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Abstract

In recent years, semantic segmentation has shown very good performance in daytime scenes.
But in night-time scenes, semantic segmentation greatly reduces its accuracy. Due to the
lack of large-scale night-time semantic segmentation datasets, it is difficult to directly train
segmentation models for night-time scenes. Therefore, it becomes important to adapt
the daytime scene segmentation model to the night-time scene without directly using the
night-time scene segmentation dataset. In this paper, we propose a framework based on
unsupervised learning and cross attention. The proposed method fuses supervised daytime
scenes and unsupervised night-time scenes, the supervision information in the daytime
scene and the texture information specific to the night-time scene are fully utilized, and
the model is adapted to both the daytime scene and the night-time scene. Consistency
regularization is used to make segmentation model adapt to the complex and changeable
night scene texture and illumination. In view of the coarse correspondence of static objects
between day and night image pairs in the Dark Zurich dataset, cross attention is proposed
to make the model pay more attention to the parts of the night scene which are similar to
the daytime scene. Extensive experiments on Dark Zurich and night-time Driving datasets
show that our method obtains better performance in night-time semantic segmentation.
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1. Introduction

Semantic segmentation combines image classification[Sermanet et al. (2014)], object detec-
tion[Redmon and Farhadi (2018)] and image segmentation[Ronneberger et al. (2015); Chen
et al. (2015, 2018)]. It divides the image into regional blocks with certain semantic informa-
tion through a certain method, and identifies the semantic category of each regional block.
Finally, a segmented image with pixel-wise semantic annotations is obtained. Currently,
semantic segmentation shows good performance in standard scenes (such as daytime scenes
with good lighting conditions) and is widely used in fields such as autonomous driving[Chen
et al. (2017b); Shelhamer et al. (2017); Wu et al. (2019); Zhou et al. (2018)]. However, since
most of the existing semantic segmentation datasets are collected during the day, the models
trained with these datasets cannot adapt to complex night-time scenes. Most of the existing
works of auto-driving[Janai et al. (2020); Paden et al. (2016); Schwarting et al. (2018)] focus
on day scene but ignore the night scenes which is also very important. The light sources of
night scenes mainly come from the lighting of street lamps, car lights and buildings, which
is very different from the daytime scenes where the main light source comes from sunlight.
The special light source at night results in both overexposed and underexposed images at
night. Night scenes will also lead to a large number of missing details and textures of
objects, blurred edges and other undesirable phenomena.

Early methods use GAN Zhu et al. (2017) to convert images between daytime and night-
time domains Sakaridis et al. (2019), and then generated night-time pseudo-segmentation
labels for training. However, the images generated by GAN would have artifacts and strange
textures, and an additional GAN model with good performance was trained. It is also time-
consuming and labor-intensive to generate night scenes. The latest method DANNET Wu
et al. (2021) adopts image relighting network to enhance night-time scene lighting, and
integrates image relighting network and segmentation network into a unified framework,
making the model more efficient. However, DANNET uses coarsely aligned day-night im-
age pairs to generate pseudo-labels, ignoring the difference between daynight image pairs,
which can lead to a large number of errors in pseudo-labels for small objects. Moreover,
training the image relighting network together with the segmentation network makes train-
ing more difficult and the results generated by the image relighting network more difficult
to guarantee.

In this work, we proposes a night-time semantic segmentation algorithm based on un-
supervised learning and cross attention, which makes use of the supervision information in
the daytime scene and the unique texture information of the night-time scene, so that the
model can adapt to the daytime scene and the night-time scene at the same time.

In summary, our contributions are as follows:

1. We uses the existing semantic segmentation model as the backbone, fuses the super-
vised daytime scene and the unsupervised night-time scene, makes use of the super-
vised information in the daytime scene and the unique texture information of the
night-time scene.

2. Consistency regularization is introduced in this paper so that the segmentation model
can adapt to the complex and changeable night scene texture and illumination, and
at the same time can resist the extra noise caused by low-light enhancement.
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3. Due to the coarse correspondence of static objects between day and night image pairs
in the Dark Zurich Sakaridis et al. (2019) dataset, cross attention is proposed to
make the model pay more attention to the parts of the night scene that are similar
to the daytime scene, so that the model can take advantage of high-level semantic
information in daytime scene when trained.

2. Related work

2.1. Semantic segmentation

Modern deep learning methods for semantic segmentation are mostly based on fully convo-
lutional networks. Subsequent developments have studied segmentation models from three
main aspects: resolution, context, and edges. Work on resolution upscaling includes adjust-
ing the spatial loss induced in classification networks, e.g., using encoder-decoder schemes
or dilated convolutions, and maintaining high resolution, such as HRNet Sun et al. (2019).
Work which exploits context includes spatial context, such as PSPNet Zhao et al. (2017)
and Deeplabv3 Chen et al. (2017a). Deeplabv3 employs atrous spatial pyramid pooling to
embed contextual information, which consists of parallel dilated convolutions with different
dilation rates. PSPNet designs a pyramid pooling module to collect contextual priors which
contains contextual information at different scales. Methods to improve the segmentation
quality of edge regions include PointRend Kirillov et al. (2020) and SegFix Yuan et al.
(2020).

2.2. Night-time semantic segmentation

Night-time semantic segmentation is crucial for autonomous driving. Segmentation models
trained on daytime dataset perform poorly at night-time scene due to the large domain
gap. Dai and Gool (2018) proposed a two-step adaptation method by intermediate domain
(twilight domain). Sakaridis et al. (2019) use style transfer model to convert the style of
night-time images to the style of daytime images. Xu et al. (2021) proposed a curriculum
domain adaptation method to smoothly transfer semantic knowledge from daytime to night-
time. All of these methods require training the model in multiple stages. To reduce training
cost and avoid the problem of training error accumulation, Wu et al. (2021) proposed a one-
stage domain adaptation framework called DANNet which jointly trains image relighting
network, semantic segmentation network and two discriminators in one stage. This is more
efficient and can achieve better performance than other multi-stage method. However, the
object correspondence between day and night image pairs sometimes has a large offset. In
this case, the effect of static loss will be limited and the information between day-night
image pairs will be largely ignored.

3. Methodology

The proposed method involves a source domain S and two target domains Td and Tn,
where S, Td and Tn represent Cityscapes (daytime)[Cordts et al. (2016)], Dark Zurich-D
(daytime)[Sakaridis et al. (2019)], and Dark Zurich-N (night-time), respectively. Note that
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Figure 1: The architecture of the proposed framework. Three input images A, Bd and Bn

go through a weight-sharing image relighting network whose weight is fixed. All
the outputs are fed into a weight-sharing segmentation network to obtain the
predictions. For the predictions from A, a semantic segmentation loss Lseg is
computed using the ground truth from the source dataset. Besides, the predic-
tions from Bd and Bn are fed into a static loss Lstatic proposed in DANNet. At
the same time, RA, LA, RBn , SBn and SBd

are fed into the NightMix module and
finally compute the mixing loss Lmix. Bn is fed into the consistency regulariza-
tion module to compute loss Lkl.

only the Cityscapes dataset has ground-truth semantic segmentation in training, and the
Dark Zurich dataset has no semantic segmentation labels.

The night-time semantic segmentation framework proposed in this paper is shown in
Fig. 1 Images A, Bd and Bn are from source domain S and target domains Td, Tn. Image
A has segmentation ground truth LA while image Bd and Bn do not have segmentation
ground truth. fθ is Semantic segmentation network, where θ represents the weight to be
trained. The image relighting network g is proposed in Zero-DCE Guo et al. (2020). We
use the trained model and fix weights in our framework.

3.1. NightMix Module

The NightMix module is modified from the ClassMix algorithm Olsson et al. (2021), as
shown in Fig. 2 Image A and Bn are from the source domain S and the target domain
Tn, where image A has segmentation ground truth LA and image Bn has no segmentation
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ground truth. Image Bn pass through the segmentation network fθ and output predicted
segmentation map SBn . After remove easy split classes such as sky, road and forest from all
classes CA in LA, the remaining hard split classes are C̃A. Half of the hard split classes are
randomly selected in C̃A and the pixels in these classes are set to 1 in binary mask M , while
others are 0. Then we use this mask to mix images A and Bn into the augmented image
XA. Since images Bd and Bn are shot in the same scene, the positions of the static objects
(objects that cannot move freely, such as lights, poles, etc.) in two images are relatively
close, so we can generate pseudo label S̃Bn by SBn and Bd’s predicted segmentation map
SBd

. The segmentation map LA and S̃Bn are also mixed via mask M , generating a mixed
pseudo label YA of the augmented image XA.

Figure 2: NightMix Module. Image A is from the source domain S, Bn and Bd are from the
target domain. Based on the ground truth LA of image A, a binary mask M is
created. The mask is then used to mix the images A and Bn and their respective
predictions into an augmented image XA and the corresponding pseudo label YA.

The loss of NightMix module Lmix is defined by:

Lmix = ℓ (fθ (XA) , YA) (1)

where XA and YA are the augmented images and the corresponding pseudo label, generated
by the NightMix module, where the input image A is randomly sampled from the source
domain S, and Bn is randomly sampled from the target domain Tn. ℓ is the cross entropy
loss.

Since the source domain S has segmentation ground truth, it can be considered that
the accuracy of the segmentation model in the daytime scene is much higher than that in
the night-time scene. So the night-time predicted segmentation map S̃Bn corrected by the
daytime predicted segmentation map SBd

has a higher accuracy which is sufficient as a
pseudo label for night-time scenes. However, if only pseudo label S̃Bn is used as the label of
Bn to train model, the model will tend to easy split classes or classes with a larger size, while
ignoring hard split classes, classes with a smaller size and dynamic objects. Therefore, it is
necessary to use image A with the segmentation ground truth LA from the source domain
S for NightMix. On the one hand, ground truth can be used to strengthen the cognition of
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the model, and on the other hand, the model can not only focus on the easy split classes.
That’s also one of the reasons why we generate C̃A from LA.

3.2. Cross Attention

The night-time images in the Dark Zurich dataset have no ground truth, and there is
no pixel-level correspondence between day-night image pairs. But there are coarse corre-
spondences of static objects between day-night image pairs, while dynamic objects have
no correspondence at all. In order to make full use of those coarse correspondence, we
propose cross attention module, which aggregates the features of day-night image pairs
to strengthen similar semantic features, thereby improving the performance of night-time
semantic segmentation.

Figure 3: Cross Attention. Xd is the local feature of daytime image Bd and Xn is the local
feature of the night-time image Bn corresponding to Bd. E is the final attention-
weighted feature map.

As shown in Fig. 3, Xn is a local feature of the night-time image Bn, Xn ∈ RC×H×W

. Xd is the local feature of daytime image Bd corresponding to the night-time image Bn,
Xd ∈ RC×H×W . Xn and Xd are fed into a convolution layers to generate feature maps Q
and K, where {Q,K} ∈ RC×H×W . Then we transpose Q and perform matrix multiplication
with K, and apply a softmax layer to compute the attention map S ∈ RN×N :

sji =
exp (Ki ·Qj)∑N
i=1 exp (Ki ·Qj)

(2)

where N = H ×W is the number of pixels in the image, where sji represents the influence
of the ith position in the feature map of the daytime image on the jth position in the feature
map of the night-time image. The more similar the feature representations of two locations,
the greater the correlation between them. At the same time, we feed the feature Xn into a
convolutional layer to generate a new feature map V ∈ RC×H×W and change its shape to
RC×N . Then, we perform a matrix multiplication between the transposed matrix of V and
S. Finally, the product is multiplied by a scale parameter α to form an attention-weighted
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Figure 4: Consistency Regularization. Using pseudo segmentation of weakly augmented
images to supervise the predicted segmentation map of strongly augmented im-
ages.

feature map, which is added to the original feature map Xn:

Ej = α
N∑
i=1

(sjiVi) +Xnj (3)

Following Fu et al. (2019), α is initialized to 0, is set as a learnable weight for adap-
tive adjustment during training. Therefore, the final cross-attention feature map E is the
weighted sum of the features from all locations in the daytime features and the original
features of the night-time image. The computing process of cross attention is modified
according to the self-attention mechanism[Hu et al. (2020)].

The cross-attention module models the influence of daytime image features on night-time
image features, and strengthens the similar features between them. Because of the difference
between night-time images and daytime images, the extracted features of the same class
in daytime images and night-time images will be different, and these differences affect the
final performance of segmentation. Using cross attention module can establish associations
between night-time features and daytime features to adaptively aggregate information from
both domains, improving intra-class coherence, thereby improving feature representation
for segmentation.

3.3. Consistency Regularization

Consistency regularization[Mittal et al. (2021); Souly et al. (2017)] of the GAN-based
method is used in DANNet, forcing the consistency between the statistical features of ground
truth (from the source domain S) and the statistical features of the predicted segmentation
map of the unlabeled data (from the target domain Tn). However, this method requires
an extra discriminator, which increases the complexity of the framework. Moreover, it is
found that the training of the discriminator is not stable in our experiments, and it takes
multiple trainings and fine-tuning to obtain a stable and effective discriminator.

In this paper, we choose a cheaper and more stable consistency regularization, that is,
using pseudo segmentation of weakly augmented images to supervise the predicted segmen-
tation map of strongly augmented images Sohn et al. (2020), as shown in Fig. 4. We generate
a strongly augmented image for each unlabeled image, and then compute class probability
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distribution of the strongly augmented image, and then use it in KL divergence. Given
the weakly augmented version Bnw of the unlabeled image Bn, we compute the model’s
predicted class distribution: Pw = fθ(Bnw), terminating the gradient backpropagation at
Pw to generate Yw. Then, a predicted class distribution Ps = fθ(Bns) is also calculated
according to the strongly augmented image Bns of Bn, and finally the KL divergence is
used as the distance between the two class probability distributions:

Lkl = Yw log(
Yw
Ps

) (4)

If the segmentation model generates two different predicted class distributions, the KL
divergence will get a large value, which reflects the model’s uncertainty about the predic-
tions. In our experiments, weak Gaussian noise is used for weakly augmentation, while
Gaussian blur, color shift, brightness contrast shift, and a series of data augmentation
methods are used for strongly augmentation. The robustness of the model is increased
by consistency regularization, which makes the model perform better and more stable in
complex night scenes.

3.4. Loss functions

Due to the imbalance in the number of pixels of different classes in the source domain S,
it is easier to converge during model training by predicting pixels as classes with large size,
such as roads, buildings, and trees. In this case, it is difficult to correctly make prediction
for few and small classes, such as traffic sign and traffic light. To address this issue, we
propose a weighting strategy for the predicted class likelihood maps. Specifically, for each
class k ∈ C, first define a weight:

wK = 1/(ak) (5)

where ak is the proportion of all valid pixels in the source domain labeled as class k.
Obviously, the smaller the value of ak, the larger the value of wk, and using such weights
can help segment the classes with smaller size.

We employ a weighted cross-entropy loss to train semantic image segmentation in the
source domain:

Lseg = − 1

N∥C∥
∑
k∈C

∥∥∥wkGT (k) · log
(
P (k)
s

)∥∥∥
1

(6)

where P
(k)
s is the kth channel of the predicted Ps from the source image and wk is the weight

defined in Equation 5. GT (k) is the one-hot encoding of the label of the kth class.
If only consider static classes, daytime images have coarse similarities with their corre-

sponding night-time images in Dark Zurich dataset. In this paper, we use the static loss
in DANNet Wu et al. (2021) to provide pixel-level pseudo supervision for static classes.
Given segmentation predictions Ptd ∈ RH×W×C and Ptn ∈ RH×W×C , only the channels of
static classes are considered to compute static loss. Representing CS as the total number
of static object classes, there are PS

td ∈ RH×W×CS
and PS

tn ∈ RH×W×CS
. Focal loss Lin

et al. (2020) is used to compensate for the imbalance between training samples of different
classes. Finally, the static loss Lstatic is defined as:

Lstatic = − 1

N

∥∥∥(1− PS
tn

)γ
log(p)

∥∥∥
1

(7)
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Table 1: The per-category results on Dark Zurich-test by current state-of-the-art methods
and our framework. The best results are presented in bold, with the second best
results underlined.
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AdaptSegNet Valada et al. (2017) 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
ADVENT Vu et al. (2019) 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
DMAda Dai and Gool (2018) 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
GCMA Sakaridis et al. (2019) 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA Sakaridis et al. (2020) 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet Wu et al. (2021) 90.4 60.1 71.0 33.6 22.9 30.6 34.3 33.7 70.5 31.8 80.2 45.7 41.6 67.4 16.8 0.0 73.0 31.6 22.9 45.2
CDAda Xu et al. (2021) 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0

Ours 88.57 55.36 74.44 33.45 22.60 28.70 27.97 32.80 70.25 29.78 81.40 40.47 38.19 67.17 72.32 4.79 64.07 36.89 23.02 46.96

where N is the total number of valid pixels in the segmentation pseudo label, γ is the
parameter of the focal loss, and p is the likelihood map of the correct classes. Unlike focal
loss, we compute p at each pixel i in a 3× 3 local region of class c:

p(c, i) = max
j

(
o(c, j) · PS

tn(c, i)
)

(8)

where o is the one-hot encoding of the pseudo-label Ftd = argmax(PS
td) and j represents

each location of the 3× 3 region centered at i.
Therefore, the total loss function is:

Ltotal = Lseg + Lstatic + β1Lmix + β2Lkl (9)

where β1 = 0.04, β2 = 0.75. The values were decided by cross validation experiments.

4. Experiments

(a) Input Image (b) Ground Truth (c) AdaptSegNet (d) DANNet (e) CDAda (f) Ours

Figure 5: Visualization comparison of our framework with some existing state-of-the-art
methods on three samples from Dark Zurich-val.

4.1. Datasets

Cityscapes The Cityscapes dataset Cordts et al. (2016) contains 5000 images captured
in street with pixel-level annotations of 19 classes, and the resolution of both the original
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images and annotations is 2048 × 1024 pixels. There are 2975 images for training, 500
images for validation, and 1525 images for testing. In this paper, the Cityscapes dataset is
used as the labeled source domain S.
Dark Zurich The Dark Zurich dataset Sakaridis et al. (2019) consists of 2416 night-time
images, 2920 twilight images and 3041 daytime images, all of which are unlabeled and have
a resolution of 1920 × 1080. Images can be coarsely aligned using a GPS-based nearest
neighbor assignment algorithm. Only 2416 day-night image pairs are used in this paper to
train the proposed night-time semantic segmentation framework. The Dark Zurich dataset
also contains another 201 labeled night-time images, 50 for validation (Dark Zurich-val)
and 151 for testing (Dark Zurich-test). Dark Zurich-test is an online benchmark whose
ground truth are not public. In experiments, the performance of the proposed night-time
segmentation framework in the Dark Zurich-test is obtained by submitting the segmentation
results to an online evaluation website. This paper also uses Dark Zurich-val for method
comparison and ablation study.
night-time Driving The night-time Driving dataset Dai and Gool (2018) contains 50
night-time images with a resolution of 1920 × 1080 from different scenes. All of these 50
images are annotated at the pixel level of 19 Cityscapes classes.

4.2. Comparison with state-of-the-art methods

Following Wu et al. (2021), we train the model using the Stochastic Gradient Descent
optimizer with a momentum of 0.9 and a weight decay of 5× 10−4. The base learning rate
is set to 2.5× 10−4, then a linear learning rate policy is used to reduce the learning rate by
a factor of 0.9, and the batch size is set to 2. We apply a random crop of size 512 on the
scale between 0.5 and 1.0 on the Cityscapes dataset, and a random crop of size 960 on the
scale between 0.9 and 1.1 on the Dark Zurich dataset, and randomly horizontal flip.

The night-time semantic segmentation framework proposed in this paper is first com-
pared with some existing state-of-the-art methods, including AdaptSeg Valada et al. (2017),
ADVENT Vu et al. (2019), MGCDA Sakaridis et al. (2020), GCMA Sakaridis et al. (2019),
DMAda Dai and Gool (2018), DANNet Wu et al. (2021) and CDAda Xu et al. (2021), and
the results of mIoU performance are shown in Table I. The best results in the Table I are
shown in bold, the second best results are underlined. Among these methods, the segmenta-
tion network of DANNet and our framework is PSPNet while others are ResNet-101. It can
be seen that our method achieves the best performance among all methods, with an overall
mIoU improvement of 1.7%. Our method has achieved improvements in the recognition of
large objects such as the sky and buildings, and also achieved better results on small objects
such as trucks, buses, trains and motorcycles, which shows that our framework can transfer
more semantic knowledge of small size classes from day to night. To better illustrate the
advantages of our approach, some visual examples are shown in Fig. 5.

The performance of the proposed method and other methods on the Night Driving-test
is shown in Table II, and the example visualization results are shown in Fig. 6. Night Driv-
ing dataset is not as carefully labeled as the Dark Zurich-test. For different objects on this
dataset, we get the following experimental results (mIoU): Road(88.42); Sidewalk(61.52);
Building(88.54); Wall(39.27); Fence(0); Pole(47.08); Light(59.31); Sign(73.97); Vegeta-
tion(63.46); Terrain(0); Sky(54.15); Person(61.08); Rider(17.8); Car(60.49); Truck(38.99);
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Bus(70.73); Train(80.06); Bicycle(34.15). As shown in Fig. 6, many categories for which our
method predicts well, such as buildings, are not annotated in this test set. Even with these
problems, our method still achieves the second best performance on this dataset (CDAda
achieves the best performance).

Compared with DANnet, our model has higher stability in training process. As a GAN
method, DANnet is difficult to train. Instead, the pretrained relighting network is used in
our method in order to reduce the training complexity. When there is a large offset between
between day-night image pairs, the effect of static loss in DANnet will be limited. We added
the NightMix module to make better use of the correlation information in day-night image
pairs. The higher performance of CDAda on Night Driving-test based on the fact that
it uses more supervision information in the training process, including pre-classification
and pseudo-labels. In contrast, our method does not rely on these additional supervision
information. Therefore, our method has better adaptability for different datasets.

Table 2: Comparison with some state-of-the-art methods on night-time Driving-test.
Methods mIoU
DMAda 36.1
GCMA 45.6
MGCMA 49.4
DANNet 47.7
CDAda 50.9
Ours 49.4

(a) Input Image (b) Ground Truth (c) GCMA (d) MGCDA (e) DANNet (f) Ours

Figure 6: Visualization comparison of our framework with some existing state-of-the-art
methods on three samples from Night Driving-test.

4.3. Ablation study

To demonstrate the effectiveness of the different modules of the proposed night-time se-
mantic segmentation framework, several model variants are trained and tested on the Dark
Zurich validation set, and the results of ablation experiments are shown in Table III. We
find that the image relighting network can improve the performance, because the night-time
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Table 3: Ablation study on several model variants of our framework on Dark Zurich-val.
Methods mIoU
GCMA 26.65
MGCMA 26.10
DANNet 36.76
CDAda 36.00
Relight + Lstatic 34.19
R+L+NightMix 35.84
R+L+N+Consistency Reg 36.67
R+L+N+C+Cross Attention 37.34

(a) Input Image (b) Ground Truth (c) w/o Cross Attention (d) with Cross Attention

Figure 7: Visualization results of cross attention module on Dark Zurich-val. The cross
attention module makes some details and object boundaries clear, such as the
car in the second row. At the same time, some misclassified categories are now
correctly classified, such as the walls in the first and fourth row.

images show more details after image relighting. The static loss Lstatic has a significant ef-
fect on performance improvement. The semantic information in the daytime scene can be
transferred to the night-time scene through the static loss. Since the Dark Zurich dataset
has no ground truth, the static loss can generate effective supervision information for night-
time images. Although these supervision information is not completely correct, but it is
enough to improve the performance of the model in night scenes. NightMix module has a
great impact on the performance. Because there are no supervised semantic segmentation
at night, the NightMix module can integrate supervised daytime scenes and unsupervised
night-time scenes to improve the performance of night-time segmentation framework. Con-
sistency regularization also improve the final performance of the framework, because it can
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(a) Input Image (b) Ground Truth (c) DANNet (d) Ours

Figure 8: Visualization examples of poor performance in our framework on Dark Zurich-val.
There are cluttered boundaries in our segmentation map.

resist the noise enhanced by image lighting. Cross attention module helps the model to
establish associations between night-time features and daytime features, improving intra-
class compactness, thereby improving the representations of semantic segmentation. The
visualization results of cross attention module on Dark Zurich-val are shown in Fig. 7. The
selective fusion of global features enhances the discrimination of details, the selective inte-
gration between day and night features helps to capture more contextual information, and
the semantic consistency is significantly improved.

Although our framework has achieved good performance, it can be seen that there are
cluttered boundaries in the segmentation map, as shown in Fig. 8. This is due to the poor
visual conditions of the night scene, but also because the distribution of the segmentation
map is not constrained in our framework. DANNet applies adaptive constraints to the
distribution of the segmentation map through the discriminator, so the segmentation map
generated by DANNet looks like the real segmentation map. Discriminator can also achieve
a similar effect in our framework, but it will make the structure of the entire framework more
complicated, and the training will be more troublesome and unstable. Perhaps the night-
time semantic segmentation map can be constrained by the method of entropy constraint Vu
et al. (2019) to make it closer to the real segmentation map.

5. Conclusions

In this paper, we propose a night-time semantic segmentation framework based on un-
supervised learning and cross attention, which can utilize unlabeled night-time data and
labeled daytime data to train a robust night-time semantic segmentation model. In order
to perform night-time semantic segmentation without large-scale annotation datasets, we
propose NightMix module, which integrates supervised daytime scenes and unsupervised
night-time scenes. We use consistency regularization to enable the segmentation model to
adapt to complex and changing night-time scene textures and lighting, while resisting ad-
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ditional noise enhanced by image relighting. We propose cross attention for the first time,
which makes the model pay more attention to the parts of the night scene that are similar
to the daytime scene, and establishes an association between the night-time features and
the daytime features. Experimental results demonstrated the effectiveness of those modules
and showed that our framework achieves the state-of-the-art performance on Dark-Zurich
and Night Driving test datasets.
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