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Appendix A. Details of NNGP

In this section, we provide the correspondence between infinitely wide fully connected neural
networks and Gaussian processes which is proved in Lee et al. (2017). We remark that
other types of neural networks, e.g. CNN, also works compatibly with the NNGP. Here we
consider L-hidden-layer fully connected neural networks with input x ∈ Rdin , layer width
nl (for l-th layer and din := n0), parameter θ consisting of weight Wl and bias bl for each
layer l in the network, pointwise nonlinearity φ, post-affine transformation (pre-activation)
zli and post-nonlinearity xli for the i-th neuron in the l-th layer. We denote x0i = xi for the
input and use a Greek superscript xα to denote the α-th sample. Weight Wl and bias bl

have components W l
ij and bli independently drawn from normal distribution N

(
0, σ

2
w

nl

)
and

N
(
0, σ2b

)
, respectively.

Then the i-th component of pre-activation z0i is computed as:

z0i (x) =

din∑
j=1

W 0
ijxj + b0i

where the pre-activation z0i (x) emphasizes z0i depends on the input x. Since the weight
W0 and bias b0 are independently drawn from normal distributions, z0i (x) also follows
a normal distribution. Likewise, any finite collection {z0i (xα=1), . . . , z0i (xα=k)} which is
composed of i-th pre-activation z0i at k different inputs will have a joint multivariate normal
distribution, which is exactly the definition of Gaussian process. Hence z0i ∼ GP(µ0,K0),
where µ0(x) = E[z0i (x)] = 0 and

K0(x,x′) = E[z0i (x)z0i (x′)] = σ2b + σ2w

(
x · x′

din

)
Notice that any two z0i , z

0
j for i 6= j are joint Gaussian, having zero covariance, and are

guaranteed to be independent despite utilizing the same input.
Similarly, we could analyze i-th component of first layer pre-activation z1i :

z1i (x) =

n1∑
j=1

W 1
ijx

1
j + b1i =

n1∑
j=1

W 1
ijφ(z0j (x)) + b1i .

We obtain that z1i ∼ GP(0,K1), where

K1(x,x′) = E[z1i (x)z1i (x′)]

= σ2b + σ2w

(∑n1

j=1 φ(z0j (x))φ(z0j (x′))

n1

)
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Since z0j ∼ GP(0,K0), let n1 →∞, the covariance is

K1(x,x′)

=σ2b + σ2w

∫∫
φ(z)φ(z′)

N
([

z
z′

]
; 0,

[
K0(x,x) K0(x,x′)
K0(x′,x) K0(x′,x′)

])
dz dz′

=σ2b + σ2wEz0j∼GP(0,K0)

[
φ(z0i (x))φ(z0i (x′))

]
This integral can be solved analytically for some activation functions, such as ReLU

nonlinearity Cho and Saul (2009). If this integral cannot be solved analytically, it can be
efficiently computed numerically Lee et al. (2017). Hence K1 is determined given K0.

We can extend previous arguments to general layers by induction. By taking each hidden
layer width to infinity successively (n1 →∞, n2 →∞, . . . ), we can conclude zli ∼ GP(0,Kl),
where Kl could be computed from the recursive relation

Kl(x,x′) = σ2b + σ2wEzl−1
j ∼GP(0,Kl−1)

[
φ(z0i (x))φ(z0i (x′))

]
K0(x,x′) = σ2b + σ2w

(
x · x′

din

)
Hence, the covariance only depends on the neural network structure (including weight

and bias variance, number of layers and activation function).

Appendix B. Implementation details

All the experiments run on Google Colab Pro with P100 GPU. For GAIN1, Sinkhorn, Linear
RR2, and MIWAE3, we use the open-access implementations provided by their authors,
with the default or the recommended hyperparameters in their papers except MIWAE.
For MIWAE, the default hyperparameters lead to running out RAM, hence we choose
h=128, d=10, K=20, L=1000. For SoftImpute, the lambda hyperparameter is selected at
each run through cross-validation and grid-point search, and we choose maxit=500 and
thresh=1e-05. For MICE, we use the iterativeImputer4 method in the scikit-learn

library with default hyperparameters Pedregosa et al. (2011). All NNGP-based methods
uses a 3-layer fully connected neural network with ReLU activation function to impute
missing values, where the initialization of weight and bias variances are set to 1 and 0
respectively. (We also tried other initialization of weight and bias variances and found
that the result is very robust to these changes.) NNGP-based methods are implemented
through Neural TangentsNovak et al. (2020). All the MI methods are used to multiply
impute missing values for 10 times except GAIN, MIWAE and Linear RR, noting that
the GAIN and MIWAE implementations from their authors conduct SI and Linear RR is

1. See https://github.com/jsyoon0823/GAIN

2. Same as Sinkhorn, see https://github.com/BorisMuzellec/MissingDataOT

3. See https://github.com/pamattei/miwae

4. See https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.

html

https://github.com/jsyoon0823/GAIN
https://github.com/BorisMuzellec/MissingDataOT
https://github.com/pamattei/miwae
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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computationally very expensive. We also include not-MIWAE5 in the MNAR setting in
the appendix. Similar to MIWAE, default hyperparameters of not-MIWAE lead to running
out RAM, here we choose nhidden=128, nsamples=20, batch size=16, dl=p-1, L=1000,

mprocess=’selfmasking known’. We observe that not-MIWAE is unstable and performs
poorly. Probably because not-MIWAE is not scalable to high-dimensional data.

Appendix C. Synthetic data experiments

C.1. Continuous data experiment

The simulation results are summarized over 100 Monte Carlo (MC) datasets. We also
include not-MIWAE in MNAR. Note that the Each MC dataset has a sample size of n = 200
and includes y, the fully observed outcome variable, and X = (x1, . . . ,xp), the set of
predictors and auxiliary variables. We consider the setting p = 50, p = 250, and p = 1000
(Here the use of p is a slight abuse of notation. In the main paper, p represents total
number features which include predictors, auxiliary variables and the response.). X is
obtained by rearranging the orders of A = (a1, . . . ,ap) and A is generated from a first order
autoregressive model with autocorrelation ρ and white noise ε. Here a1 is generated from
standard normal distribution N (0, 1) if ε ∼ N (0, 0.12) or exponential distribution Exp(2)
if ε ∼ Exp(0.4). To obtain X, we firstly move the fourth variable in every five consecutive
variables of A (e.g. a4, a9 and a14) to the right and then the fifth variable in every five
consecutive variables of A (e.g. a5, a10 and a15) to the right. For a concrete example, if
p = 10, (a1, . . . ,a10) becomes (a1,a2,a3,a6,a7,a8,a4,a9,a5,a10) after rearrangement. The
response y depends on three variables of X indicated by a set q: given X, y is generated
from

yi = β1 · xq[1] + β2 · xq[2] + β3 · xq[3] +N (0, σ21) (4)

where βi = 1 for i ∈ {1, 2, 3}. For p = 50, p = 250 and p = 1000, the corresponding
predictor set q is {40, 44, 48} {210, 220, 230} and {650, 700, 750} respectively.

MAR or MNAR mechanism is considered in the simulation and the missing rate is
around 40%. In particular, missing values are separately created in {x 3

5
p+1, . . . ,x 4

5
p} and

{x 4
5
p+1, . . . ,xp} by using the following logit models for the corresponding missing indicators

R1 and R2. If the missing mechanism is MAR:

logit(P(R1 = 1|X,y)) = a1 + a2 ·
5

3p

3p/5∑
j=1

xj + a3 · y (5)

logit(P(R2 = 1|X,y)) = a4 + a5 ·
5

3p

3p/5∑
j=1

xj + a6 · y (6)

5. See https://github.com/nbip/notMIWAE

https://github.com/nbip/notMIWAE
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If the missing mechanism is MNAR:

logit(P(R1 = 1|X,y)) = a1 + a2 ∗
5

p

p∑
j=4p/5+1

xj + a3 ∗ y (7)

logit(P(R2 = 1|X,y)) = a4 + a5 ·
5

p

4p/5∑
j=3p/5+1

xj + a6 · y (8)

If R1 = 1 or 0, then {x 3
5
p+1, . . . ,x 4

5
p} is missing or observed, respectively; similarly, if

R2 = 1 or 0, then {x 4
5
p+1, . . . ,xp} is missing or observed, respectively.

C.2. Discrete data experiment

In the discrete data analysis, we append one binary variable xp+1 on the last column of X
in the above section. We consider the setting p = 1000. The binary variable is generated
through:

xp+1 =

{
1 if x10 + x50 + x100 > 0

0 otherwise
.

The fully observed response y is also generated from eq. (4) and the corresponding pre-
dictor set q is {1001, 701, 751}. Hence β1 is the coefficient of the binary variable in the
regression model. Here missing values are separately created in {x 3

5
p+1, . . . ,x 4

5
p} and

{x 4
5
p+1, . . . ,xp+1} with the corresponding missing indicators R1 and R2, which are also

generated form (5), (6) or (7), (8) depending on the specific missing mechanism.
Before MI-NNGPs impute, the binary variable is encoded into an one-hot, zero-mean

vector (i.e. entries of -0.5 for the incorrect class and 0.5 for the correct class). After imputing
this one-hot vector in the incomplete cases, the class with higher value is regarded as the
imputation class.

C.3. Experiment setting

• Table 2: Continuous data experiment, MAR, n = 200, p = 250, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = 1, a2 = −2, a3 = 3, a4 = 0, a5 = 2, a6 = −2

• Table 3: Continuous data experiment, MAR, n = 200, p = 1000, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = 1, a2 = −2, a3 = 3, a4 = 0, a5 = 2, a6 = −2

• Table 11: Discrete data experiment, MAR, n = 200, p = 1000, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = −1, a2 = −2, a3 = 3, a4 = 1, a5 = 2, a6 = −2

• Table 5: Continuous data experiment, MAR, n = 200, p = 50, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = 1, a2 = −2, a3 = 3, a4 = 0, a5 = 2, a6 = −2

• Table 6: Continuous data experiment, MAR, n = 200, p = 1000, ρ = 0.75, ε ∼
Exp(0.4), σ1 = 1, a1 = −3, a2 = −1, a3 = 1.5, a4 = 1, a5 = 1.5, a6 = −1
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• Table 7: Continuous data experiment, MNAR, n = 200, p = 50, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = 1, a2 = −2, a3 = 3, a4 = 0, a5 = 2, a6 = −2

• Table 8: Continuous data experiment, MNAR, n = 200, p = 250, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = 1, a2 = −2, a3 = 3, a4 = 0, a5 = 2, a6 = −2

• Table 9: Continuous data experiment, MNAR, n = 200, p = 1000, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = 1, a2 = −2, a3 = 3, a4 = 0, a5 = 2, a6 = −2

• Table 10: Continuous data experiment, MNAR, n = 200, p = 1000, ρ = 0.75, ε ∼
Exp(0.4), σ1 = 1, a1 = −3, a2 = −1, a3 = 1.5, a4 = 1, a5 = 1.5, a6 = −1

• Table 12: Discrete data experiment, MNAR, n = 200, p = 1000, ρ = 0.95, ε ∼
N (0, 0.12), σ1 = 0.5, a1 = −1, a2 = −2, a3 = 3, a4 = 1, a5 = 2, a6 = −2

Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 2.7 0.0132 -0.0017 0.92 0.0623 0.0642
GAIN SI 35.9 1.356 0.3213 0.38 0.1142 0.4262

MIWAE SI 46.5 0.0361 -0.0238 0.90 0.0632 0.0738
Linear RR SI 628.4 0.1712 0.0358 0.91 0.1287 0.1568

MICE MI 2.1 0.0200 0.0031 0.97 0.0644 0.0567
Sinkhorn MI 42.1 0.1081 -0.1225 0.60 0.0978 0.1269

MI-NNGP1 MI 3.4 0.0129 0.0048 0.95 0.0621 0.0647
MI-NNGP1-BS MI 4.8 0.0177 0.0052 0.97 0.0794 0.0624

MI-NNGP2 MI 5.5 0.0092 0.0083 0.96 0.0639 0.0563
MI-NNGP2-BS MI 13.5 0.0105 0.0083 0.98 0.0705 0.0574

Complete data - - - 0.0025 0.98 0.0605 0.0524
Complete case - - - 0.1869 0.79 0.2298 0.2419
ColMean Imp SI - 0.4716 0.5312 0.28 0.2242 0.1729

Table 5: Gaussian data with n = 200 and p = 51 under MAR. Approximately 40% features
and 92% cases contain missing values.

C.4. Varying missing rates experiment

Here we state clearly the varying missing rates experiment. Similar to the data generation
process in the continuous data experiment, each MC dataset has sample size of n = 200
and each sample includes a response y and p = 1000 features. When generating variable
set A, a1 is drawn from N (0, 1) and the remaining variables are generated through first
order autoregressive model with autocorrelation ρ = 0.95 and white noise N (0, 0.12). X is
obtained by firstly moving the seventh variable and ninth variable in every ten consecutive
variables of A (e.g., a7, a9, a17 and a19) to the right and then the eighth variable and tenth
variable in every ten consecutive variables of A (e.g., a8, a10, a18 and a20) to the right.
Given X, y is generated from (4) with corresponding predictor set q = {910, 950, 990}.
Missing values are separately created in two groups of variables under MAR by using the



Short Title

Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 37.8 0.6284 -0.5896 0.92 0.6348 0.4858
GAIN SI 130.9 1.691 -0.7217 0.40 0.4611 2.229

MIWAE SI 58.4 1.530 0.5626 0.05 0.1522 0.1456
Sinkhorn MI 42.1 0.3845 -0.2077 1.00 0.4566 0.2832

MI-NNGP1 MI 3.1 0.3296 -0.0421 0.75 0.1757 0.3220
MI-NNGP1-BS MI 3.4 0.4543 -0.0570 1.00 0.3366 0.2466

MI-NNGP2 MI 3.9 0.2358 0.1098 0.80 0.2312 0.3383
MI-NNGP2-BS MI 10.3 0.2516 -0.0242 0.95 0.3203 0.3037

Complete data - - - 0.0156 0.95 0.0978 0.0938
Complete case - - - 0.1726 0.89 0.3984 0.4534
ColMean Imp SI - 0.3794 -0.1506 1.00 0.4556 0.3123

Table 6: Exponential data with n = 200 and p = 1001 under MAR. Approximately 40%
features and 92% cases contain missing values. Here Linear RR and MICE are
not included due to running out of RAM.

Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 2.1 0.0119 -0.0053 0.93 0.0624 0.0611
GAIN SI 35.9 1.4822 0.4448 0.24 0.1187 0.4641

MIWAE SI 46.5 0.0361 -0.0238 0.90 0.0632 0.0738
not-MIWAE SI 40.8 0.7566 -0.0436 0.91 0.0518 0.0969
Linear RR SI 407 0.1760 0.0412 0.91 0.1314 0.1567
Sinkhorn MI 27.9 0.1103 -0.1340 0.63 0.1006 0.1278

MICE MI 2.1 0.0198 0.0036 0.98 0.0636 0.0559
MI-NNGP1 MI 4.7 0.0130 0.0027 0.95 0.0621 0.0651

MI-NNGP1-BS MI 3.9 0.0177 0.0026 0.97 0.0799 0.0631
MI-NNGP2 MI 10.4 0.0088 0.0085 0.96 0.0614 0.0536

MI-NNGP2-BS MI 10.1 0.0106 0.0093 0.97 0.0711 0.0564

Complete data - - - 0.0025 0.98 0.0605 0.0524
Complete case - - - 0.2143 0.78 0.2340 0.4201
ColMean Imp SI - 0.4772 0.5597 0.24 0.2246 0.1720

Table 7: Gaussian data with n = 200 and p = 51 under MNAR. Approximately 40%
features and 92% cases contain missing values.

following logit models for the corresponding missing indicators R1 and R2:

logit(P(R1 = 1|X,y)) = 1− 1

50

100∑
j=1

xj + 3y

logit(P(R2 = 1|X,y)) =
1

50

100∑
j=1

xj − 2y

If the missing rate is 20%, the first group is {x801, . . . ,x900} and the second group is
{x901, . . . ,x1000}. If the missing rate is 40%, the first group is {x601, . . . ,x800} and the sec-
ond group is {x801, . . . ,x1000}. If the missing rate is 60%, the first group is {x401, . . . ,x700}
and the second group is {x701, . . . ,x1000}. If the missing rate is 80%, the first group is
{x201, . . . ,x600} and the second group is {x601, . . . ,x1000}.
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Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 15.3 0.0194 -0.0997 0.84 0.1182 0.1358
GAIN SI 53.2 0.8618 0.6212 0.18 0.1502 0.5088

MIWAE SI 47.6 0.0502 0.0695 0.90 0.1356 0.1410
not-MIWAE SI 41.7 1.4701 0.1040 0.65 0.1084 0.1624
Linear RR SI 3009.6 0.0658 0.1823 0.90 0.1782 0.0935

MICE MI 48.6 0.0233 -0.0049 0.93 0.1160 0.1244
Sinkhorn MI 29.9 0.0757 0.0117 0.97 0.1839 0.1523

MI-NNGP1 MI 3.4 0.0116 0.0069 0.93 0.1147 0.1215
MI-NNGP1-BS MI 3.4 0.0149 0.0140 0.96 0.1285 0.1179

MI-NNGP2 MI 10.4 0.0085 -0.0024 0.95 0.1123 0.1148
MI-NNGP2-BS MI 10.3 0.0094 -0.0018 0.96 0.1177 0.1147

Complete data - - - -0.0027 0.90 0.1098 0.1141
Complete case - - - 0.2518 0.89 0.3385 0.3319
ColMean Imp SI - 0.1414 0.3539 0.72 0.2210 0.1712

Table 8: Gaussian data with n = 200 and p = 251 under MNAR. Approximately 40%
features and 90% cases contain missing values.

Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 25.1 0.0443 -0.2550 0.52 0.1570 0.2164
GAIN SI 111.1 0.7395 0.6488 0.18 0.1719 0.5830

MIWAE SI 53.2 0.1116 0.5249 0.35 0.1902 0.2523
not-MIWAE SI 45.4 3.981 0.9897 0.0 0.1080 0.1451

Sinkhorn MI 116.9 0.0889 0.5445 0.38 0.2406 0.2237
MI-NNGP1 MI 4.9 0.0119 0.0351 0.89 0.1194 0.1422

MI-NNGP1-BS MI 4.9 0.0166 0.0383 0.94 0.1424 0.1416
MI-NNGP2 MI 10.5 0.0085 0.0356 0.91 0.1160 0.1310

MI-NNGP2-BS MI 9.9 0.0092 0.0343 0.93 0.1263 0.1301

Complete data - - - 0.0350 0.94 0.1122 0.1173
Complete case - - - 0.2824 0.76 0.3447 0.4201
ColMean Imp SI - 0.1130 0.7022 0.11 0.2572 0.1941

Table 9: Gaussian data with n = 200 and p = 1001 under MNAR. Approximately 40%
features and 90% cases contain missing values. Here Linear RR and MICE are
not included due to running out of RAM.

Appendix D. ADNI data experiments

D.1. Data Availability

The de-identified ADNI dataset is publicly available at http://adni.loni.usc.edu/.

D.2. Experiment details

This section details the ADNI data experiment. Here we use a large-scale dataset from ADNI
study. The original dataset includes 19822 features and one continuous response variable
(y), the VBM right hippocampal volume, for 649 patients. Here we preprocess features and
the response by removing their means. Among these 19822 features, we only select 10000
features which have maximal correlation with the response to analyze and rank them in the

http://adni.loni.usc.edu/
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Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 39.1 0.6682 -0.6784 0.90 0.6805 0.4632
GAIN SI 91.0 1.6974 0.0331 0.33 0.4187 2.2123

MIWAE SI 57.4 1.4937 0.3981 0.30 0.1437 0.1659
not-MIWAE SI 43.6 26.7277 0.7388 0.00 0.0928 0.1524

Sinkhorn MI 53.2 0.3837 -0.2698 1.0 0.4362 0.2886
MI-NNGP1 MI 3.5 0.3296 -0.0354 0.76 0.1764 0.3166

MI-NNGP1-BS MI 3.6 0.4545 -0.0546 0.99 0.3324 0.2466
MI-NNGP2 MI 4.1 0.2360 0.0835 0.82 0.2301 0.3327

MI-NNGP2-BS MI 10.3 0.2501 -0.0449 0.94 0.3183 0.3043

Complete data - - - 0.0156 0.95 0.0978 0.0938
Complete case - - - 0.1663 0.89 0.4038 0.4639
ColMean Imp SI - 0.3793 -0.1574 1.0 0.4559 0.3087

Table 10: Exponential data with n = 200 and p = 1001 under MNAR. Approximately 40%
features and 92% cases contain missing values. Here Linear RR and MICE are
not included due to running out of RAM.

Models Style Time(s) Imp MSE Imp accu Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 21.8 0.0431 0.3331 -0.2793 0.64 0.2156 0.2263
GAIN SI 98.9 0.8942 0.3331 0.8610 0.24 0.1588 0.7651

MIWAE SI 57.7 0.1267 0.6785 0.6658 0.04 0.1617 0.2030
Sinkhorn MI 41.6 0.1076 0.3278 0.4201 0.73 0.3036 0.2883

MI-NNGP1 MI 4.7 0.0116 0.6463 -0.0147 0.94 0.1492 0.1495
MI-NNGP1-BS MI 3.4 0.0145 0.6188 -0.0115 0.98 0.1771 0.1436

MI-NNGP2 MI 3.9 0.0089 0.7289 0.0126 0.99 0.1470 0.1247
MI-NNGP2-BS MI 9.5 0.0093 0.7006 -0.0014 0.98 0.1556 0.1258

Complete data - - - - 0.0156 0.96 0.1119 0.1041
Complete case - - - - 0.3856 0.70 0.2846 0.2937
ColMean Imp SI - 0.1255 0.3278 0.4643 0.71 0.3000 0.2362

Table 11: Gaussian and binary data with n = 200 and p = 1002 under MAR. Approximately
40% features and 88% cases contain missing values. Linear RR and MICE are
not included due to running out of RAM. Detailed simulation setup information
is in appendix.

decreasing order of correlation. Denote the selected features by X = (x1, . . . ,x10000). In
the analysis model, the first three features are chosen as predictors and our goal is to fit the
regression model E[y|x1,x2,x3] = β0 + β1x1 + β2x2 + β3x3 and analyze the first coefficient
β1.

There are no missing values in the original data, so we artificially introduce some missing
values, which are separately created in two groups: {x1, . . . ,x1000} and {x1001, . . . ,x2000}
by the following logit models for the corresponding missing indicator R1 and R2. If the
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Models Style Time(s) Imp MSE Imp accu Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 24.7 0.0432 0.3328 -0.2771 0.64 0.2154 0.2263
GAIN SI 95.3 0.8517 0.3328 0.9779 0.12 0.1605 0.7701

MIWAE SI 57.7 0.1258 0.6706 0.6665 0.15 0.1604 0.2274
not-MIWAE SI 42.7 1.9305 0.3317 0.6158 0.06 0.0851 0.1876

Sinkhorn MI 43.6 0.1080 0.3273 0.4175 0.72 0.3033 0.2882
MI-NNGP1 MI 3.6 0.0117 0.6477 -0.0137 0.94 0.1492 0.1514

MI-NNGP1-BS MI 3.7 0.0146 0.6201 -0.0154 0.98 0.1785 0.1423
MI-NNGP2 MI 4.2 0.0089 0.7277 0.0125 0.99 0.1469 0.1238

MI-NNGP2-BS MI 10.0 0.0093 0.6971 -0.0044 0.98 0.1558 0.1243

Complete data - - - - 0.0156 0.96 0.1119 0.1041
Complete case - - - 0.3909 0.70 - 0.2854 0.3001
ColMean Imp SI - 0.1259 0.3273 0.4620 0.71 0.2996 0.2367

Table 12: Gaussian and binary data with n = 200 and p = 1002 under MNAR. Approx-
imately 40% features and 88% cases contain missing values. Here Linear RR
and MICE are not included due to running out of RAM.

missing mechanism is MAR:

logit(P(R1 = 1)) = −1− 3

100

2100∑
j=2001

xj + 3y

logit(P(R2 = 1)) = −1− 3

100

2300∑
j=2201

xj + 2y

If the missing mechanism is MNAR:

logit(P(R1 = 1)) = −1− 3

5

1005∑
j=1001

xj + 3y

logit(P(R2 = 1)]) = −1− 3

5

5∑
j=1

xj + 2y

We repeat the above procedure for 100 times to generate 100 incomplete datasets. Each
incomplete dataset only differs in location of missing values and therefore they are not Monte
Carlo datasets (which is the reason that we do not include the SD(β̂1) in this experiment).
We impute the incomplete datasets and present the summarized results.



Short Title

Models Style Time(s) Imp MSE β̂1 SE(β̂1)

SoftImpute SI 991.5 0.0613 0.0212 0.0114
Sinkhorn MI 709.8 0.0866 0.0216 0.0123

MI-NNGP1 MI 7.4 0.0644 0.0155 0.0101
MI-NNGP1-BS MI 7.7 0.0688 0.0162 0.0112

MI-NNGP2 MI 11.6 0.0622 0.0145 0.0103
MI-NNGP2-BS MI 18.5 0.0609 0.0123 0.0125

Complete data - - - 0.0160 0.0085
Complete case - - - 0.0202 0.0172
ColMean Imp SI - 0.1685 0.01776 0.0130

Table 13: Real data experiment with n = 649 and p = 10001 under MNAR. Approximately
20% features and 74% cases contain missing values. Linear RR, MICE, not-
MIWAE and GAIN are not included due to running out of RAM.
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