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Abstract

Abstract: ESC (Environmental Sound Classification) is an active area of research in the
field of audio classification that has made significant progress in recent years. The current
mainstream ESC methods are based on increasing the dimension of the extracted audio
features and therefore draw on the two-dimensional convolution methods used in image
processing. However, two-dimensional convolution is expensive to train and the complexity
of the corresponding model is usually very high. In response to these issues, we propose
a novel two-stream neural network model by the idea of disentanglement, which uses one-
dimensional convolution for feature extraction to disentangle the audio features into the
time and frequency domains separately. Our approach balances computational pressure
with classification accuracy well. The accuracy of our approach on the Urbansound 8k and
Esc-10 datasets was 98.51% and 97.50%, respectively, which exceeds that of most models.
Meanwhile, the model complexity is also lower.

Keywords: environmental sound classification, audio feature, feature disentanglement,
two-stream neural network

1. Introduction

In the real world, we are surrounded by sounds from the environment and are constantly
on receiving audio signals. Sound signals contain a wealth of information that would be of
great help to humanity if machines were made to understand them properly. Thanks to
deep learning, speech recognition technologies have become increasingly mature, especially
automatic speech recognition(ASR) Khamparia et al. (2019) and music information recog-
nition(MIR) ?. Environmental sound classification(ESC) is more challenging than ASR and
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MIR Liu et al. (2021). Furthermore, the semantic annotation of soundscapes or acoustic
scenes is an open task, as no complete classification can cover all possible environmental
categories Su et al. (2019). ESC has been considered as a supervised recognition task in
a closed domain of visible categories. However, such samples are often skewed by environ-
mental factors Barchiesi et al. (2015). The classification task becomes complicated when
acoustic events overlap. Thus, the development of an efficient ESC method is more chal-
lenging.
The ESC is typically composed of two basic components: feature extraction and classifier
design. The former part of ESC is mainly manually extracted features such as mel frequen-
cy cepstral coefficients (MFCC), linear predictive cepstral coefficients (LPCC), short-term
energy and over-zero rate Davis and Mermelstein (1980).
The later part of ESC is various classifiers, which can be divided into three main categories
according to the input feature. In the first category method, the network is trained using the
raw audio signal. Tokozume et al. (2017) suggested an end-to-end approach to ESC based
on a 2D-CNN. Their network structure and learning method can learn long periods of sound
without over-fitting.Moreover, they investigated the most suitable number of convolutional
layers for raw feature extraction and their optimal filter size. Dai et al. (2017) proposed a
1D-CNN network that has a wider field of perception and can achieve better results than
shallow networks. Abdoli et al. (2019) proposed an end-to-end ESC method based on 1D-
CNN. The advantage of this method is that there is no need to extract features manually.
However, their 1D-CNN did not account for the temporal structure and frequency charac-
teristics. In the second type of method, the feature spectrum of the original signal is used
as input to the model by extracting it. Common features are MFCC and Log-Mel Lim et al.
(2018); Abdoli et al. (2019); Dai et al. (2017). Piczak (2015) used Log-Mel features as model
input, their proposed ESC system, consisting of two maximum pooling layers, two CNN
layers and two fully connected layers and dropout layers, produced classification results that
were 5.6% higher than those of machine learning methods. In the third category method, Li
et al. (2018) proposed a novel stacked CNN model with multiple convolutional layers of de-
creasing filter sizes to improve the performance of CNN models with either Log-Mel feature
input or raw waveform input. Su et al. (2019) proposed a four-layer convolutional neural
network (CNN) that utilized the proposed aggregate features to improve ESC performance.
Liu et al. (2021)used a stacked deep network based on aggregation of time-domain features
and frequency-domain functions to capture a more comprehensive representation of sound.
Their methods have a high accuracy on Urbansound8k. However, multi-stream CNNs are
not only complex in structure, but also combine the raw signal with a short time fourier
transform, resulting in a large amount of data and high hardware requirement.
Disentangled representation learning used to be discussed at many top conferences and has
yielded many achievements, especially in speech recognition and signal processing area Ben-
gio et al. (2013), Bian et al. (2019), Zhang et al. (2019), An et al. (2022)which show the
big potential of disentangled representation learning. Therefore, we attempt to introduce
disentangled representation learning into environment sound classification.
In this paper, a two-stream convolutional neural network with the idea of disentanglement
is proposed. It also takes MFCC as the input, which is commonly used in audio classifi-
cation. However, different from the other methods, the MFCC features in our method is
analyzed in detail with the idea of disentanglement. We investigate that the rows of MFCC



Short Title

features represent information from the same spatial location on different channels, while
the columns represent information from different spatial locations on the same channel. By
disentangling the MFCC features in this way, we performed a one-dimensional convolution
of the MFCC features. Our method belongs to the third category above. Although our
method is a two-stream system, it needes to extract single audio features. Therefore, the
cost of feature extraction is similar to that of the second method. Our approach better
balances computational pressure with classification accuracy.
In brief, the contribution of this paper is as follows.
• Inspired by the idea of disentanglement, we perform an in-depth analysis of audio features
and firstly attempt to treat the time and frequency domains of audio features separately.
• We propose a novel two-stream environment sound classification model and achieve com-
petitive classification accuracy as well as model complexity. Meanwhile, feature extraction
brings less computational pressure.
•We investigate and experimentally demonstrate that the validity of the model of our pro-
posed model and the feature of the time domain or frequency domain can serve as the basis
for the classification itself, with acceptable classification results.
The remainder of this paper is structured as follows. Section 2 provides an overview of the
proposed CNN architecture. Section 3 presents detailed experimental results and a com-
parison of our classification system with the preceding systems. Section 4 concludes the
paper.

2. Method

2.1. Problem Statement

In this research, our task is to construct a deep learning model to achieving automatic
environment sound classification. Let s = (x, y) ∈ (X×Y ) be a training sample pair, where
x represents a string of audio signals,and y is the corresponding classification label. Then
we create a mapping Rx → Rf . The purpose of this mapping is to project an audio signal
into a two-dimensional size. So we get s = (f, y) ∈ F × Y , we try to learn a nonlinear deep
learning model(DLM) to classify f as one type of y. The hypothesis of the environment
sound classification neural network gdlm is a function which belongs to the hypothesis class
Gdlm, i.e.gdlm ∈ Gdlm. A loss function l : gdlm(F )×Y → R+ is proposed, where l(gdlm(f), y)
is loss value of gdlm with the sample s = (f, y). Given Dtrain = {si = {fi, yi}}Ni=1 as a set of
training samples, the empirical loss of the classification neural network on Dtrain is defined
as:

Ltrain (gdlm) =
1

N

N∑
i=1

l (gdlm (fi) , yi) (1)

Hence,the classification neural network is trained on the training dataset Dtrain , which aims
to optimize the following objective function:

g∗dlm(x) = arg min
gdlm∈Gdlm

Ltrain (gdlm) + λR (gdlm)

= arg min
gdlm∈Gdlm

1

N

N∑
i=1

l (gdlm (fi) , yi) + λR (gdlmW )
(2)
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Where R (gdlm) is a regularization item to modulate the hypothesis function gdlm and λ is
a regularization parameter.

2.2. Feature Extraction

Contrary to speech, an environmental sound classification (ESC) is a background sound
that is often mixed with various background noises and is therefore harder to recognize.
MFCC has been used to solve the automatic speech recognition (ASR) problem, and it does
have better performance for artificial speech recognition. Therefore, we decide to introduce
MFCC to deal with the ESC problem. For each experiment, we use MFCC feature as input
to our models. The hyperparameters in extracting MFCC features are as follows. We set
the sample rate of the audio to 44.1 KHZ and framing the input audio with a frame length
of 1024 and a hop length of 512 then hanning window for the windowing process. We adopt
the number of mel filters M = 128. The frequency response of a triangular filter is defined
as:

Hm(k) =


0 , k < f(m− 1)

2(k−f(m−1))
(f(m+1)−f(m−1))(f(m)−f(m−1)) , f(m− 1) ≤ k ≤ f(m)

2(f(m+1)−k)
(f(m+1)−f(m−1))(f(m)−f(m−1)) , , (m) ≤ k ≤ f(m+ 1)

0 , k ≥ f(m+ 1)

(3)

Note:
∑M−1

m=0 Hm(k) = 1.

2.3. Proposed network architecture

Inspired by related work in the field of natural image processing, Tolstikhin et al. (2021)
achieved a mapping from the vector space of [W,H,C] to the vector space of [S,C]. The rows
of the feature Table [S,C] represent information on different channels at the same spatial
location, and the columns represent information on the same channel at different spatial
locations. In other words, an operation on each row of the table enables the fusion of infor-
mation in the channel domain, and an operation on each column of the Table enables the
fusion of information in the spatial domain. Then they achieve information fusion in both
the spatial and channel domains through MLP. We found that current audio features, such
as MFCC features, have similar characteristics. We therefore used the above method for
classifying the audio functions. Since their MLP method is actually an equivalent form of
the convolution operation, we use convolution operations for the extraction of features in
the time and frequency domains of audio features respectively. Some studies Kiranyaz et al.
(2018); Abdeljaber et al. (2017); Avci et al. (2017) have shown that for some applications,
1D CNNs are advantageous and hence preferable to their 2D counterparts when it comes
to 1D signals for the following reasons:
•There is a significant difference in terms of the computational complexities of 1D and 2D
convolutions. We compare the mainstream methods of classification using 2D convolution
with our proposed method in terms of computational effort. i.e., an input with W × H
dimensions convolve with K ×K kernel and stride with 1 will have a computational effort
E2D = (W −K + 1)(H −K + 1)K2 while in the corresponding 1D convolution (with the
same dimensions, N ,K) , this is E1D = (H −K + 1)KW .
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•Using 2D convolution with both frequency and time domain information for audio features
may lead to a mishmash of time and frequency domain features into the feature map at
Flatten. Our method performs separate feature extraction in the time and frequency do-
mains by means of feature disentangling. We have a more interpretable method.
• The number of parameters in a 1D convolutional neural network is generally much lower
than the number of parameters in a 2D convolutional neural network.
So we decided to use 1D convolution for feature extraction. The network structure of the
method in this paper is a two-stream 1D convolutional CNN. The first input stream of the
model is the MFCC features and the second input stream is the transposed MFCC features,
which perform feature extraction for the time-domain and frequency-domain respectively.
The time and frequency domain features are fused by global averaging pooling and later fed
into ’softmax’ classifier for classification. The overall architecture of the model is presented
respectively in Fig. 1. As shown in the Fig. 1, we propose an iterable module. The classifica-
tion accuracy of our model can be slightly increased by stacking more iteration blocks, but
more resources will be consumed at the same time. Therefore, the number of the iteration
blocks in each stream is set to be 2 in our experiment for trade-off the speed and accuracy.
The feature map is sent to this module as input to our proposed convolution block. Our
proposed convolution block is shown in the figure Fig 2, Then the output feature map is
subjected to the relu activation function operation. The SE Attention Mechanism is then
added to the output of the previous step to weight the feature map. In deep learning, large
fields of perception generally lead to improved outcomes and extremely costly, especially
2D convolution. When we focus only on a single domain, the cost of getting a broader field
of perception is perfectly acceptable. In order to increase the perceptual field of the model,
several convolutional kernels of different odd sizes were set up, ranging from 1 to 21. The
number of filters multiplied per convolution kernel of different sizes is 16. We added batch
normalization (BN) prior to the activation function after the convolution layer. In addition,
we did not perform pooling operations, as this would lead to the information loss.

3. Experiment and result

3.1. Experimental setup

3.1.1. Dataset

In this section, we will verify the effectiveness of the method using the ESC-10 and Urban-
sound8k dataset. Tab 1 provides detailed information about each dataset.
•ESC-10
The dataset contains 400 audios of less than 5 seconds, divided into 10 categories of 40 each,
for a total duration of 33 minutes. According to the authors of this dataset, the average
human classification rate for this dataset is 95.7%.
•Urbansound8k
The dataset includes 8732 indoor and outdoor audios with a duration of less than 4 s, un-
evenly divided into 10 categories, for a total duration of 582 minutes.
As the audio durations in the above two datasets are not the same, direct extraction of the
original audio features would result in a different dimensionality of the extracted features.
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Figure 1: The overall architecture of the proposed model

Figure 2: The architecture of our convolution block
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In order to remedy this situation, we used the method that proved effective Dong et al.
(2020).

Table 1: The description of the used dataset.

3.1.2. Data Augmentation

In deep learning, the number of samples is generally required to be sufficient, the more
samples there are, the better the model formed and the more generalizable the model is.
The generalizability of the model can be enhanced by increasing the quantity of data for
training, and the robustness of the model can be enhanced by adding noisy data. An
elegant solution to overcome data scarcity and improve classification performance is data
augmentation, where the annotated set of training samples is deformed one or more times
to produce dynamic redundant training data Mushtaq and Su (2020); Lu et al. (2017);
Zhang et al. (2021). Effective complementary solutions for a short time, audio have also
been suggested Dong et al. (2020). Therefore, We choose pitch shift, time stretches and
the random padding method. Comprehensive information relating to each of the enhanced
datasets is shown in Tab 2.
•Pitch Shifting (PS): The pitch of audio signal clips is shifted by the positive factor of two
while keeping the duration unchanged[-2,+2].
•Time Stretching (TS): It is an effective method to increase or decrease audio playback
speed. Part of the samples is time-stretched by two factors: [0.91, 1.09].
•Random Padding(RP):Padding shorter lengths of audio at random.
Our training and testing sets wer e randomly split, with training and test sets accounting for
90%t and 10% of the overall data, respectively. To ensure the authenticity of the prediction
results, we only augmented the training set.

Table 2: The Augmented description of the dataset used.
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3.1.3. Hardware and software requirements

This experiment was done on Linux version 4.4.0-142-generic operating system, using python
3.6 for the whole experiment. The CPU was 9 Intel(R) Xeon(R) Gold 5218 CPUs @
2.30GHz. The graphics card used in the system was Tesla V100-PCIE-32GB.
This experiment uses different software and API libraries and packages to train the model
from scratch. The operating system used for the experiments was Ubuntu 18.0.4. All
experiments were done in python, version 3.6, and the main libraries used were keras2.3.1,
tensorflow2.1.0, numpy1.19.5, and librosa0.8.1.
Our optimizer was chosen to be Adam, with an initial learning rate of 0.001, an exponential
decay rate of 0.9 for first-order moment estimation and 0.999 for second-order moment
estimation, and a total of 500 training epochs. We added dropout and SE Block to the
model at the appropriate locations with ratio equals 8.

3.2. Result

This section discusses the performance evaluation of using the model on both the original
dataset and the offline enhanced dataset. The evaluation criteria considered are accuracy
and the total number of trainable parameters.
We have devised a total of two sets of experiments to evaluate the effectiveness and general-
izability of the proposed approach. The first set of experiments uses both the original data
and the augmented data to train the model, thus verifying the superiority of our approach
and the effectiveness of the data augmentation method. The second set of experiments
uses the enhanced data on a single stream model using only channel domain information or
spatial domain information.

3.2.1. Experiment 1

The superiority of our model compared to other baseline models and the effectiveness of
the data augmentation methods used in this paper.
The purpose of this experiment is to compare the classification results of our proposed
method with those of the deep learning methods proposed in recent years. Compared
with single feature models: Piczak (2015) Piczak-CNN, Tokozume et al. (2017) Env Net
v2, Guzhov et al. (2021) ESResNet, Mu et al. (2021) TFCNN, Jangid and Nagpal (2022)
Env-Resnet, Fang et al. (2022) Fast-ACNN all used a single feature representation. For
Piczak-CNN, ESResNet and TFCNN used a two-dimensional feature map as input to ex-
tract deep features in a way similar to image classification tasks. Among them Piczak-CNN
has numerous parameters and is not very accurate in classification. Env Net v2 used the
original audio signal as input and achieves good classification results. ESResNet introduced
residual networks as well as attention mechanisms to audio classification with good results.
However, this method does not released its parametric model number, so it can only be com-
pared to this method in terms of classification accuracy, the accuracy of the classification
is superior to the proposed method without the extra dataset and slightly inferior to the
method with the extra dataset, which is imagenet. TFCNN proposed temporal attention
mechanism and frequency attention mechanism, these mechanisms enable better capture
of time-frequency features and achieves a high accuracy at a low cost. Compared with
multi-feature models: Zhang et al. (2018) VGG-like CNN, Su et al. (2019) TSCNN-DS,
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and Liu et al. (2021) SC-DNN, Guo et al. (2022) TF-ATTENTION all used many types
of feature representations. VGG-likes network architecture is similar to VGG, with the
model input being a stack of mel spectrogram and gammatone spectrogram in depth, which
improves the classification performance of the model by a more abundant feature repre-
sentation. TSCNN-DS uses an ensemble learning approach, two different types of feature
representations are fed into subnetworks for training, and finally the predictions of each
subnetwork are ensemble by DS argument theory. SC-DNN connects feature maps from
multiple Sub-DNN models for enhanced feature extraction. TSCNN-DS and SC-DNN both
achieved high classification accuracy, but at the cost of many parameters. Compared with
most of the methods described in the above-mentioned literature, the models proposed in
this paper have achieved absolute improvements.
We compare our model with several outstanding ESC models above. The classification
results and the total number of the parameters of several state-of-the-art approaches are
shown in Table 3. The difference in size of our model on the two datasets above is due to
the different sizes of the inputs.

Table 3: Comparing different models on the assessed dataset.

Then, we will demonstrate the validity of the data enhancements used. The number of
test datasets of ESC-10 is 40. Our classification results for the ESC-10 dataset and the
confusion matrix are illustrated in Fig 3 , Fig 4. From Fig 3 and Fig Fig 4 it can be
concluded that the proposed approach obtains a classification result of 97.5%. After data
augmentation, the recognition accuracy was 100% for all categories except for FC, and the
most difficult category to classify is FC.
The number of test datasets of UrbanSound8k is 873. Our classification results on the
UrbanSound8k dataset and the confusion matrix are shown in Fig 5, Fig 6. From Figure
5 and Figure 6 it can be concluded that the proposed approach obtains a classification
result of 98.51%. Except for CP, DR and SM categories, all other categories will have 98%
or better ranking accuracy. It is notable that the CP, DR and SM categories still achieved
¿96% acceptable results.



Chang He* Yu Zhang Bai

Figure 3: Per-class accuracy for the original ESC-10 database and the augmented dataset.

Figure 4: The confusion matrices on the ESC-10 dataset for the original data and the
augmented data.(a)Original dataset.(b)Augmented dataset.
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Figure 5: Per-class accuracy for the original UrbanSound8K database and the augmented
dataset.

Figure 6: The confusion matrices on the UrbanSound8K dataset for the original data and
the augmented data.(a)Original dataset.(b)Augmented dataset.
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3.2.2. Experiment 2

Here, we will experimentally demonstrate that acceptable classification accuracy can be
achieved by using our proposed convolutional block to classify only time-domain or frequency-
domain features of the MFCC.
The experimental results are shown in Table 4. From Table 4, it can be concluded that
classification is much more effective when time and frequency domains are combined than
when just time or frequency domains are used. It can also be concluded that our network
is more sensitive to frequency-domain features, and its classification is obviously more ef-
fective than classification using time-domain features. Fig 7 and 8 show the classification

Table 4: Comparison of classification accuracy for time-domain features, frequency-domain
features and combined time and frequency domain features.

confusion matrix for ESC-10 and UrbanSound8K using single domain information. From
the classification confusion matrix using time-domain information and frequency-domain
information, respectively, their error distributions differ significantly. The time-domain
classification model is better at identifying audio signals with strong temporal sequences,
but is weaker at classifying audio signals with more discrete distributions. The frequency-
domain model is the exactly opposite. For example, the time-domain model in the ESC-10
dataset is less effective in classifying the DB (Dog Bark) and BC (Baby Crying) categories,
which have relatively discrete sound signal distributions. The time-domain model is better
for the time-series CT (Clock Tick) category, while the frequency-domain model is worse for
this category. In the UrbanSound8K dataset, the frequency-domain model performs signif-
icantly better than the time-domain model in classifying the two more discrete categories
of audio signals, CP (Children Playing), SM (Street Music).

4. Conclusion

In this paper, we proposed a two-stream convolution architecture based on audio feature
disentanglement for ESC. Our first attempt to disentangle audio feature. In addition, we
compared the computational complexity of our proposed approach and existing work. The
experimental results of the ESC-10 and UrbanSound8K datasets demonstrated the efficacy
of the proposed methodology and achieved advanced or competitive classification accura-
cy with low computational complexity. We also compared the impact of using individual
information domains on the classification results. We conclude that either time domain or
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Figure 7: The confusion matrices on the ESC-10 dataset for the time-domain and the
frequency-domain.(a)Time-domain.(b)Frequency-domain.

Figure 8: The confusion matrices on the UrbanSound8K dataset for the time-domain and
the frequency-domain.(a)Time-domain.(b)Frequency- domain.
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frequency domain information of audio features can be used as a basis for audio classifica-
tion, but in our experiments, the use of frequency domain information clearly leads to better
classification results. Experimental results show that the proposed method achieves supe-
rior classification accuracy with fewer parameters. In the future, we will further improve
the robustness and accuracy of our model by using additional datasets such as Audioset to
pre-train our model.
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