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Abstract

This paper considers multi-objective reinforcement learning (MORL) when preferences over
the multiple tasks are not perfectly known. Indeed, it is often the case in practice that
an agent is trying to achieve tasks that may have competing goals but does not exactly
know how to trade them off. The goal of MORL is thus to learn optimal policies under a
set of possible preferences leading to different trade-offs on the Pareto frontier. Here, we
propose a new method by considering the dynamics of preferences over tasks. While this is
a more realistic setup in many scenarios, more importantly, it helps us devise a simple and
straightforward approach by considering a surrogate state space made up of both states
and preferences, which leads to a joint exploration of states and preferences. Static (and
possibly unknown) preferences can also be understood as a limiting case of our framework.
In sum, this allows us to devise both deep Q-learning and actor-critic methods based on
planning under a preference-dependent policy and learning the multi-dimensional value
function under said policy. Finally, the performance and effectiveness of our method are
demonstrated in experiments run on different domains.

1. Introduction

In comparison to traditional Reinforcement Learning (“RL”), problems where rewards are
scalar and a single best solution exists, real world problems are inherently multi-objective,
insofar as an agent learns to optimise over multiple, often competing, tasks. For example,
in an online marketing campaign an agent may try to maximise customer reach while trying
to minimise the campaign expenditure. In short, the goal of an agent is to learn an optimal
policy under a set of preferences expressing the relative importance of each objective.

To deal with multi-objective problems, researchers have tried to incorporate preferences
as a fixed choice and scalarise rewards (Konak et al., 2006; Lin, 2005; Mossalam et al.,
2016), thereby reducing the problem to a single objective optimisation task. While this
approach is well researched, it only addresses the subset of problems where the preferences
over the objectives are known beforehand. A tangential strategy is to learn a set of optimal
policies that can span the space of preferences. These methods were addressed in Natarajan
and Tadepalli (2005); Barrett and Narayanan (2008); Li et al. (2020), but generally lack
scalability in high dimensional environments.
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In this paper, we present a multi-objective Markov decision process (“MOMDP”) frame-
work incorporating a transition function over preferences, leading to an algorithm capable of
learning a single parameterised policy encompassing the dynamics of preferences over tasks.
This algorithm can be extended to existing state-of-the-art methods, such as deepQ-learning
(Mnih et al., 2013) and actor-critic methods (Mnih et al., 2016), while overcoming the short-
comings of existing MORL methods. It is scalable as it optimises for a single parameterised
preference-dependent policy but implements the principles of multi-task learning (“MTL”)
to also learn a multi-dimensional value function under the said policy. Furthermore, since
our approach considers a surrogate state space made up of both states and preferences, we
have devised a joint exploration strategy of states and preferences. Thus, we supplement
the Q-learning algorithm with hindsight experience replay (Andrychowicz et al., 2017) for
better sample efficiency and an exemplar network (Fu et al., 2017) for efficient exploration
over the surrogate state space.

In Section 2, we introduce background concepts and our revised MOMDP with prefer-
ence transition. In Section 3, we present our novel Robust Multi-Objective Reinforcement
Learning with Dynamic Preferences (“RDP MORL”) algorithm and provide theoretical
guarantees. In Section 4, we show some empirical results and compare our algorithms
performance with other state-of-the-art MORL algorithms.

2. Background And Related Work

2.1. Multi-objective Markov Decision Process

Let us first introduce the Markov framework for solving the multi-objective sequential de-
cision problem. An MOMDP can be represented by the tuple ⟨S,A, PS , r, γ,Ω, fω, Pω⟩,
where:

• S is the state space,

• A is the action space,

• PS : S ×A× S −→ [0, 1] is the transition function over the state space,

• r : S ×A× S −→ Rd is the vector reward function specifying rewards for d ≥ 1 objectives,

• γ is the discount factor and γ ∈ [0, 1),

• Ω is the space of preferences where ω ∈ Ω s.t.
∑d

i=1 ωi = 1 and ωi ≥ 0 for d ≥ 1 objectives,

• fω : r −→ R is the scalarisation function for preference ω ∈ Ω,

• Pω : Ω× Ω −→ [0, 1] is the transition function over the preference space.

We note that if d = 1 and Pω(ω, ω̂) = 0 if ω ̸= ω̂ and 1 if ω = ω̂, the MOMDP collapses to a
standard Markov decision process (“MDP”)1. A policy is defined as a mapping π : S×A −→
[0, 1] from state to action. The vector value of state s at time t under a policy π is given
by the multidimensional value function, defined as

Vπ(s) = E

[ ∞∑
i=0

γtrt+i+1|π, St = s

]
, (1)

1. In the case where we have d > 1 objectives and Pω(ω, ω̂) = 0 if ω ̸= ω̂ and 1 if ω = ω̂, we recover the
classic formulation of the MOMDP.



Robust Multi-Objective Reinforcement Learning with Dynamic Preferences

where rt+1 is the reward received at time-step t+ 1. Similarly we can define the vectorised
Q function as the expected long term reward by taking action a in state s at time t under
a policy π:

Qπ(s, a) = E

[ ∞∑
i=0

γtrt+i+1|π, St = s,At = a

]
. (2)

If we consider the set of all possible value functions, we can construct the Pareto fron-
tier F∗ := {V(s)|∄V′

(s) ≥ V(s)) and under the space of all possible preferences in Ω,
define the convergence set (“CCS”) of the Pareto frontier as CCS := {V(s) ∈ F∗|∃ω ∈
Ω s.t. ωTV(s) ≥ ωTV

′
(s), ∀ V′

(s) ∈ F∗}, where ω ∈ Rd s.t.
∑d

i=1 ωi = 1 and ωi ≥ 0.

Remark 1 The convex convergence set is a subset of the Pareto frontier, i.e., CCS ⊂ F∗

and the Pareto front can be regarded as a set of non dominated policies, i.e., there exists
no other policy that can improve the expected return for an objective without reducing the
expected return of at least one different objective. Throughout this paper, we consider the
scenario where the scalarisation function fω is linear, i.e. fω(r) = ωT r.

Problem Statement For any MOMDP there exists a set of policies corresponding to the
convex convergence set (CCS). Our goal is to train an agent to discover and act according
to the preference dependent policy which spans the CCS.

2.2. Related Work

Multi-Objective Reinforcement Learning MORL problems involve finding Pareto
optimal solutions using a combination of multi-objective optimisation and reinforcement
learning techniques. MORL algorithms follow either a single-policy or a multiple-policy
(Vamplew et al., 2011) approach. Single-policy approaches seek to find the optimal policy
by fixed preference induced scalarisation of the multi-objective problem. Researchers have
explored the effects of both linear and non linear scalarisation (Van Moffaert et al., 2013).
However, in reality the set of preferences may be unknown at training time or may change
over time. Multiple-policy approaches focus on approximating the set of policies that span
the Pareto frontier. The methodologies range from repeatedly calling single-policy MORL
over different preferences (Natarajan and Tadepalli, 2005; Mossalam et al., 2016; Zuluaga
et al., 2016), generalising the Q-learning update rule to multi-objective settings (Reymond
and Nowé, 2019; Yang et al., 2019) or by modifying gradient based policy search (Parisi
et al., 2014; Pirotta et al., 2015a,b). Recent works have demonstrated the application of
MORL with deep reinforcement learning (Van Seijen et al., 2017; Friedman and Fontaine,
2018), in high dimensional state space (Abdolmaleki et al., 2020). In our approach, we
evaluate on both discrete and continuous observation spaces.

Meta Learning and Multi-Task Learning These methods were explored by (Chen
et al., 2019; Teh et al., 2017; Riedmiller et al., 2018; Wulfmeier et al., 2019) as a way
of solving multi-objective control problems. Meta learning paradigm involves learning a
general policy that is not Pareto optimal but computationally efficient and adapting to
objective preferences while multi-task learning frameworks solve the MORL problems by
jointly learning a separate policy. While our methodology does implement multi-task learn-
ing, we create learning tasks over the vectorised and scalar value functions and not the
competing objectives.
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Q-Learning The Q-Learning framework has also been extended to MORL framework
(Mossalam et al., 2016; Yang et al., 2019). In particular, Scalarised Q-learning (Mossalam
et al., 2016) uses a vector value function with scalar updates and searches over preferences.
The scalar updates, which involves computing the inner product of the value with the
preferences, lead to sample inefficiency and sub optimal MORL policies. While Envelope
Q-learning (Yang et al., 2019) tries to address these shortcomings, our approach introduces
the transition function over preferences and learning over the extended state space, leading
to robust and faster learning. The key contributions that distinguishes our work, robust
Q-learning with dynamic preferences (RDP Q-learning), from Yang et al. (2019) is the
introduction of transition function over preferences, which allows the agent to adapt to
dynamic preferences while it is performing actions in the environment, and the formulation
of estimating both the vector and scalar value functions as a multi-task learning problem
with shared parameters. Additionally, the introduction of surrogate state spaces allows
efficient exploration of the preference space (generally leading to a faster computation of
the value function).

Exploration and Exemplar Networks Exploration plays a fundamental role in RL
systems and in the original deep Q-learning paper Mnih et al. (2013), the authors use ε-
greedy exploration to overcome the challenge of sparse reward signals. However, ε-greedy
or other undirected exploration methods can be exponential in the depth of the state space
(Thrun, 1992). Given that our methodology increases the dimensionality by introducing a
surrogate state space, undirected methods do not scale and lead to suboptimal performance.
Additionally, the fundamental idea of multi-objective reinforcement learning is to under-
stand the effect of preferences on agent policies. Therefore, an efficient exploration over
the surrogate space allows us to explore over the preference space and is sample efficient.
Hence, in our implementation, we supplement Q-learning with exemplar networks from Fu
et al. (2017) for a sophisticated exploration of the preference space and provide an ablation
study in Appendix A to showcase the performance boost.

3. Multi-objective reinforcement learning with dynamic preferences

We propose a new framework for multi-objective reinforcement learning called Robust
Multi-Objective Reinforcement Learning with Dynamic Preferences (“RDP MORL”). Our
key idea is to consider the dynamics of preferences over tasks, and learn over a surrogate
state space, which is defined as a combination of both states and preferences. The aim is
two-fold: (1) dynamics over preferences introduces robustness by taking into account distur-
bances in preferences, (2) creating the surrogate state space allows the agent to efficiently
explore and approximate the Pareto frontier. While this framework can be applied to both
deep Q-learning (Mnih et al., 2013) and actor critic methods (Mnih et al., 2016), we focus
on the former and introduce robust Q-learning with dynamic preferences.

Robust Q-learning with dynamic preferences Our algorithm uses the vectorised Q-
value function to allow both the (vector and scalar) Q-networks to simultaneously learn
a set of policies. While Yang et al. (2019) uses a similar methodology, the convex enve-
lope update and optimality filter they define render their approach high-dimensional and
computationally complex. Our proposed RDP Q-learning overcomes this hurdle by taking
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actions according to the scalarised Q-network during both learning and evaluation. This
methodology results in outperforming competitor algorithms with fewer iterations.

3.1. Revisiting MORL

In addition to the previous discussion, two more considerations led us to our proposed
algorithm. Firstly, preferences can shift over time Guiso et al. (2018). Secondly, current
MORL algorithms do not exploit directly the fact that similar preferences should lead to
similar Q-values (except at points of discontinuity).

3.1.1. Building a Surrogate State Space

The key insight is to consider a surrogate (or augmented) state space combining the state
space S as well as the preference space Ω

⟨S,A, PS , r, γ,Ω, fω, Pω⟩ = ⟨(S × Ω) ,A, PS ⊗ Pω, fω(r), γ⟩ (3)

In particular, under our linear preference assumption, the reward function in the surro-
gate space can be simply defined as r((s, ω), a) = r(s, a)Tω. This leads us directly to a
straightforward definition of the action-value function Q as:

Qπ((s, ω), a) = E

[ ∞∑
i=0

γtrTt+i+1ωt+i+1

∣∣∣∣π, St = s, ωt = ω,At = a

]
. (4)

Remark 2 Importantly, in general, Qπ((s, ω), a) ̸= Qπ((s, ω), a)Tω as preferences are
themselves dynamic. In the particular case where P (ωj+1 = ω′|ωj = ω) = δ(ω, ω′), the
equality is recovered.

3.1.2. Implicit Bellman Operator

Having defined the surrogate state space (S × Ω) and the Q-value function, one can simply
apply Q-learning to the surrogate MDP. In other words, it follows directly from standard
Q-learning Sutton and Barto (2018) that the multi-objective optimality operator T can be
defined as:

(T Q) ((s, ω), a) := r(s, a)Tω + γE(s′,ω′)∼PS⊗Pω(·|s,ω,a)

[
max
a′∈A

Q((s′, ω′), a′)

]
(5)

(T Q) (ŝ, a) = r(ŝ, a) + γEŝ′∼PS⊗Pω(·|ŝ,a)

[
max
a′∈A

Q(ŝ, a′)

]
. (6)

This enables us to use standard Q-learning in a straightforward fashion, as the Q-value
update at iteration j + 1 can be written as:

Qj+1(ŝj , a)← (1− αj(ŝj , a))Qj(ŝj , a) + αj(ŝj , a)

[
rj

Tωj + γmax
a′

Qj(ŝj+1, a
′)

]
, (7)

where αj ∈ [0, 1) is the chosen step size function.
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Remark 3 Note that, while we are focusing here on Q-learning, similar approaches to
SARSA or policy gradients (and actor-critic methods) are possible.

One of the conditions for aQ-learning algorithm to converge Melo (2001) is that
∑

j αj(ŝ, a) =

+∞ and
∑

j αj(ŝ, a)
2 < +∞, for all ŝ, a. In other words, all state-preference-action triplets

must be visited infinitely often. This thus represents a challenge in terms of exploring
effectively the space of preferences.

3.1.3. Multi-Objective Q-Value Function

The optimal policy derived from Q-learning is π∗(a|ŝ) = 1{argmaxa∈A Q(ŝ,a)}. To obtain the
multivariate Q-value function, all we have to do is apply policy evaluation under π∗:

Qj+1(ŝj , a)← (1− αj(ŝj , a))Qj(ŝj , a) + αj(ŝj , a)

[
rj + γQj(ŝj+1, argmax

a′∈A
Qj(ŝ, a

′))

]
. (8)

Importantly, these updates can be carried out in parallel with Q-learning on the surrogate
state space.

3.2. Learning Algorithm

We implement twoQ-networks, namely a multi-objectiveQ-network and a policyQ-network.
The aim of the multi-objective Q-network is to approximate the vectorised Q-function to
allow the network to learn simultaneously over multiple preferences while the agent acts
according to the policy selection Q-network. Since both networks observe the dynamics of
the same environment, we model the learning stage of both as tasks that are separate but
still related. Multi-task learning is known to outperform single-task algorithms (Zhang and
Yang, 2021) in these scenarios. Using the multi-task approach, we provide the algorithm
for RDP Q-learning in Algorithm 1.

3.2.1. Multi-Task Q-learning

Let Lα(θ) be the loss associated with the Multi-Objective Q-network parameterised by θ
and let Lβ(θ̂) be the loss associated with the policy Q-network parameterised by θ̂ where
θ, θ̂ ∈ Θ (θ̂ is a sub-vector of θ). We define the multi-objective Q-network loss as:

Lα(θ) = Eŝ,a

[
∥y−Q(ŝ, a; θ)∥22

]
(9)

where ŝ = (s, ω) is the surrogate state, y = Eŝ′ [r + γQ(ŝ
′
, â; θ)], â = maxaQ(ŝj+1, a; θ̂),

which is estimated by sampling transitions from the replay buffer. The policy Q-network
loss is defined as:

Lβ(θ̂) = Eŝ,a

[
(y −Q(ŝ, a; θ̂))2

]
(10)

where ŝ = (s, ω) is the surrogate state and y = Eŝ′ [ω
T r+ γmaxâQ(ŝ

′
, â; θ̂)]. This leads to

a multi-task loss function for the overall network. We provide a framework for solving this
in the following sections.
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Algorithm 1 RDP Q-learning

Require: network Qθ̂ and Qθ, sampling distribution Gω, transition distribution Hω, replay buffer D.
for episode = 1, ....N do

Sample a linear preference ω0 ∼ Gω

for t = 0, · · · ,M − 1 do
Observe state st and construct surrogate state space ŝt = (st, ωt)

at =

{
random action, w.p. ϵ

arg max aQ(ŝt, a; θ̂), w.p. 1-ϵ
Execute action at and observe reward rt, state st+1 and sample ωt+1 ∼ Hωt

a

Store transition (st, ωt, rt, st+1, ωt+1)
Sample random minibatch of transitions of size Nτ (st, ωt, rt, st+1, ωt+1)
for i = 1, · · · , Nω do

ωi ∼ Gω

ωi+1 ∼ Hωi

for j = 1, · · · , Nτ do
ŝi,j+1 = (sj+1, ωi+1)

yij =

{
rTj ωi, for terminal sj+1

rTj ωi + γmaxâQ(ŝj+1, â; θ̂), otherwise

ŷij =

{
rj, for terminal sj+1

rj + γQ(ŝj+1, â; θ), â = maxaQ(ŝj+1, a; θ̂) otherwise
end for

end for
Update Qθ̂ and Qθ by performing gradient descent according to equation 12.

end for
end for

a. We simulate Hωt using a Dirichlet distribution with α = ω

3.2.2. An Adversarial Setup

To motivate our approach, we consider an adversarial approach to multi-task learning. Let
K be the number of tasks, zk represent the loss associated with task k = 1, · · · ,K and wk

the corresponding weight.

Robustness to Uncertainty Given a vector of average individual task losses z ∈ RK

and a reference distribution over tasks w ∈ SK−1, the adversary maximises the overall loss
but is constrained by the distance (chosen to be the Kullback-Leibler divergence here) to
the reference distribution w. The adversary’s problem can thus be written as

max
δ∈SK−1

δ · z − 1

η
DKL(δ||w), (11)

where η > 0 is fixed. It is immediate to check that the solution vector is given by δ∗k =
wke

ηzk∑K
k=1 wke

ηzk
for k = 1, · · ·K. Thus, the adversary’s problem is recast as a robust optimisation

problem and expressed in terms of distribution uncertainty Glasserman and Xu (2014).

Model Fitting Considering Lα(θ), the loss associated with the multi-objectiveQ-network
parameterised by θ, and Lβ(θ̂) the loss associated with the policy Q-network parameterised
by θ̂, where θ, θ̂ ∈ Θ (θ̂ is a sub-vector of θ), we frame our learning problem in an adversarial
setting, leading to the following formulation, where η > 0, wk ≥ 0 for all k and

∑K
k=1wk = 1:

min
θ,θ̂

max
δ

(
δ1Lα(θ) + δ2Lβ(θ̂)−

1

η

[
δ1 log

(
δ1
w1

)
+ δ2 log

(
δ2
w2

)])
= min

θ,θ̂

1

η
log

(
w1e

ηLα(θ) + w2e
ηLβ(θ̂)

)
. (12)
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3.3. Model Architecture

Figure 1: Network Architecture

Unlike Mossalam et al. (2016) and Yang et al. (2019),
our algorithm uses two different networks. Since
both networks interact with the same environment
and are interdependent, we introduce a shared net-
work structure. The shared network creates em-
beddings that benefit from the joint learning expe-
rience. It consists of 4 fully connected hidden lay-
ers with 20× (dim(S) + d) hidden units each, where
S is the state vector and d is the number of objec-
tives. The input to the shared network is the sur-
rogate state (i.e., the concatenation of the state and
preference vector). The multi-objective Q-network
stacks one output layer of size d × |A| on top of the
shared network where |A| is the cardinality of the action space. The policy Q-network takes
as input the output of the multi-objective Q-network combined with the preference vector
and contains 4 fully connected hidden layers with 20× d× (|A| ×+1) and the output is of
size |A|, see Figure 1.

4. Experiments

In this Section, we evaluate the performance of RDP Q-learning on three multi-objective
reinforcement learning problems. We show how the algorithm can recover the optimal
solution in the CCS, before comparing its performance against relevant benchmarks.

Evaluation Metric We use two metrics to evaluate the empirical performance on the
problem domains:

• Coverage Ratio (“CR”) evaluates the agents ability to recover the solutions from
the finite convex convergence set. Let m be the number of objectives and S ⊆ Rm the
set of vector value functions recovered by the algorithm. We define S∩ϵCCS = {Vπ ∈
S|∃Vπ∗ ∈ CCS s.t. ||Vπ−Vπ∗ ||1/||Vπ∗ ||1 ≤ ϵ} Then the Coverage Ratio is calculated
as the F-score, where Precision = |S ∩ϵ CCS|/|S| and Recall = |S ∩ϵ CCS|/|CCS|.

CR(S) = 2× Precision×Recall

Precision+Recall
(13)

• Expected Utility Metric (“EUM”) evaluates the agent’s ability to maximise user
utility. It is defined as the expected maximum utility under the solution set S ap-
proximated by the algorithm:

EUM = E[max
πω∈S

fω(V
πω)] (14)

Baselines: We compare RDP Q-learning’s performance against its peer MORL algo-
rithms: (1) Envelope Q-learning (Yang et al., 2019), a state of the art MORL algorithm
that uses envelope Q updates to simultaneously learn multiple policies. It modifies deep
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Q-Network for vector Q values. (2) Scalarised Q-learning (Mossalam et al., 2016), which
uses scalarised Q-updates. (3) MOFQI (Castelletti et al., 2012), i.e., a multi-objective fitted
Q-iteration with a large linear model as Q-approximator. (4) CN+OLS (Abels et al., 2019),
which is a conditional neural network using an optimistic linear support method.

4.1. Fruit tree navigation

The Fruit tree navigation (“FTN”) environment is a full binary tree of depth d (d =
5, 6 or 7), with a randomly assigned vector reward r ∈ R6 on the leaf nodes, which are the
terminal state. The reward vector encodes the values of six nutrition components {Protein,
Carbs, Fats, Vitamins, Minerals, Water} in the leaf nodes. The rewards are designed to be
Pareto optimal such that, for every leaf node, ω for which its reward is optimal, therefore
all leaves lie on the CCS. The objective associated with the environment is to find a path
from the root to a leaf node that maximises our overall utility for a given preference. At
any non-terminating state in the tree, the agent has 2 actions available, choosing between
the left or right subtree.

Table 1: Fruit Tree Coverage Ratio (depth = 5)
Nω Scalarised Q-learning Envelope Q-learning RDP Q-learning (2500 episodes)

1 0.9363 ±0.023 0.9706 ±0.027 0.9980 ± 0.005

4 0.9840 ±0.016 1.0000 ± 0.000 1.0000 ± 0.000

8 0.9968 ±0.007 1.0000 ± 0.000 1.0000 ± 0.000

16 1.0000 ± 0.000 1.0000 ± 0.000 1.0000 ± 0.000

Table 2: Fruit Tree Coverage Ratio (depth = 6)
Nω Scalarised Q-learning Envelope Q-learning RDP Q-learning (3000 episodes)

1 0.6250 ±0.057 0.9240 ±0.051 0.9500 ± 0.012

4 0.7654 ±0.077 0.9856 ±0.004 0.9908 ± 0.008

8 0.8560 ±0.067 0.9808 ±0.007 0.9912 ± 0.009

16 0.8976 ±0.062 0.9952 ±0.021 0.9984 ± 0.003

Table 3: Fruit Tree Coverage Ratio (depth = 7)
Nω Scalarised Q-learning Envelope Q-learning RDP Q-learning (3000 episodes)

1 0.5847 ±0.061 0.6000 ±0.029 0.8728 ± 0.021

4 0.6969 ±0.057 0.6544 ±0.066 0.8034 ± 0.020

8 0.6837 ±0.097 0.7437 ±0.040 0.8326 ± 0.020

16 0.6532 ±0.029 0.7936 ±0.015 0.8243 ± 0.017

We compare our model’s performance against Envelope Q-learning and Scalarised Q-
learning. We train all the three algorithms on FTN environment (depth = 5, 6 and 7) for
5000 episodes and Nω sampled preferences during learning process. We compute the cover-
age ratio by testing the performance over 2000 episodes with randomly sampled preferences.
The mean results over 5 trials for different depth are provided in Tables 1, 2, 3. We can see
that RDP Q-learning is not only sample efficient but also able to outperform the baselines,
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Figure 2: Illustration of the true and the RDP Q-learning recovered CCS for the deep sea
treasure environment.

even when trained on significantly less episodes: 2500 on depth 5, 3000 on depth 6 and 3000
on depth 7.

4.2. Deep sea treasure

Table 4: Deep Sea Treasure
Method Reference Coverage Ratio

Envelope Q-learning Yang et al. (2019) 0.994 ±0.001
Scalarised Q-learning Mossalam et al. (2016) 0.989 ±0.024

CN+OLS Abels et al. (2019) 0.751 ±0.163
MOFQI Castelletti et al. (2012) 0.639 ±0.421

RDP Q-learning 1.000 ± 0.000

Deep sea treasure (“DST”), a clas-
sic MORL benchmark, is an episodic
problem which was created to highlight
the limitations of scalarisation (Vamplew
et al., 2011). The environment is a 10×11
treasure hunt grid, with the agent con-
trolling a submarine. There are multiple
treasure locations with variable treasure
values and two associated objectives, (1) Minimise the time taken to reach the treasure and
(2) maximise the value of the treasure. We use the treasure values provide in Yang et al.
(2019) to ensure the Pareto frontier is convex. For each episode, the agent is placed on the
top left corner of the grid and has 4 actions available: Up, Down, Left, Right. The reward
received by the agent is a 2 element vector, where the first element is the time penalty
(computed by adding -1 on all turns), and the second element is the treasure value. The
episode terminates when agent reaches a treasure state.

All agents are trained for 2000 episodes and we evaluate each algorithm for 2000 episodes
with randomly sampled preferences. The mean coverage ratio results over 5 trials are
provided in Table 4. The RDP Q-learning the best coverage ratio and is able to achieve
after training for 1850 episodes. Figure 2 visualizes the optimal convex convergence set and
RDP Q-learning approximated CCS. We can see that the RDP Q-learning solutions covers
the entire optimal CCS.
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4.3. Mountain Car

To our knowledge, the multi-objective version of the classic mountain-car task (Sutton,
1995) was first introduced in Vamplew et al. (2011). In the classical setting, the aim of
the agent is to escape the car from the valley in minimum number of steps. The agent can
perform 3 different actions: (1) Not accelerate, (2) Accelerate to the right and (3) Reverse
to the left. Since the car’s engine is less powerful than gravity, the agent must reverse to the
left to build enough potential energy to escape from the right end. In the single objective
setting, the agent receives a reward of -1 for all non terminating states.

Figure 3: Illustration of the Envelope Q-learning and RDP Q-learning recovered CCS for
the Mountain Car environment created by randomly sampling 500 preferences
and calculating mean value over 50 trials

Vamplew et al. (2011) extends the objective space by introducing two additional objec-
tives: minimise the number of (1) forward and (2) reverse accelerations and introduce a 3
dimensional vector reward where a penalty of -1 is received whenever one of the acceleration
actions is executed. To increase the complexity of the optimisation problem we introduce
an updated reward structure to provide a positive reinforcement when car displaces in the
direction of the action performed by the agent. The reward structure is defined in Table
5. Unlike the FTN and DST environments, the state space of Mountain Car is continuous
and has an unknown Pareto frontier, hence we empirically evaluate the performance using
Expected Utility Metric.
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Table 5: Mountain Car: Reward Structure
Time Penalty Reverse Penalty Acceleration Penalty Action Displacement

-1 0 0 No acceleration None

-1 0 0 No acceleration Left

-1 0 0 No acceleration Right

-1 0 -1 Left None

-0.5 0.5 -0.5 Left Left

-1 0 -1 No acceleration Right

-1 -1 0 Right None

-0.5 -0.5 0.5 Right Right

-1 -1 0 Right Left

Table 6: Mountain Car: Expected Utility for different preferences
RDP Q-learning Envelope Q-learning Preference

EUM Steps EUM Steps Time Forward Reverse

-77.42 105.72 -81.18 114.30 0.9 0.05 0.05

-28.58 300.00 -31.02 300.00 0.1 0.8 0.1

-27.53 300.00 -30.64 300.00 0.1 0.1 0.8

-27.27 169.79 -11.57 235.62 0.0 0.5 0.5

-66.48 125.88 -73.72 132.70 0.5 0.5 0.0

-56.91 169.79 -57.57 148.39 0.5 0.0 0.5

We train both algorithms for 1500 episodes and evaluate their performance on different
sets of preferences. The mean results over 100 trials are provided in Tables 5-6. We can
see –that across different preferences– RDP Q-learning has a higher expected utility value.
The action behavior is fairly consistent for RDP Q-learning, whereas Envelope Q-network
deviates from the optimal behaviour for the preference vector [0.5, 0.5, 0.0] (Time, forward
acceleration, reverse), by performing a higher count of forward acceleration (Right action).
We also present the recovered CCS across the 3 objective pairs for both the RDP Q-learning
and the baseline in Figure 3. The recovered CCS for the baseline is neither smooth nor
convex, whereas RDP Q-learning retrieves a more consistent CCS.

5. Conclusion

In this paper, we have proposed a multi-objective reinforcement learning (MORL) frame-
work that considers a surrogate (or augmented) state space made up of both states and

Table 7: Mountain Car: Count of actions performed for different preferences
RDP Q-learning Envelope Q-learning Preference

Left Right None Left Right None Time Forward Reverse

40.41 65.31 0.00 37.16 77.02 0.12 0.9 0.05 0.05

254.43 0.00 47.57 298.07 0.00 3.93 0.1 0.8 0.1

2.41 201.84 97.75 0.00 296.15 5.85 0.1 0.1 0.8

32.03 45.29 92.47 14.33 17.82 203.47 0.0 0.5 0.5

66.65 59.11 0.12 53.10 71.89 7.71 0.5 0.5 0.0

20.63 112.80 3.50 20.41 125.80 2.18 0.5 0.0 0.5
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preferences over the objectives. By designing an implicit Markov Decision Process based
on this surrogate state space, we allow for dynamic preferences and have explored learning
and planning via Q-learning under this particular formulation. In addition, as noticed in
previous research, exploring the space of preferences is key to deriving optimal policies (and
approximating the Pareto frontier), which we achieve here by encouraging the joint explo-
ration of states and preferences. This is is further facilitated by adding exemplar rewards.
This approach turns out to be particularly sample-efficient and robust. Finally, we demon-
strated the effectiveness of the proposed framework by achieving improved performance
against other state-of-the-art MORL algorithms on three different environments. Further
research points to extending our approach to other algorithms such as actor-critic method,
as well as exploring the impact of various types of preference dynamics on policy choices.
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to the multi-objective optimization problem. The Journal of Machine Learning Research,
17(1):3619–3650, 2016.



Buet-Golfouse Pahwa

Appendix A. Ablation Study

In this Section we provide an ablation study and explore the effects of exploration with
exemplar models (Fu et al., 2017) and adaptive task weights using wLSE (Buet-Golfouse
and Utyagulov, 2022). The ablation study is carried out by understanding the effects of
exemplar exploration and wLSE on the model’s performance.

Figure 4: Convergence plots for Fruit Tree Network under dynamic preferences setting, Task 1: multi-
objective Q-network loss, Task 2: policy Q-network loss

We evaluate the ability of the model to retrieve the CCS on two environments, Fruit
Tree and Deep Sea Treasure and consider four scenarios: (1) Replacing wLSE with weighted
average while computing the loss of the overall network (without wLSE), (2) Removing
exemplar exploration, (3) replacing wLSE with weighted average and using only ϵ-greedy
exploration, (4) using both wLSE and exemplar exploration. The coverage ratio results are
provided in Tables 8-9 and the convergence plot under (4) in figure 4. In environments
with smaller state space, FTN (depth = 5) and less objectives, DST, there is no scalability
requirements while in complex scenarios with high dimensionality surrogate state spaces,
the performance suffers. This is evident in FTN (depth = 6 and 7) where we see a boost in
F1 score due to both efficient exploration and adaptive task weights.

Table 8: Fruit Tree Network: The networks are trained on 3000 episodes and the coverage
ratio is calculated on a random sample of 2000 preferences over 10 trails

Tree Depth Without wLSE Without Exemplar Without wLSE and Exemplar with Both

5 1.0000 ±0.000 1.0000 ±0.000 1.0000 ±0.000 1.0000 ±0.000
6 0.9421 ±0.007 0.9201 ±0.005 0.9104 ±0.005 0.9912 ±0.009
7 0.7057 ±0.015 0.6181 ±0.010 0.7726 ±0.013 0.8326 ±0.020

Table 9: Deep Sea Treasure: The networks are trained on 2000 episodes and the coverage
ratio is calculated on a random sample of 2000 preferences over 10 trails

Without wLSE Without Exemplar Without wLSE and Exemplar with Both

1.0000 ±0.000 1.0000 ±0.000 0.8720 ±0.002 1.0000 ±0.000
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