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Abstract

Missing data are ubiquitous in real world applications and, if not adequately handled, may
lead to the loss of information and biased findings in downstream analysis. Particularly,
high-dimensional incomplete data with a moderate sample size, such as analysis of multi-
omics data, present daunting challenges. Imputation is arguably the most popular method
for handling missing data, though existing imputation methods have a number of limita-
tions. Single imputation methods such as matrix completion methods do not adequately
account for imputation uncertainty and hence would yield improper statistical inference. In
contrast, multiple imputation (MI) methods allow for proper inference but existing methods
do not perform well in high-dimensional settings. Our work aims to address these signifi-
cant methodological gaps, leveraging recent advances in neural network Gaussian process
(NNGP) from a Bayesian viewpoint. We propose two NNGP-based MI methods, namely
MI-NNGP, that can apply multiple imputations for missing values from a joint (posterior
predictive) distribution. The MI-NNGP methods are shown to significantly outperform
existing state-of-the-art methods on synthetic and real datasets, in terms of imputation
error, statistical inference, robustness to missing rates, and computation costs, under three
missing data mechanisms, MCAR, MAR, and MNAR.

Keywords: Missing Data, Multiple imputation, Neural Network Gaussian Processes, Sta-
tistical Inference

1. Introduction

Missing data are frequently encountered and present significant analytical challenges in
many research areas. Inadequate handling of missing data can lead to biased results in
subsequent data analysis. For example, complete case analysis that uses only the subset of
observations with all variables observed is known to yield biased results and/or loss of infor-
mation as it does not utilize the information contained in incomplete cases Little and Rubin
(2019). Missing value imputation has become increasingly popular for handling incomplete
data. Broadly speaking, imputation methods can be categorized as single imputation (SI)
or multiple imputation (MI). SI methods impute missing values for a single time which fails
to adequately account for imputation uncertainty; in contrast, MI methods impute missing
values multiple times by sampling from some (predictive) distribution to account for impu-
tation uncertainty. MI offers another significant advantage over SI in that it can conduct
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hypothesis testing or construct confidence intervals using multiply imputed datasets via
Rubin’s rule Little and Rubin (2019). Of note, most popular imputation methods in the
machine learning literature, such as matrix completion methods, are SI and hence expected
to yield invalid statistical inference as shown in our numerical experiments.

When conducting imputation, it is important to know the mechanisms under which miss-
ing values originate, namely, missing completely at random (MCAR), missing at random
(MAR), or missing not at random (MNAR) Little and Rubin (2019). To be specific, MCAR
means that the missingness does not depend on observed or missing data. While most im-
putation methods are expected to work reasonably well under MCAR, this assumption is
typically too strong and unrealistic in practice, particularly for analysis of incomplete data
from biomedical studies. MAR and MNAR are more plausible than MCAR. Under MAR,
the missingness depends on only the observed values. Under MNAR, the missingness may
depend on both observed and missing values, and it is well-known that additional structural
assumptions need to be made in order to develop valid imputation methods under MNAR.

Existing state-of-the-art imputation methods can be categorized into discriminative
methods and generative methods. The former includes, but not limited to, MICE Van Bu-
uren (2007); Deng et al. (2016); Zhao and Long (2016), MissForest Stekhoven and Bühlmann
(2012), KNN Liao et al. (2014) and matrix completion Mazumder et al. (2010); Hastie et al.
(2015); the latter includes joint modeling Schafer (1997); Garćıa-Laencina et al. (2010), au-
toencoders Ivanov et al. (2018); Mattei and Frellsen (2019), and generative adversarial
networks Dai et al. (2021); Yoon et al. (2018); Lee et al. (2019). However, the existing
imputation methods have several drawbacks. MICE imputes missing values through an it-
erative approach based on conditional distributions and requires to repeating the imputing
procedures multiple times till convergence. MICE Van Buuren (2007), known to be com-
putationally expensive, tends to yield poor performance and may become computationally
infeasible for high-dimensional data with high missing rates. Joint modeling (JM), an-
other classical imputation method, relies on strong assumptions for the data distribution.
Its performance also deteriorates rapidly as the feature dimension increases. SoftImpute
Mazumder et al. (2010), a matrix completion method, conducts single imputation based on
the low-rank assumption, leading to underestimating the uncertainty of imputed values. In
recent years, many deep learning-based imputation methods have been proposed. As the
most representative one, GAIN Yoon et al. (2018) can handle mixed data types. However,
the appliance for GAIN in practice is limited as it is valid only under MCAR. Most recently,
importance-weighted autoencoder based method MIWAE Mattei and Frellsen (2019) and
not-MIWAE Ipsen et al. (2020) can deal with MAR and MNAR mechanism, respectively.
Plus, optimal transport-based methods Muzellec et al. (2020) including Sinkhorn and Lin-
ear RR have been shown to outperform other state-of-the-art imputation methods under
MCAR, MAR and MNAR. However, above methods are shown to exhibit appreciable bias
in our high-dimensional data experiments. Moreover, Linear RR imputes missing values it-
eratively like MICE, hence is inherently not suitable for high-dimensional incomplete data.

To address the limitations of existing imputation methods, we leverage recent devel-
opments in neural network Gaussian process (NNGP) theory Williams (1997); Lee et al.
(2017); Novak et al. (2018, 2020) to develop a new robust multiple imputation approach.
The NNGP theory can provide explicit posterior predictive distribution for missing values
and allow for Bayesian inference without actually training the neural networks, leading to
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substantial savings in training time. Here we take L-layer fully connected neural networks
as an example. Suppose a neural network has layer width nl(for hidden layer l), activation

function φ and centered normally distributed weights and biases with variance σ2
w

nl and σ2b
at layer l. When each hidden layer width goes to infinity, each output neuron is a Gaussian
process GP(0,KL) where KL is deterministically computed from L, φ, σw, σb. Details can
be found in appendix.

Our contribution: Our proposed deep learning imputation method, Multiple Impu-
tation through Neural Network Gaussian Process (MI-NNGP), is designed for the high-
dimensional data setting in which the number of variables/features can be large whereas
the sample size is moderate. This setting is particularly relevant to analysis of incom-
plete high-dimensional -omics data in biomedical research where the number of subjects
is typically not large. MI-NNGP is the first deep learning based method that yields sat-
isfactory performance in statistical inference for high-dimensional incomplete data under
MAR. Empirically speaking, MI-NNGP demonstrates strong performance on imputation
error, statistical inference, computational speed, scalability to high dimensional data, and
robustness to high missing rate. 1 summarizes the performance of MI-NNGP in comparison
with several existing state-of-the-art imputation methods.

Models MI Imp Error Inference Scalability

MI-NNGP 3 3 3 3

Sinkhorn 3 ? ? 7

Linear RR 3 ? ? 7

MICE 3 3 ? 7

SoftImpute 7 3 7 ?

MIWAE 3 3 ? ?

GAIN 3 7 7 7

Table 1: Summary of imputation methods. Imp Error refers to imputation error. Question
mark indicates that the performance depends on specific settings.

2. Problem Setup

To fix ideas, we consider the multivariate K-pattern missing data, meaning that observa-
tions can be categorized into K patterns according to which features have missing values.
Within each pattern, a feature is either observed in all cases or missing in all cases as visual-
ized in Figure 1 which provides an illustration of 4-pattern missing data. As a motivation,
multivariate K-pattern missing data are often encountered in medical research. For ex-
ample, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) collected high-dimensional
multi-omics data and each -omics modality is measured in only a subset of total cases,
leading to the multivariate K-pattern missing data. In addition, a general missing data
pattern, after some rearranging of rows, can be converted to K-pattern missing data.

Suppose we have a random sample of n observations with p variables. Denote the n× p
observed data matrix by X, which may include continuous and discrete values and where
Xi,j is the value of j-th variable/feature for i-th case/observation. Let Xi,: and X:,j denote
the i-th row vector and j-th column vector, respectively. Since some elements of X are
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missing, the n observations/cases can be grouped into K patterns (i.e. K submatrices)
XPk,: for k ∈ [K]; see the illustrative example in Figure 1. Here Pk is the index set for the
rows in X which belong to the k-th pattern. Without loss of generality, we let XP1,: denote
the set of complete cases for which all features are observed. We define XP−k,: = X\XPk,:

as the complement data matrix for XPk,:. We denote by obs(k) and mis(k) the index sets
for the columns in XPk,: that are fully observed and fully missing, respectively.

3. Multiple Imputation via Neural Network Gaussian Process

In this section, we develop two novel MI methods for multivariate K-pattern missing data
based on NNGP. Specifically, we first propose MI-NNGP1 which imputes each missing pat-
tern by exploiting information contained in the set of complete cases (XP1,:). We then
propose MI-NNGP2, which imputes each missing pattern iteratively by utilizing the infor-
mation contained in all observed data. We further improve both methods by incorporating
a bootstrap step.

3.1. Imputing Missing Data from an Alternative Viewpoint

MICE is a quite flexible MI method as it learns a separate imputation model for each
variable, in an one by one manner. However, MICE is extremely slow in high dimensional
setting and incapable of learning the features jointly (hence underestimate the interactions).
To overcome these drawbacks, we leverage the NNGP to efficiently impute all missing
features of one observation simultaneously. To this end, we propose a ‘transpose’ trick
when using NNGP. We regard each column/feature of X, instead of each row/case of X, as
a ‘sample’, so that we draw all features jointly instead of drawing all cases jointly as in the
conventional NNGP. As demonstrated in our experiments, this appealing property makes
our MI-NNGP methods scalable to high-dimensional data where p can be very large.

As a building block, we first consider imputing the k-th pattern of missing data (k =
1, . . . ,K). We define a training set {(XIS,t,XPk,t)}t∈obs(k) and a test set {(XIS,t,XPk,t)}t∈mis(k),
where XIS,t is the input data point and XPk,t is the output target. Here the index set ‘IS’
represents the cases included as input, which depends on the specific algorithm used. For
example, MI-NNGP1 uses P1 as the IS set; see details in section 3.2. Of note, our goal is to

Figure 1: Multivariate 4-pattern missing data. Orange squares represent observed data and
gray squares represent missing data.
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predict the test set label {XPk,t}t∈mis(k) which is missing. Denote the size of the training

and test set by |obs(k)| and |mis(k)|, respectively.
Given the training and the test sets, we specify a neural network fk : R|IS| → R|Pk| for the

k-th pattern. Therefore, each case in the k-th pattern (say the i-th case, i ∈ Pk) corresponds
to an output neuron (say the j-th output component): f jk (XIS,t) = Xi,t for t ∈ [p], if we
assume all observed values are noise-free. By considering infinitely-wide layers, each output
component/neuron can be regarded as an independent Gaussian process GP(0,K) in terms
of its input. Here the covariance functionK is uniquely determined by two factors, the neural
network architecture (including the activation function) and the initialization variance of
weight and bias Lee et al. (2017). Hence, for the j-th output component of the network,
f jk , we know f

j
k (XIS,1)

...

f jk (XIS,p)

 ∼ N (0,Σ) (1)

where Σ ∈ Rp×p whose (u, v)-th element is K (XIS,u,XIS,v). Hence, we get:[
X>i,obs(k)
X>i,mis(k)

]
∼ N

(
0,

[
Σ11 Σ12

Σ21 Σ22

])
(2)

where the block structure corresponds to the division between the training and the test
sets. Specifically, Σ11 = K

(
XIS,obs(k),XIS,obs(k)

)
, Σ22 = K

(
XIS,mis(k),XIS,mis(k)

)
, Σ12 =

Σ>21 = K
(
XIS,obs(k),XIS,mis(k)

)
, where Σ11 ∈ R|obs(k)|×|obs(k)| is composed of K (XIS,u,XIS,v)

for u, v ∈ obs(k). Then, (2) indicates that the missing values Xi,mis(k), conditioned on the
known values (either observed or previously imputed), follow a joint posterior distribution,

X>i,mis(k)

∣∣∣X>i,obs(k),XIS,obs(k),XIS,mis(k) ∼

N
(

Σ21Σ
−1
11 X

>
i,obs(k),Σ22 − Σ21Σ

−1
11 Σ12

) (3)

Equation (3) allows us to multiply impute Xi,mis(k). Here we emphasize that NNGP is not
a linear method. The imputed values are drawn from a Gaussian distribution.

Note that inverting Σ11 is a common computational challenge. The time complexity is
cubic in p. We use the efficient implementation in neural tangents Novak et al. (2020) to
solve this problem. For the setting in our paper, when p ∼ 10000, inverting Σ11 just cost
several seconds with GPU P100 and 16G memory.

3.2. MI-NNGP1 — Direct imputation

Our first algorithm is MI-NNGP1 that uses only the complete cases to impute all missing
values. More precisely, to impute the missing values in the k-th pattern, we select P1 as
our IS set. Hence, for each k, we essentially divide all features in the first and the k-th
pattern into the training set {(XP1,t,XPk,t)}t∈obs(k) and the test set {(XP1,t,XPk,t)}t∈mis(k)

as (input,target) pairs. Following the steps described in Section 3.1, the covariance matrices
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Figure 2: MI-NNGP1 applied to the four-pattern missing data in Figure 1

are

Σ11 = K(XP1,obs(k),XP1,obs(k)),

Σ22 = K(XP1,mis(k),XP1,mis(k)),

Σ12 = Σ>21 = K(XP1,obs(k),XP1,mis(k)).

We then draw the imputed values multiple times from the posterior distribution in (3) for
all i ∈ Pk. The whole process is summarized in Algorithm 1 and Figure 2. We use the same
neural network architecture and the initialization variance of weight and bias for imputing
each pattern. Note that the kernel function K does not depends on the length of the input
or that of the output, so the same K is shared across all patterns. The time complexity of
MI-NNGP1 is Kp3 for imputing a K-pattern missing data.

3.3. MI-NNGP2 — Iterative imputation

In contrast to MI-NNGP1, which imputes each incomplete case basing only on the complete
cases, we here propose MI-NNGP2 to impute through an iterative approach that leverages
the information contained in incomplete cases. As such, MI-NNGP2 works with a small
number of complete cases or even when there is no complete case.

MI-NNGP2 requires an initial imputation X̂ for the entire data. This can be done by
either MI-NNGP1 (if complete cases exist), column mean imputation, or another impu-
tation method. Starting from the initial imputation X̂, MI-NNGP2 imputes the missing
part of each pattern and updates X̂ iteratively: e.g. the imputed values of k-th pat-
tern is used to impute the missing values of the (k + 1)-th pattern. To be more precise,
when imputing the k-th pattern, we select P−k as the IS set. Hence, we have the training

set
{(

X̂P−k,t, X̂Pk,t

)}
t∈obs(k)

and test set
{(

X̂P−k,t, X̂Pk,t

)}
t∈mis(k)

of (input,target) pairs.
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Then we calculate the covariance matrix

Σ11 = K(X̂P−k,obs(k), X̂P−k,obs(k)),

Σ22 = K(X̂P−k,mis(k), X̂P−k,mis(k)),

Σ12 = Σ>21 = K(X̂P−k,obs(k), X̂P−k,mis(k))

and impute the k-th pattern in X̂ by drawing X̂i,mis(k) form the posterior distribution (3)
for each i ∈ Pk. This method is described by Algorithm 2. Similar to MI-NNGP1, K is
shared across all patterns in MI-NNGP2. To conduct multiple imputation, we do not record
the imputed values in the first N cycles. After this burn-in period, we choose X̂ at every
T -th iteration.

Algorithm 1 MI-NNGP1: direct imputation

Input: Incomplete matrix X , imputation times M , neural network architecture, initial-
ization variance of weight and bias
Output: M Imputed matrix

1: Calculate the corresponding kernel function K of the network
2: Create M copies of X, denoted as X̂m, m ∈M .
3: for k ∈ {2, . . . ,K} do
4: Calculate the matrix Σ11,Σ21,Σ12 and Σ22.
5: for i ∈ Pk do

6: Draw X̂i,mis(k) for M times from N
(

Σ21Σ
−1
11 X

>
i,obs(k),Σ22 − Σ21Σ

−1
11 Σ12

)
7: Update X̂m with one X̂i,mis(k) for each m ∈ [M ].
8: end for
9: end for

10: Output X̂m, m ∈ [M ].

The time complexity of MI-NNGP2 is (N + MT )Kp3 where M represents imputation
times and usually selected as 10. Here N,M, T are bounded by constant and much smaller
than K and p. In our experiment, N = 2 and T = 1 leads to excellent performance. It is
important to note that although MI-NNGP2 imputes missing values iteratively, the time
cost is expected to increase only modestly compared to MI-NNGP1.

3.4. MI-NNGP with bootstrapping

In the missing data literature, a bootstrap step has been incorporated in nonparametric
imputation methods to better account for imputation uncertainty and improve statistical
inference. The MI-NNGP methods can also be enhanced by including a bootstrap step.
We illustrate this idea for MI-NNGP1. For each incomplete case, MI-NNGP1 essentially
draws multiple imputations from the same posterior distribution. However, this may un-
derestimate the uncertainty of imputed values. To overcome this potential drawback, we

construct bootstrapping sets of P1, denoted as P
(m)
1 for m ∈ [M ]. Each bootstrapping set

P
(m)
1 serves as the IS set for the m-th imputation as visualized in Figure 3. We remark that

using the bootstrapping adds negligible additional cost but usually improves the statistical
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Algorithm 2 MI-NNGP2: iterative imputation

Input: Initial imputation X̂, imputation times M , burn-in period N , sampling interval T ,
neural network architecture, initialization variance of weight and bias
Output: M Imputed matrix

1: Calculate the corresponding kernel function K of the network.
2: for l ∈ {1, . . . , N +MT} do
3: for k ∈ {2, . . . ,K} do
4: Calculate the matrix Σ11,Σ21,Σ12 and Σ22.
5: for i ∈ Pk do

6: Draw X̂i,mis(k) from N
(

Σ21Σ
−1
11 X̂

>
i,obs(k),Σ22 − Σ21Σ

−1
11 Σ12

)
7: Update X̂ with X̂i,mis(k)

8: end for
9: end for

10: if l > N and T
∣∣(l −N) then

11: output X̂
12: end if
13: end for

Figure 3: MI-NNGP1 with bootstrapping applied to the four-pattern missing data in Fig-
ure 1

coverage. Similarly, a bootstrap step can also be combined with MI-NNGP2. We can first
use MI-NNGP1 with bootstrapping to generate multiple initial imputations and then run
MI-NNGP2 multiple times from these initial imputations, where we choose M = 1 in each
track of MI-NNGP2.
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4. Experiments

We evaluate the performance of the MI-NNGP methods through extensive synthetic and
real data experiments. The details about the experiment setup are provided in Appendix B
and C. A brief outline of the synthetic data experiments is as follows. In each synthetic data
experiment, we generate the data matrix from a pre-specified data model and then generate
missing values under MCAR, MAR or MNAR. We apply an imputation method to each
incomplete dataset; SI methods yield one imputed dataset and MI methods yield multiple
imputed datasets. To assess the statistical inference performance, each imputed dataset is
used to fit a regression model to obtain regression coefficient estimates and Rubin’s rule
Little and Rubin (2019) is used to obtain the final regression coefficient estimates β̂, their
standard errors SE(β̂), and 95% confidence intervals.

4.1. Imputation Methods Compared

Benchmarks. (i) Complete data analysis assumes there is no missingness and directly
fit a regression on the whole dataset. (ii) Complete case analysis does not incorporate
imputation and fit a regression using only the complete cases. (iii) Column mean imputa-
tion (ColMean Imp) is feature-wise mean imputation. Here the complete data analysis
serves as a golden standard, representing the best result an imputation method can possibly
achieve. The complete case analysis and column mean imputation, two naive methods, are
used to benchmark potential bias and loss of information (as represented by larger SE/SD)
under MAR and MNAR.

State-of-the-art. (iv) MICE (multiple imputation through chained equations) Van Bu-
uren (2007) is an popular and flexible multiple imputation method and has good empirical
results and requires little tuning, but it fails to scale to high dimensional settings. (v)
GAIN Yoon et al. (2018) is a generative neural network (GAN)Goodfellow et al. (2014)
based imputation method. (vi) SoftImpute Mazumder et al. (2010) is a matrix completion
method and uses iterative soft-thresholded SVD to conduct missing data imputation. (vii)
Sinkhorn Muzellec et al. (2020) is a direct non-parametric imputation method which lever-
ages optimal transport distance. (viii) Linear RR Muzellec et al. (2020) is a Round-Robin
Sinkhorn Imputation. Similar to MICE, Linear RR iteratively impute missing features
using other features in a cyclical manner. (ix) MIWAE Mattei and Frellsen (2019) is a
importance weighted autoencoder Burda et al. (2015) (IWAE) based imputation method.

Our methods. (x) MI-NNGP1 uses the complete cases to conduct direct imputation
as detailed in Algorithm 1. (xi) MI-NNGP2 corresponds to Algorithm 2 with burn-in
period N = 10 and sampling interval T = 1. (xii) MI-NNGP1-BS is MI-NNGP1 with
an added bootstrap step. (xiii) MI-NNGP2-BS runs MI-NNGP2 for multiple times with
different initial imputations from MI-NNGP1-BS. In each parallel run of MI-NNGP2, we
choose N = 2 and M = 1.

4.2. Performance Metrics

All performance metrics are averaged over 100 Monte Carlo (MC) datasets or repeats unless
noted otherwise. To evaluate imputation accuracy and computational costs, we report
the imputation mean squared error (Imp MSE) and the computing time in seconds per
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imputation (Time(s)). To evaluate statistical inference performance, we report bias of β̂1
denoted by Bias(β̂1), standard error of β̂1 denoted by SE(β̂1), and coverage rate of the 95%
confidence interval for β̂1 denoted by CR(β̂1), where β̂1 is one of the regression coefficients
in the regression model fitted using imputed datasets. Some remarks are in order. A
CR(β̂1) that is well below the nominal level of 95% would lead to inflated false positives, an
important factor contributing to lack of reproducibility in research. To benchmark SE(β̂1),
we also report the standard deviation of β̂1 across 100 MC datasets denoted by SD(β̂1),
noting that a well-behaved SE(β̂1) should be close to SD(β̂1). In addition, while we know
the true value of β1 and can report its bias in the synthetic data experiments, we do not
know the true value of β1 and cannot report its bias in the real data experiment.

4.3. Synthetic data

The synthetic data experiments are conducted for low and high data dimensions, varying
missing rates, and continuous and discrete data. In this section, we summarize the results
from high dimensional settings (i.e. p > n) under MAR. Additional simulation results are
included in appendix.

Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 15.1 0.0200 -0.0913 0.78 0.1195 0.1624
GAIN SI 39.0 0.8685 0.6257 0.18 0.1463 0.5424

MIWAE SI 46.3 0.0502 0.0731 0.90 0.1306 0.1379
Linear RR SI 3134.7 0.0661 0.1486 1.00 0.1782 0.1011

MICE MI 37.6 0.0234 -0.0061 0.93 0.1167 0.1213
Sinkhorn MI 31.2 0.0757 0.0205 0.96 0.1864 0.1636

MI-NNGP1 MI 4.9 0.0116 0.0077 0.92 0.1147 0.1223
MI-NNGP1-BS MI 3.4 0.0149 0.0156 0.96 0.1297 0.1182

MI-NNGP2 MI 5.7 0.0086 0.0012 0.96 0.1179 0.1170
MI-NNGP2-BS MI 13.9 0.0094 0.0010 0.95 0.1173 0.1206

Complete data - - - -0.0027 0.90 0.1098 0.1141
Complete case - - - 0.2481 0.88 0.3400 0.3309
ColMean Imp SI - 0.1414 0.3498 0.72 0.2212 0.1725

Table 2: Gaussian data with n = 200 and p = 251 under MAR. Approximately 40% fea-
tures and 90% cases contain missing values. Detailed simulation setup information
is in appendix.

Table 2 presents the results for Gaussian data with n = 200 and p = 251 under MAR.
The MI-NNGP methods yield smallest imputation error (Imp MSE) compared to the other
methods. In terms of statistical inference, the MI-NNGP methods, MICE and Sinkhorn, all
of which are MI methods, lead to small to negligible bias in β̂1. The CR for MI-NNGP1-BS,
MI-NNGP2, MI-NNGP2-BS, and Sinkhorn is close to the nominal level of 95% and their
SE(β̂1) is close to SD(β̂1), suggesting that Rubin’s rule works well for these MI methods.
Of these methods, our MI-NNGP methods and MICE outperform Sinkhorn in terms of
information recovery, as evidenced by their smaller SE compared to Sinkhorn. SoftImpute,
Linear RR, MIWAE and GAIN, four SI methods, yield poor performance in statistical
inference with considerable bias for β̂1 and CR away from the nominal level of 95%. In
addition, GAIN yields substantially higher imputation error than the other methods. In
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Models Style Time(s) Imp MSE Bias(β̂1) CR(β̂1) SE(β̂1) SD(β̂1)

SoftImpute SI 30.1 0.0442 -0.2862 0.50 0.1583 0.2019
GAIN SI 111.1 0.7383 0.6897 0.18 0.1697 0.5693

MIWAE SI 52.5 0.1228 0.5885 0.15 0.1793 0.2162
Sinkhorn MI 39.3 0.1031 0.6647 0.26 0.2643 0.2195

MI-NNGP1 MI 4.9 0.0119 0.0351 0.89 0.1194 0.1422
MI-NNGP1-BS MI 4.9 0.0168 0.0383 0.94 0.1424 0.1416

MI-NNGP2 MI 5.8 0.0086 0.0487 0.90 0.1212 0.1343
MI-NNGP2-BS MI 13.9 0.0092 0.0347 0.93 0.1257 0.1289

Complete data - - - 0.0350 0.94 0.1122 0.1173
Complete case - - - 0.2804 0.76 0.3466 0.4211
ColMean Imp SI - 0.1130 0.7024 0.13 0.2574 0.1957

Table 3: Gaussian data with n = 200 and p = 1001 under MAR. Approximately 40%
features and 90% cases contain missing values. Linear RR and MICE are not
included due to running out of RAM. Detailed simulation setup information is in
appendix.

terms of computation, our MI-NNGP methods are the least expensive, whereas Linear RR
is the most expensive.

Table 3 presents the results for Gaussian data with n = 200 and p = 1001 under
MAR. As p increases to 1001 from 251 in Table 2, the performance of Sinkhorn deteriorates
significantly; Linear RR and MICE run out of RAM; GAIN’s performance remains poor. At
the same time, our MI-NNGP methods continue to yield the most satisfactory performance.
In particular, MI-NNGPs have smallest imputation error in this setting. In addition, CR(β̂1)
for MI-NNGP with a bootstrap step is closer to the nominal level than MI-NNGP without a
bootstrap step, suggesting the bootstrap step indeed improves quantification of uncertainty
of imputed values. Also, the computational time for MI-NNGP methods does not increase
much as p increases from 251 to 1001, demonstrating that they are scalable to ultra high-
dimensional p–a very appealing property. This is because MI-NNGP imputes the set of
features with missing values in each pattern jointly, whereas other MI methods such as
MICE impute each feature iteratively.
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Figure 4: Left: Imputation MSE for varying missing rates. Middle: Bias of β̂1 for varying
missing rates. Right: Empirical distribution of β̂1 from 200 MC datasets when
the missing rate is 40%.

Additional results in appendix include synthetic data experiments for small p under
MAR (Table 5), for MNAR (Table 7, Table 8, and Table 9), for mix of Gaussian continuous
and discrete data (Table 11, Table 12), and for non-Gaussian continuous data (Table 6
and Table 10). These and other unreported results for MCAR consistently show that
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Models Style Time(s) Imp MSE β̂1 SE(β̂1)

SoftImpute SI 1008.6 0.0591 0.0213 0.0119
Sinkhorn MI 843.3 0.0797 0.0223 0.0128

MI-NNGP1 MI 7.1 0.0637 0.0161 0.0104
MI-NNGP1-BS MI 7.8 0.0685 0.0153 0.0112

MI-NNGP2 MI 11.8 0.0617 0.0171 0.0106
MI-NNGP2-BS MI 21.3 0.0640 0.0166 0.0110

Complete data - - - 0.0160 0.0085
Complete case - - - 0.0221 0.0185
ColMean Imp SI - 0.1534 0.0188 0.0136

Table 4: Real data experiment with n = 649 and p = 10001 under MAR. Approximately
20% features and 76% cases contain missing values. Linear RR, MICE, MIWAE
and GAIN are not included due to running out of RAM. Detailed experiment setup
information is in appendix.

the MI-NNGP methods outperform the competing state-of-the-art imputation methods,
particularly in high-dimensional settings. Of the four MI-NNGP methods, MI-NNGP2-BS
offers the best or close to the best performance in all experiments.

To further investigate the impact of varying missing rates on the performance of MI-
NNGP2-BS, Figure 4 presents the results from additional experiments under MAR for
n = 200 and p = 1001 in which Sinkhorn and SoftImpute, two closest competitors based
on the prior experiments, are also included. As shown in Figure 4, MI-NNGP2-BS always
yields the best performance in terms of imputation error and bias of β̂1 and is more robust
to high missing rates.

4.4. ADNI data

We evaluate the performance of MI-NNGPs using a publicly available, de-identified large-
scale dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), containing both
image data and gene expression data. This dataset has over 19,000 features and a response
variable (y), VBM right hippocampal volume, for 649 patients. The details of the real data
experiment are included in appendix. Briefly, we select 10000 centered features and generate
missing values under MAR or MNAR. After imputation, we fit a linear regression for y on
three features that have highest correlation with response using imputed datasets. Table 4
presents the results under MAR for estimating β1, one of the regression coefficients in the
linear regression model, as well as the computational time. Again, since we do not know
the true value of β1, we cannot report its bias and instead we use β̂1 from the complete
data analysis as a gold standard. The results in Table 4 show that β̂1 from the MI-NNGP
methods is considerably closer to that from the complete data analysis than the other
imputation methods, demonstrating their superior performance. In addition, SE(β̂1 ) for
MI-NNGP methods is fairly close to that for the complete data analysis and much smaller
than that from the complete case analysis, suggesting that our imputation methods results
in very limited information loss. In terms of computational costs, SoftImpute and Sinkhorn
are much more expensive than MI-NNGP, whereas Linear RR, MICE, MIWAE and GAIN
run out of memory. Additional real data experiment results in appendix under MNAR also
demonstrate the superiority of our MI-NNGP methods over the existing methods.
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5. Discussion

In this work, we develop powerful NNGP-based multiple imputation methods for high di-
mensional incomplete data with large p and moderate n that are also robust to high missing
rates. Our experiments demonstrate that the MI-NNGP methods outperform the current
state-of-the-art methods in Table 1 under MCAR, MAR and MNAR. One limitation of the
MI-NNGP is that it does not scale well when p becomes extremely large. To overcome
this, we can take advantage of recent developments on efficient algorithms for scalable GP
computation Huang et al. (2015); Liu et al. (2020). Instead of calculating the GP, we can ap-
proximate the GP and keep a balance between performance and computational complexity.
This is our future research interest.
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