survey Faez et al. (2021).

Unlike previous work on that field, our method focuses on the particular problem of
generating node and edge features conditionally over a given graph skeleton. To the best
of our knowledge, we are the first to investigate such structural-based conditional graph
feature generation.

The closest to our settings are methods modelling the distribution of annotated graphs.
These can be categorized into two large families: the ones generating graphs sequentially
and those generating in the whole graph in one go.

3.1. Sequential graph generation

The first are methods generating the graphs sequentially, starting from small structures
to which they gradually connect new graph components (nodes, edges, or complete sub-
structures). Most of these focus on generating chemical molecules and adopt various mea-
sures to improve the performance on this particular generative problem. CharacterVAE
Gómez-Bombarelli et al. (2018) and GrammarVAE Kusner et al. (2017) rely directly on
sequential SMILES representation of the molecules. JT-VAE Jin et al. (2018) operates over
hand-crafted vocabulary of chemically valid sub-structures. MolecularRNN Popova et al.
(2019) and GraphAF Shi et al. (2019) generate the graphs by successive node and edge
sampling steps and ensure validity of the generated molecules by valency checking and the
possibility for resampling at each of these steps.

Thanks to these domain-motivated components, the sequential methods often achieve
excellent performance on molecular graphs datasets. However, those directly relying on

1. A function f is equivariant with respect to permutation π if f(π(x)) = π(f(x)).
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chemistry-specific data representations (e.g SMILES) cannot be easily extended to beyond
the molecular problems. On the other hand, methods not using the SMILES representation
need to establish their own heuristic for the sequential traversal of the graph such as the
breadth-first-search in GraphRNN You et al. (2018) which in turn needs to be learned by
the generative model together with the graph data distribution. As any other sequential
models, the graph autoregressive generators need to be particularly careful about capturing
long-term dependencies, and suffer from slow sampling process.

Different from the previous models NetGAN Bojchevski et al. (2018) uses GANs to learn
the distribution of random walks over one big graph.

3.2. Annotated graph generation in one go

The other large family of models, into which GrannGAN can also be related, are those
generating the graphs in one go, that is all the nodes and edges and their features together.
GraphVAE Simonovsky and Komodakis (2018) proposes to sidestep the problem of graph
linearization characteristic for sequential models by relying on the variational auto-encoder
framework Kingma and Welling (2014). Due to modelling the graph in the ordered rep-
resentation of annotation and adjacency matrix, it needs to employ an expensive (though
inexact) graph-matching procedure in the training loss calculation, which significantly ham-
pers its scalability. The flow-based graphNVP Madhawa et al. (2019) adopts the coupling
strategy of Dinh et al. (2017) applying it to the rows of the graph annotation and adja-
cency matrices and thus preserving the ordering of the nodes and edges through the flow.
GraphNVP is the only model for annotated graph using permutation equivarient generative
function. In general, annotated graph generation in one go is still an open field of research.
Our contribution can be seen as a proposition to tackle this challenging issue.

Misc-GAN Zhou et al. (2019) aims to translate graphs from a source-domain graph into
a target-domain graph using a multiscale cycle-GAN. It operates on unannotated graphs.

The closest to our GrannGAN is the MolGAN De Cao and Kipf (2018) model, which
uses GAN for molecule generation. Unlike in GrannGAN, the MolGAN generator is a
feed-forward network sampling the ordered annotation and adjacency matrices of the graph
representation. The authors of MolGAN observe that the model tends to suffer from mode
collapse resulting in insufficient variation in the generated samples. We suppose that this
issue comes from the loss of capacity by learning to generate various permutations of the
same graph and from an additional Reinforcement Learning module encouraging the gener-
ator to produce graphs with some specific properties. We never experienced mode collapse
during our experiments. As we show it in the experiment section, our model presents excel-
lent uniqueness and novelty rates. We compare to MolGAN and other methods discussed
here in our experiments in section 4.

4. Experiments

In this section, we present experiments using our model as a graph generative model. There
currently exists no other models conditioning on the graph skeleton and, therefore, no
other method to directly compare with. Instead, we use generative models presented in
the previous section as baselines. However, we underline that these models do not have
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the same purpose. In the second part of this section, we also present the results of the
conditional generation by fixing the skeleton.

We evaluate our method in a set of experiments over three datasets containing (node-
and edge-) annotated graphs2. Two of the datasets, QM9 Ramakrishnan et al. (2014) and
ZINC Sterling and Irwin (2015), are from the chemical domain that is frequently used as
a test bed for annotated graph modeling. The third is the fingerprint dataset Riesen and
Bunke (2008) included in the TUDataset collection Morris et al. (2020).

As it has recently been discussed, for example in O’Bray et al. (2021) and Thompson
et al. (2021), evaluating generative models of graph structures is particularly challenging
due to the impracticality of visual or perceptual comparisons of the data examples. The
comparison with existing graph generative models is therefore difficult and can provide only
crude indication of the method capabilities.

For the chemical datasets the most common evaluation metrics are the following

• validity is the proportion of chemically valid molecules in the total generated exam-
ples and measures the ability of the method to understand the chemical constraints
differentiating general graphs from chemically valid molecules

• uniqueness is the proportion of unique samples within the valid generated samples
and measures the variability of the generated data

• novelty is the proportion of examples within the valid and unique set that do not
exist in the training dataset and measures the ability of the method to go beyond
data memorization

We complement these by an overall score of valid-unique-novel molecules calculated simply
as the product of the three above metrics and measuring the overall quality of the generated
examples as a proportion of samples with all three of these desirable properties in the set
of generated data. So, the overall score gives the rate of valid molecules that are neither in
the dataset nor already generated. Note that in most cases the overall score is the metric
of interest.

While these evaluation metrics may be useful indicators for chemical downstream tasks,
they do not provide any measure of the distance between the distribution of reference and
the generated distributions. Various indicators calling on the framework of maximum mean
discrepancy (MMD) Gretton et al. (2012) have been proposed in the literature. These
are used very inconsistently and, as demonstrated in O’Bray et al. (2021), they are highly
sensitive to the specific choice of the graph statistics, the kernel and the hyperparameters
used for the MMD calculation. Instead of calculating the MMDs on graphs statistics, we
report directly the distance between the generated feature distributions, using the Jenson-
Shannon Distance for each feature. We show that with respect to these metrics, our model
outperforms by far GraphAF, model considered as the state-of-the-art.

4.1. QM9

QM9 is one of the most commonly used datasets for testing models for annotated graph
generation. It consists of ∼134k stable organic molecules with up to 9 atoms of four types.

2. Unfortunately, we did not found other public dataset with enough node- and edge-annotated graphs.
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The 4 atom types and 4 bond types are encoded as one-hot vectors in the node feature
descriptions v.

In table 1 we present an overview of the generative performance of our GrannGAN
method in comparison with a set of well-established graph generative methods: MolGAN
De Cao and Kipf (2018), GraphVAE Simonovsky and Komodakis (2018), GraphNVP Mad-
hawa et al. (2019), GraphAF Shi et al. (2019), CharacterVAE Gómez-Bombarelli et al.
(2018), GrammarVAE Kusner et al. (2017), and JT-VAE Jin et al. (2018).

The GrannGAN results are calculated from 1000 new data examples generated by con-
ditioning on skeletons randomly sampled from the training data. The results of the baseline
methods are those reported by the authors in the original papers3. Despite the frailty of
such comparisons due to inconsistencies in the original experimental protocols (for example,
some of the methods, such as GraphAF, work over the kekulized versions of the molecules
reducing the number of edge categories to three), our GrannGAN achieves excellent results.
It outperforms all one-go generative models and is on par with the best auto-regressive
model.

Table 1: QM9: performance comparison
Model valid unique novel overall

n
o
ch
em

is
tr
y GrannGAN 82.5 99.9 64.9 53.4

MolGAN (wo. RL) 87.7 2.9 97.7 2.5
GraphVAE 55.7 76.0 61.6 26.1
GraphNVP 83.1 58.2 99.2 46.8
GraphAF (wo. validity) 67.0 94.5 88.8 56.3

ch
em

is
tr
y MolGAN-RL 99.8 2.3 97.9 2.2

CharacterVAE 10.3 90.0 67.5 11.9
GrammarVAE 60.2 80.9 9.3 11.9
GraphAF 100 94.5 88.8 83.9

As explained above, the metrics in the table are very much domain specific. Methods in
the lower part of table 1 expressly focus on these introducing into the models various expert-
designed modules promoting chemical validity of the generated molecular graphs (e.g., valid
sub-substructures vocabulary, valency constraints, rejection sampling, etc.). While these
improve the targeted metrics in table 1, they also bias the generative process and, there-
fore, the model distribution towards the validity metric in exchange for the distribution
approximation goal. We list these methods in table 1 for completeness despite them not
being really comparable to our approach which focuses on the distribution approximation
of general graphs.

Figure 2 documents the ability of the GrannGAN method to learn the feature distribu-
tion by comparing the empirical real data distribution with the distribution of the generated
examples. We have replicated the results of the GraphAF method, which is the most com-
petitive with GrannGAN according to table 1), to extract similar statistics. GrannGAN

3. CharacterVAE and GrammarVAE results (not reported in the original papers) are taken over from the
method replications in GraphNVP.
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Figure 2: QM9: empirical distributions of real and generated features (samples of 1000
graphs)

Table 2: Jenson-Shannon distances between real and generated distributions for node and
edge features of the QM9 and ZINC datasets (the lower the better)

Model nodes - QM9 edges - QM9 nodes - ZINC edges - ZINC

GrannGAN 1.87 · 10−3 0.04 · 10−4 1.50 · 10−3 0.60 · 10−3

GraphAF 15.80 · 10−3 11.5 · 10−4 15.5 · 10−3 3.39 · 10−3

matches the feature distributions of the reference dataset almost exactly while we observe
a less closer match in the GraphAF4 generated data. This observation is numerically con-
firmed in table 2 listing the Jensen-Shannon distances (JSD) between the real and generated
data samples, where GrannGAN is systematically better by one order of magnitude.

4.2. ZINC

We use here the ZINC250k version used previously for generative modeling evaluations. It
consists of 250k randomly selected molecules from the complete ZINC set with up to 38
atoms of 9 types and 4 bond types.

Table 3 summarizes the generative performance of GrannGAN over 1000 newly synthe-
sized examples compared to results reported in the literature. MolGAN and GraphVAE did
not experiment (or did not provide the results) on this more challenging dataset of larger
graphs. GrannGAN scales to this dataset easily and performs competitively with respect
to the chemically motivated metrics (keeping in mind the difficulties of such comparisons
related to differences in experimental protocols and evaluation procedures).

Figure 3 documents the excellent performance of GrannGAN in learning the feature
distributions, matching it closely for both the node and edge features. The differences in

4. GraphAF uses somewhat different training set than we. For example, by kekulizing the molecules it
removes all aromatic edges and thus reduces the number of edge types to 3. This is true also for the
ZINC dataset.
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the true and GraphAF generated data distributions are more pronounced as is also clear
from the numerical evaluation via the JSD presented in table 2.

Table 3: ZINC: performance comparison
Model valid unique novel overall

n
o
ch
em

is
tr
y GrannGAN 56.5 100 100 56.5

MolGAN (wo. RL) — — — —
GraphVAE 13.5 — — —
GraphNVP 42.6 94.8 100 40.4
GraphAF (wo. validity) 68.0 99.1 100 67.3

ch
em

is
tr
y MolGAN-RL — — — —

CharacterVAE 7.2 9.0 100 0.6
GrammarVAE 0.7 67.5 100 0.5
JT-VAE 100 100 100 100
GraphAF 100 99.1 100 99.1

Figure 3: ZINC: empirical distributions of real and generated features (samples of 1000
graphs)

4.3. Fingerprints

Fingerprint is a dataset of graphs representing the skeletonized regions of interest in human
fingerprints Riesen and Bunke (2008). The graphs consist of up to 26 nodes. Both nodes
and edges are described by 2 continuous features related to their position and orientation in
the 2d fingerprint image. We have linearly re-scaled both node and edge features between
-1 and 1.

We use the non-annotated graphs as the skeletons for new feature generations. Each
row displays graphs arranged according to the new features generated by GrannGAN.

In table 4 we list the JS distance (with the logarithm in base 2) between the empirical
distributions of the training data and newly generated features starting from 500 randomly
selected skeletons. These have been calculated by discretizing the features into 200 even
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Figure 4: Fingerprints: empirical distributions v1, v2 and d sampled from our GrannGAN
and from the dataset (samples of 1000 graphs)

Figure 5: Fingerprints: empirical distributions e1 and e2 sampled from our GrannGAN and
from the dataset (samples of 1000 graphs)

sized bins. The columns in the table correspond to the two node v and edge e features
respectively. Following the same methodology, we also report the JS distance in the distribu-
tion of the euclidean distances between connected nodes d. Unlike the feature distribution,
this statistic consider the relation between node features. In figures 4 and 5, we show the
node and edge features distribution for the data and newly generated examples from our
model as well as the distribution of distances between node d5.

Table 4: Jenson-Shannon distances between real and generated distributions for node and
edge features of the Fingerprint dataset (the lower the better)

v1 v2 d e1 e2

GrannGAN 5.02 · 10−2 4.55 · 10−2 32.84 · 10−2 16.78 · 10−2 9.74 · 10−2

Data samples 1.13 · 10−2 1.27 · 10−2 1.49 · 10−2 1.37 · 10−2 1.07 · 10−2

Again, our model shows excellent performance in closely matching the node and edge
features and their relations.

These experiments show the quality of our GrannGAN for the generative task. It out-
performs all previous one-go generative models. The sequential GraphAF is the only model
presenting slightly better results using the molecular metrics. However, we show that our
model is much better at capturing the feature distributions.

5. We assume that the oscillation of the curve is just an artifact coming from the relatively small data
points by bin
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4.4. Conditional generation

In this section, we show that our model can be used for conditional generation by fixing the
skeleton and still producing a high level of diversity.

We want to guarantee that the sample diversity does not come mainly from the skeleton.
To test the generative capacity of our GrannGAN, we randomly sampled 100 skeletons from
the ZINC dataset. We generate 1000 new instances conditioned on each sampled skeleton.
We compute the average rate of uniqueness, i.e. the rate of unique instances over all the
valid molecules.

Table 5 reports the results of the experiment. As expected, the validity rate is similar to
the one by sampling a new skeleton for each instance. Even by fixing the skeleton, we reached
a rate of 92.5% unique instances on average. On average, the conditional generation of 1000
instances over the same skeleton produces 527.0 unique molecules. So, we show that the
performance of our model does not depend critically on the sampling of multiple skeletons
and can be properly used as a conditional generative model.

Table 5: Conditional generation of 1000 instances from the same skeleton (average)
Model Validity (%) Uniqueness (%) Valid and unique (‰)

GrannGAN 57.0 92.5 527.0

We have demonstrated that the GrannGAN is competitive with state-of-the-art model
for graph generation even though it is first meant for conditional generation. GraphAF
is slightly better on the molecular metric, but much worst at matching the feature distri-
bution. In addition, our model generates instances in one go and is therefore much faster
during inference. More fundamentally, our model preserves its quality while generating new
instances conditioned on the skeleton, a task that no other model can do.

5. Conclusions

We have presented here a new method, GrannGAN, for implicit distribution learning and
generating features of nodes and edges conditioned on graph skeletons. The promising
results of the method, as documented in our experiments, indicate that the method can learn
the complex high-dimensional distributions and generate new data examples with features
coherent with the underlying graph structure. When the generation of new skeletons is not
crucial, GrannGAN can be used as a full generative model by sampling the skeleton from
the data. It is also the first method for graph generation conditioned on the skeleton.

These favorable results provide a solid starting point for multiple possible extensions in
future work. For example, in some applications (e.g. bio-chemistry) a reasonable starting
point for the feature generations may be a partly annotated graph (in place of a completely
non-annotated graph). Our model, which is already conditional, could be easily adapted to
this setting by re-using the ideas of our second edge-annotation phase. Another interesting
extension is that of property optimization. An additional conditioning variable could be
included in the generators and critics to guide the model in generating property-conditioned
features.
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