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Abstract

Despite their theoretical appealingness, Bayesian neural networks (BNNs) are left behind
in real-world adoption, mainly due to persistent concerns on their scalability, accessibil-
ity, and reliability. In this work, we develop the BayesAdapter framework to relieve these
concerns. In particular, we propose to adapt pre-trained deterministic NNs to be varia-
tional BNNs via cost-effective Bayesian fine-tuning. Technically, we develop a modularized
implementation for the learning of variational BNNs, and refurbish the generally appli-
cable exemplar reparameterization trick through exemplar parallelization to efficiently re-
duce the gradient variance in stochastic variational inference. Based on the the lightweight
Bayesian learning paradigm, we conduct extensive experiments on a variety of benchmarks,
and show that our method can consistently induce posteriors with higher quality than
competitive baselines, yet significantly reducing training overheads. Code is available at
https://github.com/thudzj/ScalableBDL.
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1. Introduction

Much effort has been devoted to developing expressive Bayesian neural networks (BNNs)
to make accurate and reliable decisions (MacKay, 1992; Neal, 1995; Graves, 2011; Blundell
et al., 2015). The principled uncertainty quantification capacity of BNNs is critical for
realistic decision-making, finding applications in scenarios ranging from model-based rein-
forcement learning (Depeweg et al., 2016), active learning (Hernández-Lobato and Adams,
2015) to healthcare (Leibig et al., 2017) and autonomous driving (Kendall and Gal, 2017).
BNNs are also known to be capable of resisting over-fitting and over-confidence.

Nonetheless, BNNs are falling far behind in terms of adoption in real-world applications
compared with deterministic NNs (He et al., 2016a; Vaswani et al., 2017), due to various
issues. For example, typical approximate inference methods for BNNs are often difficult to
simultaneously maintain efficacy and scalability (Zhang et al., 2018; Maddox et al., 2019).
Implementing a BNN algorithm requires substantially more expertise than implementing a
deterministic NN program. Moreover, as revealed, BNNs trained from scratch without the
“cold posterior” trick are often systematically worse than their point-estimate counterparts
in terms of predictive performance (Wenzel et al., 2020a); some easy-to-use BNNs (e.g.,
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Figure 1: (Left): BayesAdapter boosts the accuracy of ImageNet classifiers without compromising
model calibration (estimated by expected calibration error (ECE) (Guo et al., 2017)). By contrast,
deterministic fine-tuning only marginally improves the accuracy of pre-trained models yet aggra-
vates over-confidence. RN refers to ResNet (He et al., 2016a) and DN refers to DenseNet (Huang
et al., 2017). (Right): BayesAdapter learns a CIFAR-10 classifier which approaches or outperforms
competing baselines in terms of ECE for CIFAR-10 corruptions (Hendrycks and Dietterich, 2019).
Each box summarizes the ECE across 19 types of skew. We perform Bayesian fine-tuning for only
4 and 12 epochs on ImageNet and CIFAR-10 respectively. More details are deferred to Sec 4.

Monte Carlo dropout) tend to suffer from mode collapse in function space, thus usually
give uncertainty estimates of poor fidelity (Fort et al., 2019).

To mitigate these issues, we develop a pre-training & fine-tuning workflow for learning
variational BNNs given an inherent connection between variational BNNs (Blundell et al.,
2015) and regular deep neural networks (DNNs). The resultant BayesAdapter framework
learns a variational BNN by performing several rounds of Bayesian fine-tuning, starting
from a pre-trained deterministic NN. BayesAdapter is effective and lightweight, and con-
joins the complementary benefits from deterministic training and Bayesian reasoning, e.g.,
performance matching the pre-trained deterministic models, resistance to over-fitting, reli-
able uncertainty estimates, etc. (find evidence in Figure 1).

To improve the usability of BayesAdapter, we provide a modularized implementation
for the stochastic variational inference (SVI) under multiple representative variational dis-
tributions, including mean-field Gaussian and parameter-sharing ensemble. Reducing the
variance of stochastic gradients is crucial for stabilizing and accelerating SVI, while the
pioneering works such as local reparameterization (Kingma et al., 2015) and Flipout (Wen
et al., 2018) can only deal with specific variational distributions, e.g., Gaussians and dis-
tributions whose samples can be reparameterized with symmetric perturbations. To tackle
this issue, we refurbish the widely-criticized exemplar reparameterization (Kingma et al.,
2015) by accelerating the exemplar-wise computations through parallelization, giving rise
to an efficient and general-purpose gradient variance reduction technique.

We conduct extensive experiments to validate the advantages of BayesAdapter over com-
peting baselines, in aspects covering efficiency, predictive performance, and quality of un-
certainty estimates. Desirably, we scale up BayesAdapter to big data (e.g., ImageNet (Deng
et al., 2009)), deep architectures (e.g., ResNets (He et al., 2016a)), and practical scenarios
(e.g., face recognition (Deng et al., 2019)), and observe promising results. We also perform
a series of ablation studies to reveal the characteristics of the proposed approach.
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2. Background

In this section, we motivate BayesAdapter by drawing a connection between variational
BNNs and DNNs trained by maximum a posteriori (MAP) estimation.

Let D = {(x(i), y(i))}ni=1 be a given training set, where x(i) ∈ Rd and y(i) ∈ Y denote
the input data and label, respectively. A DNN model can be fit via MAP estimation:

max
w

1

n

∑
i

[log p(y(i)|x(i);w)] +
1

n
log p(w). (1)

We use w ∈ Rp to denote the high-dimensional model parameters, with p(y|x;w) as the
predictive distribution associated with the model. The prior p(w), when taking the form of
an isotropic Gaussian N (w;0, σ2

0I), reduces to the weight decay regularizer with coefficient
λ = 1/(σ2

0n) in optimization. Nevertheless, deterministic training may easily cause over-
fitting and over-confidence, rendering the learned models of poor reliability (see Figure 1).
Naturally, BNNs come into the picture to address these limitations.

Typically, BNNs learn by inferring the posterior p(w|D) given the prior p(w) and the
likelihood p(D|w). Among the wide spectrum of BNN algorithms (MacKay, 1992; Neal,
1995; Graves, 2011; Blundell et al., 2015; Liu and Wang, 2016; Gal and Ghahramani, 2016),
variational BNNs are particularly promising due to their analogy to ordinary backprop.
Formally, variational BNNs use a θ-parameterized variational distribution q(w|θ) to ap-
proximate p(w|D), by maximizing the evidence lower bound (ELBO) (scaled by 1/n):

max
θ

Eq(w|θ)
[ 1

n

∑
i

log p(y(i)|x(i);w)
]

︸ ︷︷ ︸
Lell

− 1

n
DKL (q(w|θ)∥p(w))︸ ︷︷ ︸

Lc

, (2)

where Lell is the expected log-likelihood and Lc is the complexity loss. By casting posterior
inference into optimization, Eq. (2) makes the training of BNNs resemble that of DNNs.
After training, the variational posterior is leveraged for prediction through marginalization:

p(y|x,D) ≈ Eq(w|θ)p(y|x;w) ≈ 1

S

S∑
s=1

p(y|x;w(s)), (3)

where w(s) ∼ q(w|θ), s = 1, ..., S, with S denoting the number of Monte Carlo (MC)
samples. Eq. (3) is known as posterior predictive, Bayes ensemble, or Bayes model average.

We can simultaneously quantify the epistemic uncertainty with these MC samples. A
principled uncertainty metric is the mutual information between the model parameter and
the prediction (Smith and Gal, 2018), estimated by (H denotes the Shannon entropy):

I(w, y|x,D) ≈ H

(
1

S

S∑
s=1

p(y|x;w(s))

)
− 1

S

S∑
s=1

H
(
p(y|x;w(s))

)
. (4)

However, most of the existing variational BNNs exhibit limitations in scalability and
performance (Osawa et al., 2019; Wenzel et al., 2020a), compared with their determinis-
tic counterparts. This is mainly due to the higher difficulty of learning high-dimensional
distributions from scratch than point estimates.
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Figure 2: BayesAdapter adapts pre-trained DNNs to be variational BNNs and then launches few
rounds of Bayesian fine-tuning. We provide a modularized implementation for Bayesian fine-tuning,
allowing users to learn a variational BNN as if training a DNN under a weight decay regularizer.

Given that MAP converges to a mode of the Bayesian posterior, it might be plausible to
adapt pre-trained deterministic DNNs to be Bayesian economically. Following this hypoth-
esis, we repurpose the converged parameters w∗ of MAP – take w∗ as the initialization of
the parameters of the approximate posterior. Laplace approximation (MacKay, 1992) is a
classic method in this spirit, which assumes a Gaussian approximate posterior, and adapts
w∗ and the local curvature at w∗ as the Gaussian mean and variance respectively. Yet,
Laplace approximation is inflexible and usually computationally prohibitive (only after the
introduction of Gauss-Newton approximation, KFAC approximation, and particularly the
last-layer approximation, the cost of Laplace approximation becomes affordable (Daxberger
et al., 2021)). Alternatively, we develop the more practical Bayesian fine-tuning scheme,
whose core notion is to fine-tune the imperfect approximate posterior by maximizing ELBO.

3. BayesAdapter

We describe BayesAdapter in this section. Figure 2 gives its illustration.
In BayesAdapter, the configuration of the variational distribution q(w|θ) plays a decisive

role. Although a wealth of variationals have emerged for adoption (Louizos and Welling,
2016; Li and Turner, 2017; Wen et al., 2018), on one hand, more complicated ones (Louizos
and Welling, 2017; Shi et al., 2018b) are routinely accompanied by less scalable learning;
on the other hand, the aforementioned hypothesis inspiring Bayesian fine-tuning entails
an explicit alignment between the DNN parameters w∗ and the variational parameters θ.
Thus, we primarily concern the typical mean-field Gaussian distribution as well as a more
powerful one that resembles Deep Ensemble (Lakshminarayanan et al., 2017).

3.1. Mean-field Gaussian (MFG) Variational

Without losing generality, we write the MFG variational as q(w|θ) = N (w;µ,diag(exp(2ψ))),
with µ,ψ ∈ Rp denoting the mean and the logarithm of standard deviation respectively.
In this sense, we can naturally initialize µ with w∗ at the beginning of fine-tuning to ease
approximate inference and to enable the investigation of more qualified posterior modes.
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As in MAP, we also assume an isotropic Gaussian prior p(w) = N (w;0, σ2
0I). Then the

gradients of the complexity loss can be derived analytically:

∇µLc = −λµ, ∇ψLc = −λexp(2ψ) +
1

n
, with λ =

1

σ2
0n

. (5)

Intuitively, the above gradients for the variational parameters correspond to a variant of the
vanilla weight decay in DNNs. Having identified this, we can implement a module similar to
weight decay to implicitly be responsible for the complexity loss, leaving only the expected
log-likelihood Lell required to be explicitly handled. We will elaborate on the details of
solving maxLell after presenting a more expressive variational configuration.

3.2. Parameter-sharing Ensemble (PSE) Variational

Despite simplicity, the MFG variational can be limited in expressiveness for capturing the
multi-modal parameter posterior of over-parameterized neural networks. Empowered by the
observation that Deep Ensemble (Lakshminarayanan et al., 2017) is a compelling Bayesian
marginalization mechanism in deep learning (Wilson and Izmailov, 2020), we intend to
develop a low-cost ensemble-like variational for more practical Bayesian deep learning.

Specifically, we first define the variational as a uniform mixture of C Gaussians: q(w|θ) =
1
C

∑
cN (w;w(c),Σ(c)), where Σ(c) ∈ Rp×p is positive-definite and its elements are indepen-

dent of the dimension p.1 In this sense, the complexity loss boils down to the KL divergence
between a mixture of Gaussians and a Gaussian, which, yet, cannot be calculated ana-
lytically in general. Nevertheless, under the mild assumption that w(c) ∈ Rp is normally
distributed and p is large enough, the KL divergence can be approximated by a weighted
sum of the KL divergences between the Gaussian components and the Gaussian prior (refer
to (Gal and Ghahramani, 2015) for detailed discussion and proof). Namely,

− 1

n
DKL

(
1

C

∑
c

N (w;w(c),Σ(c))
∥∥N (w;0, σ2

0I)

)

≈− 1

2σ2
0nC

C∑
c=1

(
∥w(c)∥22 + trace(Σ(c)) − σ2

0 log |Σ(c)|
)

+ constant.

(6)

Based on the observation that Bayesian model average benefits significantly more from
the exploration of new modes than navigation around a local mode (Wilson and Izmailov,
2020), we assume Σ(c), c = 1, ..., C, to be a constant diagonal matrix σ2I with σ2 approach-
ing 0. Namely, we purely chase multi-mode exploration and leave the joint optimization
of Σ(c) and w(c) for future investigation. Then, q(w|θ) almost amounts to a mixture of
deltas (i.e., an ensemble) and with high probability we can approximate the realisation of w
by a uniform sample from {w(1), ...,w(C)}. Meanwhile, the complexity loss approximately
becomes − λ

2C

∑C
c=1 ∥w(c)∥22 + constant, and we can easily implement a weight decay-like

module to be responsible for its gradient. We comment here that it may be more plausible
to alternatively leverage the rigorous quasi-KL divergence (Hron et al., 2018) for estimating
the divergence between a mixture of deltas and the Gaussian prior, left as a future work.

1. We define the variational as a mixture of Gaussians instead of a mixture of deltas to ensure the variational
is absolutely continuous w.r.t. the prior. This avoids the singularity issue in variational inference (Hron
et al., 2018).
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Simulating an ensemble is far from our ultimate goal due to the required high cost.
To make the variational economical, we explore a valuable insight from recent works (Wen
et al., 2020; Wenzel et al., 2020b) that the parameters of different ensemble components
can be partially shared without undermining effectiveness.

Specifically, abusing w to notate the parameter matrix of size min × mout in a neural
network layer, we generate C components via: w(c) = l(c)r(c) ◦ w̄, c = 1, ..., C, where
w̄ ∈ Rmin×mout are the shared parameters and l(c) ∈ Rmin×r and r(c) ∈ Rr×mout correspond
to r-rank decomposition of some perturbations. ◦ is element-wise multiplication. The shared
parameters w̄ can be initialized as w∗ to ease and speedup Bayesian fine-tuning. When
the rank r is suitably small, the above design can significantly reduce the model size, and
save the training effort. Of note that the previous works (Wen et al., 2020; Wenzel et al.,
2020b) confine r to be 1 to permit the adoption of a specific gradient variance reduction
trick. Conversely, we loosen this constraint by using a more generally applicable variance
reduction tactic, detailed below.

3.3. A Reliable Estimation of the Expected Log-likelihood Lell

Given the high non-linearity of deep NNs and the large volume of data in real-world sce-
narios, we follow the stochastic variational inference (SVI) paradigm for estimating Lell.

Formally, given a mini-batch of data B = {(x(i), y(i))}|B|i=1, we solve

max
θ

L′
ell =

1

|B|

|B|∑
i=1

log p(y(i)|x(i);w), (7)

where w is drawn from the MFG or PSE variational via reparameterization (Kingma and
Welling, 2013). The gradients w.r.t. the variational parameters can be derived automati-
cally with autodiff libraries, thus the training resembles that of regular DNNs.

However, gradients derived by L′
ell might exhibit high variance, caused by sharing the

sampled parameters w across data in the mini-batch (Kingma et al., 2015). Popular tech-
niques for addressing this issue typically assume a restrictive form of variational distri-
bution (Kingma et al., 2015; Wen et al., 2018), struggling to handle structured distribu-
tions like the proposed PSE with > 1 rank. Fortunately, there is a generally applicable
strategy for reducing gradient variance in stochastic variational inference named exemplar
reparametrization (ER), which samples dedicated parameters for every exemplar in the
minibatch for estimating Lell:

L∗
ell =

1

|B|

|B|∑
i=1

log p(y(i)|x(i);w(i)), w(i) i.i.d.∼ q(w|θ), i = 1, ..., |B|. (8)

We can see that the computational cost of ER is identical to that of vanilla reparam-
eterization, but ER was criticized for that the involved exemplar-wise computations could
not be efficiently done within the popular computation libraries in 2015 (Kingma et al.,
2015). With the rapid development of high-performance device-propriety kernel backends
(e.g. cuDNN (Chetlur et al., 2014)) in recent years, we wonder is the criticism still hold?
To this end, we first refurbish ER to fit nowadays ML frameworks. Our key insight here
is to perform multiple exemplar-wise computations in parallel with a single kernel launch,
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def ER_conv(input, theta, stride, padding, groups):
    “””input: [b, i, h, w]; theta: variational parameters”””
    b = input.shape[0]
    # sample a batch of conv filters w: [b, o, i, k, k]
    w = mc_sample(theta, num_mc_samples=b)
    # reshape w to have shape [b*o, i, k, k]
    w = w.flatten(start_dim=0, end_dim=1)
    # reshape input to have shape [1, b*i, h, w]
    input = input.flatten(start_dim=0, end_dim=1).unsqueeze(0)
    # perform b convs in parallel
    output = conv2d(input, w, stride, padding, groups*b)
    # reshape the result to standard format
    return output.view(b, -1, output.shape[2], output.shape[3]) ER VR LR Flipout
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Figure 3: (Left): Implementation of exemplar reparametrization for 2D convolution in
PyTorch (Paszke et al., 2019). (Right): Memory and time cost comparison among exemplar
reparametrization (ER), vanilla reparametrization (VR) (Kingma and Welling, 2013), local
reparametrization (LR) (Kingma et al., 2015), and Flipout (Wen et al., 2018) with mean-
field Gaussian variational used (estimated on ImageNet with ResNet-50 architecture).

e.g., organize exemplar-wise matrix multiplications as a batch matrix multiplication;
organize exemplar-wise convolutions as a group convolution (see Figure 3 (Left)). We
then conduct an empirical study on the computation cost of ER and relevant methods
using MFG variational. Figure 3 (Right) shows the results.

Surprisingly, ER’s time efficiency is comparable with that of local reparameteriza-
tion (Kingma et al., 2015) and Flipout (Wen et al., 2018), while its memory cost is even
lower. This is perhaps because local reparameterization and Flipout both need to calculate
and store one extra mini-batch of feature maps, which are rather large in ImageNet models.
Note that the added memory cost of ER upon vanillar reparameterization comes from the
storage of a mini-batch of temporary parameters. We clarify that the primary merit of ER
over existing methods is the higher generality rather than better learning outcomes. We
hope that ER will benefit the further development of new variational distributions.

3.4. A Plug-and-play Library

We wrap the details of the aforementioned modularized stochastic variational inference and
ER strategy for MFG and PSE in a plug-and-play Python library to free the users from
the difficulties of implementing BayesAdapter.

4. Experiments

We apply BayesAdapter to a diverse set of benchmarks for empirical verification.
Settings. In general, we pre-train DNNs following standard protocols or fetch the pre-

trained checkpoints available online, and then perform Bayesian fine-tuning. We randomly
initialize the newly added variational parameters (e.g., ψ, l(c), r(c)). Unless otherwise stated,
we set r = 1 and C = 20 for PSE and use the ER trick during training. We use S = 20 MC
samples to make prediction and quantify epistemic uncertainty. We conduct experiments
on 8 RTX 2080Ti GPUs. Full details are deferred to Appendix B.

Baselines. We consider extensive baselines including: (1) MAP, which is the fine-
tuning start point, (2) Laplace Approx.: which preforms Laplace approximation with di-
agonal Fisher information matrix, (3) MC Dropout, which is a dropout variant of MAP,
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Table 1: Comparison on test accuracy and negative log-likelihood (NLL) on CIFAR-10 benchmark.
We use underline to emphasize the results obtained given significantly more training effort. For
BayesAdapter, we repeat every experiment for 3 times and report the error bar.

Method Accuracy (%) ↑ NLL ↓
MAP 96.92 0.1312
Laplace Approx. 96.41 0.1204
MC Dropout 96.95 0.1151
SWAG 96.32 0.1122
Deep Ensemble 97.40 0.0869
VBNN (MFG) 96.95 0.0994
VBNN (PSE) 96.88 0.1328
BayesAdapter (MFG) 97.10±0.03 0.1007±0.0014
BayesAdapter (PSE) 97.13±0.03 0.0936±0.0010

(4) VBNN, which refers to from-scratch trained variational BNNs. In particular, the vari-
ational BNN methods like BayesAdapter and VBNN are evaluated on both the MFG and
PSE variationals. We also include Deep Ensemble (Lakshminarayanan et al., 2017), and
SWAG (Maddox et al., 2019) as baselines on CIFAR-10 benchmark (Krizhevsky et al.,
2009).2

4.1. CIFAR-10 Classification

We first conduct experiments on CIFAR-10 with wide-ResNet-28-10 architecture (Zagoruyko
and Komodakis, 2016). We perform Bayesian fine-tuning for 12 epochs with the weight
decay coefficient λ set as 2e-4. Table 1 outlines the comparison on prediction performance.

It is worth noting that BayesAdapter substantially outperforms MAP, Laplace Approx.,
and MC Dropout in aspect of predictive performance. BayesAdapter also surpasses SWAG
due to that SWAG does not directly benefit from high-performing pre-trained MAP models.
The accuracy upper bound is Deep Ensemble, which trains 5 isolated MAPs and assembles
their predictions to explicitly investigate diverse function modes, but it is much more expen-
sive than BayesAdapter. VBNN is clearly defeated by BayesAdapter, confirming our claim
that performing Bayesian fine-tuning from the converged deterministic checkpoints is ben-
eficial to explore more qualified posteriors. BayesAdapter (PSE) surpasses BayesAdapter
(MFG), especially in the aspect of NLL. Unless specified otherwise, we refer to BayesAdapter
(PSE) as BayesAdapter in the following.

Converged ELBO. We compare the converged (training) ELBO of BayesAdapter and
VBNN : the former gives Lell = −0.019 and Lc = −2806.8 while the latter gives Lell =
−0.032 and Lc = −2384.3. This implies that Bayesian fine-tuning makes the approximate
posterior converge to somewhere with better data fitting than from-scratch VI.

CIFAR-10 corruptions. We then assess the quality of predictive uncertainty on
CIFAR-10 corruptions (Hendrycks and Dietterich, 2019). Figure 1 (Right) shows the results,
which reflect the efficacy of BayesAdapter for promoting model calibration.

2. Currently, we have not scaled Deep Ensemble and SWAG, whihc both require storing tens of NN weights
copies, up to ImageNet due to resource constraints.
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Table 2: Comparison on test accuracy and NLL on ImageNet benchmark.

Method Accuracy (%) ↑ NLL ↓
MAP 76.13 0.9618
Laplace Approx. 75.89 0.9739
MC Dropout 74.88 0.9884
VBNN (MFG) 75.97 0.9435
VBNN (PSE) 75.12 0.9865
BayesAdapter (MFG) 76.45±0.05 0.9303±0.0005
BayesAdapter (PSE) 76.80±0.03 0.9159±0.0010
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Figure 4: Error vs. confidence plots
for models trained on CIFAR-10 and
tested on both CIFAR-10 and SVHN.

CIFAR-10 vs SVHN. Following He et al. (2020),
we evaluate the trained models on both CIFAR-10 and
SVHN (Netzer et al., 2011) test sets. For every con-
fidence threshold 0 ≤ τ < 1, we compute the average
error rate for predictions with ≥ τ confidence (all pre-
dictions on SVHN data are regarded as incorrect). We
depict the error vs. confidence curves in Figure 4. It
is clear that BayesAdapter (PSE) has made more con-
servative predictions on the out-of-distribution (OOD)
SVHN data than all baselines. BayesAdapter (PSE)
even outperforms the expensive Deep Ensemble, im-
plying that the parameter-sharing mechanism may im-
pose further regularization on learning. The compari-
son also confirms from-scratch variational BNNs, even
with the PSE variational, have difficulties to find good posteriors.

Speedup. BayesAdapter requires 200 epochs of deterministic training plus 12 epochs of
variational training, while VBNN requires 200 epochs of variational training. Considering
the cost of variational training is several times (about 2.1×) that of deterministic training,
the training time saved by BayesAdapter is considerable.

4.2. ImageNet Classification

We then scale up BayesAdapter to ImageNet with ResNet-50 (He et al., 2016a) architecture.
We launch fine-tuning for merely 4 epochs with the weight decay coefficient λ set as 1e-4.

Table 2 reports the empirical comparison. As expected, most results are consistent with
those on CIFAR-10. On this large-scale scenario, it is more clear that the from-scratch
learning baseline VBNN would suffer from local optima. The striking improvement of
BayesAdapter upon MAP validates the benefits of Bayesian treatment. Zooming in, we
also note that BayesAdapter (PSE) reveals remarkably higher accuracy than BayesAdapter
(MFG), testifying the superior expressiveness of PSE over MFG.

4.3. Face Recognition

To demonstrate the universality of BayesAdapter, we further apply it to the challenging
face recognition task based on MobileNetV2 architecture (Sandler et al., 2018). We train
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Table 3: Accuracy ↑ comparison on open-set face recognition with MobileNetV2 architecture.

Method LFW CPLFW CALFW CFP-FF CFP-FP

MAP 98.2% 84.0% 87.6% 97.8% 92.7%
MC Dropout 98.2% 83.6% 87.3% 97.8% 92.8%
BayesAdapter (MFG) 98.4% 83.9% 85.8% 97.6% 92.9%
BayesAdapter (PSE) 98.4% 84.7% 87.8% 97.8% 93.1%

Table 4: Ablation study on the rank r of PSE. (ImageNet)

Method Accuracy (%) # of Param. (M)

MAP 76.13 25.56
BayesAdapter (PSE, r=1) 76.80 27.21
BayesAdapter (PSE, r=8) 76.78 38.76
BayesAdapter (PSE, r=16) 76.80 51.95

models on the CASIA dataset (Yi et al., 2014), and perform comprehensive evaluation on
face verification datasets including LFW (Huang et al., 2007), CPLFW (Zheng and Deng,
2018), CALFW (Zheng et al., 2017), and CFP (Sengupta et al., 2016). We launch fine-
tuning for 4 epochs with λ = 5e − 4. We compare our method to MAP and MC Dropout,
two popular baselines in face recognition. We depict the recognition accuracy in Table 3.

It is noteworthy that Bayesian principle can induce better predictive performance for
face recognition models. BayesAdapter (PSE) has outperformed the fine-tuning start point
MAP and the popular baseline MC Dropout in most verification datasets, despite being
fine-tuned for only several rounds.

4.4. More Empirical Analyses

Table 5: Comparison on model calibration (ECE ↓).

Method CIFAR-10 ImageNet

MAP 0.0198 0.0373
SWAG 0.0088 -
Deep Ensemble 0.0057 -
VBNN (MFG) 0.0074 0.0183
VBNN (PSE) 0.0188 0.0202

BayesAdapter (MFG) 0.0091 0.0289
BayesAdapter (PSE) 0.0058 0.0129

Model calibration on in-distribution
data. We estimate the model cali-
bration, measured by ECE, of various
methods on in-distribution data, and
report the results in Table 5. The
ECE of SWAG on ImageNet is based
on ResNet-152 (He et al., 2016b). No-
tably, the ECE of BayesAdapter (PSE)
is on par with Deep Ensemble, signifi-
cantly better than the other baselines.

The impact of the rank r for PSE. As stated, we set r = 1 for all the above studies
for maximal parameter saving. Yet, does the small rank r confine the expressiveness of PSE?
We perform an ablation study to pursue the answer. As shown in Table 4, the capacity of
PSE can already be sufficiently unleashed when the rank is 1, where only marginally added
parameters are introduced over MAP. This indicates the merit of PSE for efficient learning.

The effectiveness of exemplar reparameterization. We build a toy model with
only a convolutional layer and fix the model input and the target output. We employ the
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Figure 5: (Left): Test accuracy varies w.r.t. the number of MC samples for Bayes ensemble.
(Right): Comparison on the accuracy for instance buckets of equal size but with rising uncertainty.
(BayesAdapter (MFG), ImageNet)

MFG variational on the convolutional parameters and computing the variance of stochastic
gradients across 500 runs. We average the gradient variance of µ and ψ over all their
coordinates, and observe that vanilla reparameterization typically introduces 100× more
variance than exemplar reparameterization.

The impact of ensemble number. We draw the change of test accuracy w.r.t. the
number of MC samples S for Bayes ensemble in Figure 5 (Left). The model is trained by
BayesAdapter (MFG) on ImageNet. The points on the red line represent the individual
accuracies of the 100 parameter samples. The yellow dashed line refers to the deterministic
inference with only the Gaussian mean. The green line displays the effects of Bayes ensemble
– the predictive performance increases from < 74% to > 76% quickly before seeing 20
parameter samples, and gradually saturates after that.

Uncertainty-based rejective decision. In practice, we expect our models to be
accurate on the data that they are certain about. In this spirit, we gather the epistemic
uncertainty estimates for ImageNet validation data given by BayesAdapter (MFG), based
on which we divide the data into 10 buckets of equal size but with increasing uncertainty.
We depict the average accuracy of each bucket in Figure 5 (Right). As expected, our BNN
is more accurate for instances with smaller uncertainty.

5. Related Work

Fruitful works have emerged in the BNN community in the last decade (Graves, 2011;
Welling and Teh, 2011; Blundell et al., 2015; Kingma and Welling, 2013; Balan et al., 2015;
Liu and Wang, 2016; Kendall and Gal, 2017; Wu et al., 2018). However, most of the existing
works cannot achieve the goal of practicability. For example, some works trade learning
efficiency for flexible variational posteriors, leading to restrictive scalability (Louizos and
Welling, 2016, 2017; Shi et al., 2018a; Sun et al., 2019). Khan et al. (2018); Zhang et al.
(2018); Osawa et al. (2019) build Adam-like optimizers to do variational inference, but their
parallel training throughput and compatibility with data augmentation are inferior to SGD.
Approximate Bayesian methods like Monte Carlo dropout (Gal and Ghahramani, 2016) and
Deep Ensemble (Lakshminarayanan et al., 2017) can maintain good predictive performance
but suffer from degenerated uncertainty estimates (Fort et al., 2019) or high cost.



Deng Zhu

Laplace approximation (MacKay, 1992; Ritter et al., 2018) is a known approach to trans-
form a DNN to a BNN, but it is inflexible due to its postprocessing nature and some strong
assumptions made for practical concerns. Alternatively, BayesAdapter works in the style
of fine-tuning, which is more natural and economical for deep networks. Bayesian modeling
the last layer of a DNN is proposed recently (Kristiadi et al., 2020), and its combination
with BayesAdapter deserves an investigation. BayesAdapter connects to MOPED (Krish-
nan et al., 2020) in that their variational configurations are both based on MAP. However,
MOPED solves the prior specification problem for BNNs while BayesAdapter constitutes a
practical framework to bring variational BNNs to the masses. In detail, MOPED uses MAP
to define the prior while BayesAdapter uses MAP to initialize the parameters of the varia-
tional distribution. Beyond this, this work makes valuable technical contributions including
the PSE variational and the refinement of exemplar reparameterization. We have also done
a thorough study on how pre-training benefits VI. Moreover, the results in Appendix C
show that MOPED suffers from more serious over-fitting than BayesAdapter.

6. Conclusion

This work proposes the BayesAdapter framework to ease the learning of variational BNNs.
Our core idea is to perform Bayesian fine-tuning instead of expensive from-scratch Bayesian
learning. We develop plug-and-play implementations for the stochastic variational inference
under two representative variational distributions, and refine exemplar reparameterization
to efficiently reduce gradient variance. We evaluate BayesAdapter in diverse scenarios
and report promising results. One limitation of BayesAdapter is that practitioners may
need to carefully tune the optimization configurations for Bayesian fine-tuning to achieve
reasonable performance. Regarding future work, the application of BayesAdapter to more
exciting scenarios like contextual bandits deserves further investigation.
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