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Abstract

Multimodal sentiment analysis (MSA) is gaining traction as a critical tool for understand-
ing human behavior and enabling a wide range of applications. Since data of different
modalities might lie in completely distinct spaces, it is very challenging to perform ef-
fective fusion and analysis from asynchronous multimodal streams. Most of the previous
works focused on aligned fusion, which is unpractical in real-world scenarios. The recent
Multimodal Transformer (MulT) approach attends to model the correlations between el-
ements from different modalities in an unaligned manner. However, it collects temporal
information by self-attention transformer which is a sequence model, implying that interac-
tions across distinct time steps are not sufficient. In this paper, we propose the Citculant-
interactive Transformer Network with dimension-aware fusion (CITN-DAF), which enables
parallel computation of different modalities among different time steps and alleviates inter-
modal temporal sensitivity while preserving intra-modal semantic order. By incorporating
circulant matrices into the cross-modal attention mechanism, CITN-DAF is aimed to ex-
amine all conceivable interactions between vectors of different modalities. In addition, a
dimension-aware fusion method is presented, which projects feature representations into
different subspaces for an in-depth fusion. We evaluate CITN-DAF on three commonly
used sentiment analysis benchmarks including CMU-MOSEI, CMU-MOSI and IEMOCAP.
Extensive experimental results reveal that CITN-DAF is superior in cross-modal semantic
interactions and outperforms the state-of-the-art multimodal methods.

Keywords: Multimodal sentiment analysis, Transformer, Circulant matrices, Cross-modal
attention

1. Introduction

The rapid expansion in the volume of multimedia data has prompted a tremendous need
for data management and understanding. Multimodal sentiment analysis (MSA), as a
crucial way to determine a human’s emotional states towards a certain topic, has gained
increasing attention. Early approaches to sentiment analysis are of unimodal nature, with
information derived just from one channel, such as images or text (but not both). Recent
studies (Koromilas and Giannakopoulos (2021)) have demonstrated that fully exploiting
features of different modalities will lead to a further performance gain. Previous researchers
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mainly relied on the assumption that multimodal language sequences are already aligned
in the resolution of words and considered only short-term multimodal interactions, which is
unpractical since the interactions between various modalities are usually more complicated
and last for longer than one word. Tsai et al. (2019) proposed the Multimodal Transformer
(MulT) approach to fuse crossmodal information from unaligned data sequences. MulT
introduces the modality reinforcement unit to reinforce a target modality with information
from a source modality by learning the directional pairwise attention between elements
across modalities. In their approach, however, the temporal information is collected by
self-attention transformer which is a sequence model, implying that fusion among different
time steps is not sufficient. By investigating the literature, we find that the performance of
MSA models is mainly hindered by three problems:

(i) How to preserve semantic information within each modality. Due to the fact
that diverse modalities have different statistical properties and are distributed across distinct
feature spaces, extensive studies (Vincent et al. (2010)) design various deep learning methods
for monomodal feature representation. For instance, raw images are often processed by
spatial hierarchical networks, while raw text is encoded by sequential networks. However,
the differences between high-level semantic concepts and low-level values result in semantic
gap among intra-modality embeddings. To narrow the gap, self-supervised embedding (SSE)
is introduced to represent data of different modalities (Zhai et al. (2019)). Leveraging pre-
training on pretext tasks with tremendous amounts of unlabeled data, SSE has supreme
generalization capabilities. Nevertheless, inconsistency of representations caused by long-
range dependency is always ignored, which is detrimental to semantic correlation preserving.

(ii) How to alleviate temporal interaction sensitivity across diverse modal-
ities. The inputs of MSA are usually composed of multiple sequences that interact in a
strictly chronological alignment (Shad Akhtar et al. (2019)). In sequential tasks, recurrent
neural networks (RNN) were dominant over the last decades (Liu et al. (2019)). Attention
mechanisms (Vaswani et al. (2017)) are always used along with RNN, and Transformer has
given a new way of solving sequence problems. However, such a strictly temporally aligned
computation is like a glimpse of a video, which leads to poor performance since prior infor-
mation is overwritten and disturbed by the posterior information. To conquer the problem,
memory networks (Li et al. (2017)) construct a repository for rethinking with a complex
structure. Cross-modal Transformer (Xi et al. (2020)) achieves relatively satisfactory per-
formance in a more concise manner, but it is still sensitive to temporal order across different
modalities.

(iii) How to exploit complementary relations among diverse modalities and
eliminate redundancy. It is still common that straightforward fusion methods are em-
ployed in MSA, including element-wise product or sum. 1D temporal convolution (Yuan
et al. (2021)) with positional embedding is also a popular choice, which extracts the lo-
cal structure of the input sequences and transforms features of different modalities to the
same dimension. A variety of studies (Williams et al. (2018)) have combined the attention
mechanism with deep neural networks for feature fusion in recent years. The attention
mechanism can not only tell us where to focus, but also improve the modality-specific ex-
pression. However, still few studies enable fully exploiting interactions among multimodal
features.
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To address these challenges, we propose a circulant-interactive Transformer network
(CITN-DAF) with dimension-aware fusion to examine all conceivable interactions among
diverse modalities while preserving intra-modal semantic representation. Specifically, our
proposed model can be divided into three steps: feature extraction, interaction and fu-
sion. Firstly, for problem (i), modality-specific embedding layers with self-attention are
introduced to represent feature vectors of image, audio and text sequences. The embedding
layers are pre-trained on pretext tasks in advance to provide more valuable feature represen-
tations for downstream tasks, while self-attention aids in capturing long-range dependencies.
Then, for problem (ii), feature vectors will be passed through proposed circulant-interactive
Transformer blocks (CITB) to enrich themselves with useful information from the other
modalities. Thanks to circulant matrices and cross-modal attention mechanism (Xu et al.
(2020)), CITB can explore all possible interactions between vectors of different modalities.
As only regular operations and calculations are involved, CITB avoids increasing param-
eters or computational costs. Finally, for problem (iii), we introduce a dimension-aware
fusion (DAF) module to combine visual, audio and text representations effectively. DAF
maps feature representations in three axes: length, width and depth, which allows diverse
modalities to be learned in a common space. To evaluate the performance of our pro-
posed model, comprehensive experiments are conducted on three widely used benchmark
datasets including IEMOCAP, CMU-MOSEI and CMU-MOSI (Busso et al. (2008); Zadeh
et al. (2016); Zadeh and Pu (2018)). The competitive results verify the effectiveness of our
approach. The major contributions of our research can be summarized as follows:

• A circulant-interactive Transformer is proposed, which incorporates circulant matrices
with cross-modal attention mechanism to explore all possible interactions between
vectors of different modalities and reduce temporal interaction sensitivity.

• Modality-specific embedding layers with self-attention are introduced to alleviate the
heterogenous discrepancy and preserve semantic correlation.

• A dimension-aware fusion is proposed for in-depth fusion, which enables feature vec-
tors of different modalities can be learned in a comprehensive manner without signif-
icant increases in parameters or computational costs.

2. Related Work

2.1. Multimodal Sentiment Analysis

MSA is challenging since different modalities might lie in completely distinct spaces, which
is referred as heterogeneity gap. In the early stage, hand-crafted features are designed to
bridge this gap in traditional machine learning algorithms, which is time-consuming and
labor-intensive. In recent years, deep neural networks (DNN) have emerged as a powerful
architecture for capturing the nonlinear distribution of high-dimensional multimedia data in
an end-to-end manner. Furthermore, attention mechanisms are widely employed together
with DNN to investigate semantic relevance and achieve further performance improvements.
Tsai et al. (2019) proposed a Multimodal Transformer (MulT), which attends to inter-
actions between multimodal by repeatedly reinforcing one modality’s features with those
from the other modalities. Siriwardhana et al. (2020) adopted pre-trained self-supervised
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learning models for multimodal feature representation and introduced a transformer-based
fusion mechanism to understand inter-modality connections. Hazarika et al. (2020) pre-
sented a multimodal affective framework that projects modalities into modality-invariant
and modality-specific subspaces and then fuses them to predict emotional states. However,
inter-modality correlations across distinct time steps are frequently overlooked. In this pa-
per, we propose CITN-DAF to promote inter-modal semantic interaction and narrow the
heterogeneous gap.

2.2. Multimodal Feature Fusion

According to the fusion stage, multimodal sentiment analysis methods can be divided into
two categories, feature-level fusion and decision-level fusion. Feature-level fusion (Ben-
Ahmed and Huet (2018)) extracts features from various modalities and fuses them by simple
accumulation or concatenation. This fusion approach cannot fully explore intra-modality
dynamics due to the complexity at the input level. In contrast, decision-level fusion (Gumaei
et al. (2022)) refers to combining the results of different classifiers, each trained on separate
modalities. However, it fails to model cross-modal interactions for features cannot interact
with each other. In addition to the fusion stage, the specific implementation method of
the fusion is also a research focus. Common-used multimodal fusion methods including
element-wise product or sum may burden the fusion performance. In recent years, a variety
of studies have combined the attention mechanism with deep neural networks to ensure the
soundness of feature fusion. The attention mechanism can not only tell us where to focus,
but also improve the modality-specific expression. Based on the scope of attention, we can
divide it into spatial attention (Shi et al. (2021)) and channel attention (Li et al. (2019)).
The former is more concerned with the location information embedded in the modalities,
while the latter can point to more critical patterns. Although certain research, such as
CBAM (Woo et al. (2018)), has combined the advantages of both to obtain good results in
computer vision, the integration capability still needs to be improved for multimodal tasks.

3. Method

In this section, we describe our approach for alleviating inter-modal temporal sensitivity
while preserving intra-modal semantic order. The CITN-DAF can be segmented into three
sub-modules: modality-specific embedding layers (Section 3.2), circulant-interactive Trans-
former block (Section 3.3) and dimension-aware fusion (Section 3.4). The overall framework
is illustrated in Fig. 1.

3.1. Task Setup

The goal of MSA is to judge the emotional state in videos by leveraging multimodal signals.
For clarity, we define some notations and describe the MSA task. Three modalities including
image, audio, and text are considered, with sequences from each of them denoted XV ={
xvp
}Nv

p=1
∈ RNv×dv , XA =

{
xap
}Na

p=1
∈ RNa×da , and XT =

{
xtp
}Nt

p=1
∈ RNt×dt , respectively.

N(.) and d(.) are used to represent sequence length and feature dimension. Proposed model
takes {Xi}i∈A,V,T as inputs to predict the affective orientation from either a predefined set

of C categories y ∈ RC or as a continuous intensity variable y ∈ R.
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Figure 1: The overall framework of CITN-DAF. CITN-DAF consists of three mod-
ules: modality-specific embedding layers with self-attention, circulant-interactive
Transformer block (upper left) and dimension-aware fusion (upper right).

3.2. Modality-specific Embedding Layer

Different modalities are characterized by different statistical properties. For example, an
image is a three-channel RGB array while text is often symbolic. Therefore, we intro-
duce modality-specific embedding layers to represent feature vectors of different modalities.
These embedding layers are trained on pretext tasks in advance to provide more valuable
feature representations for downstream tasks. Implementation details are presented in Sec-
tion 4.4.

For semantic correlation preserving, we introduce a self-attention-based embedding mod-
ification module to unify feature representation of different modalities. Inspired by BERT,
a special token CLS is added to the first element of the sequence to encode the global
semantics and obtain bidirectional information. Self-attention aids in capturing long-range
correlations within each modality. The details are presented in Algorithm 1.

3.3. Circulant-interactive Transformer

Circulant-interactive Transformer block (CITB) is designed to explore all possible interac-
tions between vectors of different modalities by incorporating circulant matrices with cross-
modal attention mechanism. The detailed procedures of CITB are illustrated in upper left
of Fig. 1.

Without losing generality, we discuss the CITB for bimodal data. Given two feature
vectors in different modalities, e.g., the text vector OT ∈ R(Nt+1)×dt and the audio vector
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Algorithm 1: Embedding Modification Algorithm

1: Function Embedding Modification (Xi) returnOseq, the modified feature sequence

2: Input:

3: {Xi}i∈A,V , sequences of audio or video sliced by sentence

4: Output:

5: Oseq, the modified feature sequence, initially empty

6: Begin:

7: Initialize special token CLS ← []

8: Slice the video and audio into a data sequence Xi ←
[
xi1, x

i
2, . . . , x

i
m

]
9: Concatenate the special token CLS with the original data sequence:

concate([CLS], Xi)

10: Encode sequence position information Pos = [p0, p1, p2 . . . , pn]

11: Incorporate position information into data sequence
Iseq = Pos

⊕
concate([CLS], Xi)

12: for m iterations do

13: Set query vector Q, key vector K, value vector V

14: Calculate the similarity between Q and K

Simi (Q,Ki) = Q·Ki

∥Q∥·∥Ki∥
15: Get the final feature vector

Oseq =
∑Lx

i=1 softmax · (Simi (Q,Ki))Vi =
∑Lx

i=1
eSimi∑Lx

j=1 e
Simj

Vi

16: return Oseq

17: End

OA ∈ R(Na+1)×da .Take text as the target modal, we define the query vectors as QT =
OTWQT

, keys as KA = OAWKA
, and values as VA = OAWVA

, where WQT
∈ Rdt×d,WKA

∈
Rda×d,WVA

∈ Rda×d are weights. In particular, we use the query vectors to construct
circulant matrix. Then the mapping process from A to T can be expressed as YA→T =
CITBA→T (OT , OA), the specific process can be seen in the following formula:

YA→T = CITBA→T (OT , OA)

= softmax (matT (QT )KA)VA

= softmax

(∑Nt+1
i=1 QTi ⊙KA

d

)
VA

(1)

where QTi ∈ Rd is row vector of circulant matrix mat T (QT ), ⊙ denotes dot product. After
cross-modal interaction, the mixed feature vectors will go through a multi-layer perceptron
with residual connections. In all, the CITB algorithm can be expressed as:

Y
[0]
A→T = Y

[0]
T

Ỹ
[i]
A→T = CITB

[i],multi
V→T

(
Y

[i−1]
A→T , Y

[0]
V

)
+ Y

[i−1]
A→T

Y
[i]
A→T = MLP

(
Ỹ

[i]
A→T

)
+ Ỹ

[i]
A→T

(2)
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where MLP(.) is multi-layer perceptron, and CITB
[i], multi
A→T represents CITB with multi-

head attention mechanism. In the above process, the circulant matrix shifts elements of
each row once. The newly-defined interaction operations enables that all possible correlation
across different modalities can be mined.

3.4. Dimension-aware Fusion

Dimension-aware fusion can be divided into three branches, as shown in upper right of Fig. 1.
Given a feature µ ∈ RC×H×W as input, each branch is responsible for capturing the cross-
modal interaction between spatial dimension H or W and the channel dimension C. In the
first branch, we construct the interaction between the height dimension H and the channel
dimension C. Specifically, we perform matrix transposition on , acting on the first and second
dimensions, and the new feature tensor after rotation is expressed as µ1 ∈ RW×H×C . Then
µ1 will go through a special comprehensive pooling layer to squeeze the first dimension of
the input tensor. This pooling operation performs average pooling and maximum pooling
on the input tensor respectively. Finally, we enhance the fusion of the global feature by a
multi-perspective aggregation:

Co-Pool(µ) = Concate [µmax;µavg ;µmax − µavg ;µmax ∗ µavg ] (3)

where
µmax = MaxPool1d(µ), µavg = AvgPool1d(µ) (4)

where Concate[.; .; .; .]refers to the concatenation operation. For example, the dimension size
of the result obtained by Co-Pool (µ1) is 4×H×C, denoted as µ̃1.Then µ̃1 will go through
a convolutional layer with batch normalization to obtain an intermediate result µ̃∗1 whose
dimension size is corrected to 1×H×C. After µ̃∗1 passes through the sigmoid activation layer,
an attention weight matrix is generated. Multiplying the matrix with µ1, the interaction
information between H and C can be obtained. Finally, to keep the shape consistent
with the original input, we transpose the first and second dimensions of the output again.
The calculation process of the second branch is similar to that of the first branch. The
difference is that we rotate the second and third dimensions of to obtain a new feature
tensor µ2 ∈ RH×C×W . And for the last branch, there is no need to perform a rotation
operation. Finally, we perform element-wise sum and average on feature maps from three
branches, which can be expressed as:

ζ =

n∑
i=1

(µσ (ψ3 (µ̃3
∗)) + rotate (µ̃1σ (ψ1 (µ̃1

∗)))

+rotate (µ̃2σ (ψ2 (µ̃2
∗))))

· · · =
n∑

i=1

(rotate (µ̃1ω1) + rotate (µ̃2ω2) + µω3)

· · · =
n∑

i=1

(ζ1 + ζ2 + ζ3)

(5)

where rotate(.) represents the rotation operation, σ represents the sigmoid activation func-
tion, n is the number of branches and ψ1, ψ2 and ψ3 respectively represent the 2D convo-
lutional layers of three different convolution kernels.
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4. Experimental Setup

4.1. DataSet

IEMOCAP. The IEMOCAP dataset (Busso et al. (2008)) contains five sets of dialogues
with ten male and female actors, where each set of dialogues is performed by two regular
actors. IEMOCAP is annotated into categorical labels. Since the dataset is unevenly dis-
tributed among each category, following other previous studies, we select four of the most
common labels, namely Happy, Sad, Anger, and Excitement. We divide the entire dataset
into three subsets, using the first four dialogues as training and validation and the last one
for testing. Thus, the two actors in the test set are not present in the training set and
validation set, which excludes speaker-related interference and is helpful for real scenario
applications.
CMU-MOSEI & CMU-MOSI. CMU-MOSEI (Zadeh and Pu (2018)) is a typical mul-
timodal affective computing dataset that contains 22,000 exemplars, each with associated
audio, video and text input streams. Unlike the way other discrete datasets are annotated,
each example in CMU-MOSEI is assigned an emotion rating (between -3 and +3), with
-3 corresponding to extreme negative emotions and +3 representing extreme positive emo-
tions. We directly use the segmentation methods provided in the CMU-SDK to launch our
experiments. CMU-MOSI (Zadeh et al. (2016))is similar to CMU-MOSEI in all respects,
except for the number of samples.

4.2. Baselines

In order to reflect the effectiveness of CITN-DAF, it is compared with the existing senti-
ment analysis methods including Early Fusion LSTM (EF-LSTM) (Williams et al. (2018)),
Recurrent Attended Variation Embedding Network (RAVEN) (Wang et al. (2019)), Multi-
modal Cyclic Translation Network (MCTN) (Pham et al. (2019)), Multimodal Transformer
(MulT) (Tsai et al. (2019)), Modality-Invariant and -Specific Representations (MISA) (Haz-
arika et al. (2020)), Self-supervised Multi-Task Learning (Self-MM) (Yu et al. (2021)),
Multimodal Adaptation Gate for Bert (MAG-BERT) (Rahman et al. (2020)), Bimodal
Information-augmented Multi-head Attention (BIMHA) (Wu et al. (2022)), Transformer-
based Feature Reconstruction Network (TFR-Net) (Yuan et al. (2021)), Learning Modality-
fused Representations with CB-Transformer (LMR-CBT) (Fu et al. (2021)), Multi-Scale
Representation with Shared Vectors of Locally Aggregated Descriptors (ScaleVLAD) (Luo
et al. (2021)) and Progressive Modality Reinforcement (PMR) (Lv et al. (2021)). Among
them, since EF-LSTM, RAVEN and MCTN rely on the assumption that multimodal lan-
guage sequences are already aligned, we introduce the connectionist temporal classification
(CTC) module (Graves et al. (2006)) to make them applicable to unaligned settings.

4.3. Evaluation Metrics

We evaluate our experimental results in two forms: classification and regression. For classi-
fication, we report weighted F1 score (F1-Score) and binary classification accuracy (Acc-2).
Following prior works (Hazarika et al. (2020); Tsai et al. (2019)), the Acc-2 and F1-score
on MOSEI & MOSI datasets are calculated in two distinct approaches. The first is a
negative/non-negative classification (non-exclude zero) and the other is a more accurate
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formulation of negative/positive classes (exclude zero). We report results on both these
metrics using the segmentation marker -/-, where the left-side score is for neg./non-neg.
while the right-side score is for neg./pos. classification. For regression, we report Mean
Absolute Error (MAE) and Pearson correlation (Corr). Except for MAE, higher values
denote better performance for all metrics.

Table 1: The implementation details of CITN-DAF on CMU-MOSEI, CMU-MOSI and
IEMOCAP.

Dataset CMU-MOSEI CMU-MOSI IEMOCAP

Batch size 32 16 32

Learning rate 3× 10−4 3× 10−4 3× 10−4

Optimization Adam Adam Adam

Self-attention blocks 2 1 2

Self-attention heads 4 1 4

CITB 2 1 2

CITB heads 4 1 4

Dropout Rate 0.1 0.5 0.1

Epochs 20 20 20

4.4. Implentation Details

For visual modality, we adopt an ensemble model (Mao et al. (2021)) with a convolution
neural network, a CNN-RNN and a CNN-Transformer to incorporate both spatial and
temporal information for facial expression recognition. In particular, CNN is a ResNet50,
and the depth of GRU is 2. The multi-head attention of Transformer utilizes multiple
queries, keys, and values to focus on the most related information at each query. The
ensemble is done through a weighted summation among each model.

The wav2vec 2.0 (Baevski et al. (2020)) is used to extract features from original audio
clips. The model consists of three sub-modules, feature encoder, transformer, and quan-
tization module. Feature encoder is a multi-layer CNN that represents the input signal
as low-level feature vectors. The transformer module is further applied to incorporate the
contextual content. The quantization module discretizes the low-level features to a finite
speech representation. To train the model, part of the low-level features is masked from the
transformer module, and the objective is to identify the quantized version of the masked
features based on its context. We take the wav2vec 2.0 model pre-trained on LibriSpeech.

We used ALBERT (Lan et al. (2019)) as our language model for extracting the fea-
ture from the text modality. ALBERT is an extension of the BERT, which has established
new state-of-the-art (SOTA) results on the GLUE, RACE and SQuAD benchmarks. AL-
BERT improves parameter efficiency of BERT by incorporating two parameter reduction
techniques. The first is decomposing the large vocabulary embedding matrix into small
matrices, and the other is sharing cross-layer parameters. In addition, a self-supervised loss
for sentence-order prediction is introduced to focus on inter-sentence coherence. We pre-
trained ALBERT on large English text datasets including BOOKCOPUS and Wikipedia



Gong Liu Zhang Li Yu

for 125k steps. The model uses a 12-layer transformer as encoder with a maximum input
length of 512 and an output embedding of 128.

The hyperparameters of CITN-DAF are shown in Table 1. We develop different training
schemes according to the amount of data and the number of categories.

Table 2: The comparison experiments on CMU-MOSEI & CMU-MOSI containing word-
aligned and unaligned versions. For Acc-2 and F1, the number on the left of /
denotes “negative/non-negative” and the right is “negative/positive”.KEY - CM:
circulant matrix; DAF: dimension-aware fusion.

Models MOSEI (aligned) MOSI (aligned)

Acc2(↑) MAE(↓) Corr(↑) F1(↑) Acc2(↑) MAE(↓) Corr(↑) F1(↑)
EF-LSTM 77.84/80.79 0.601 0.683 78.34/80.67 77.38/78.48 0.949 0.669 77.35/78.51

MCTN 79.8/- 0.609 0.67 80.6/- 79.3/- 0.909 0.677 79.1/-
RAVEN 79.1/- 0.614 0.662 79.5/- 78/- 0.915 0.691 76.6/-
MulT 80.2/- 0.657 0.661 79.8/- 78.7/- 0.964 0.662 78.4/-
MISA 83.6/85.5 0.555 0.756 83.8/85.3 81.8/83.4 0.783 0.761 81.7/83.6

MAG-BERT 83.79/85.23 0.539 0.753 83.74/85.08 82.54/84.3 0.731 0.789 82.59/84.3
BIMHA 83.19/83.93 0.562 0.729 83.21/83.64 78.57/80.18 0.929 0.663 78.55/80.23

CITN-DAF 84.5/86.72 0.56 0.763 84.72/87.45 82.73/84.13 0.791 0.703 82.53/84.3
- w/o CM 81.2/82.53 0.641 0.677 81.36/82.7 79.75/80.53 0.875 0.665 79.35/80.2
- w/o DAF 83.1/84.32 0.583 0.792 83.7/85.15 81.73/82.53 0.805 0.687 81.7/82.64

Models MOSEI (unaligned) MOSI (unaligned)

Acc2(↑) MAE(↓) Corr(↑) F1(↑) Acc2(↑) MAE(↓) Corr(↑) F1(↑)
EF-LSTM+CTC 76.1 0.68 0.585 75.9/- 73.6 1.078 0.542 74.5/-

MCTN+CTC 79.3/- 0.631 0.645 79.7/- 75.9/- 0.991 0.613 76.4/-
RAVEN+CTC 75.4/- 0.664 0.599 75.7/- 72.7/- 1.076 0.544 73.1/-

MulT 81.15/84.63 0.559 0.733 81.56/84.52 79.71/80.98 0.88 0.702 79.63/80.95
MISA 80.67/84.67 0.558 0.752 81.12/84.66 81.84/83.54 0.777 0.778 83.36/85.43

Self-MM 83.76/85.15 0.531 0.765 83.82/84.9 83.44/85.46 0.708 0.796 83.36/85.43
BIMHA 84.07/83.96 0.559 0.731 83.35/83.5 78.57/80.3 0.925 0.671 78.50/80.03
TFR-Net 83.75/- 0.598 0.749 83.58/- 81.73/- 0.754 0.783 81.50/-

ScaleVLAD 84.2/85.73 0.603 0.771 87.3/89.3 81.5/83.43 0.827 0.781 81.7/83.43

CITN-DAF 85.91/86.73 0.519 0.773 85.53/86.31 83.73/84.87 0.733 0.778 83.35/85.28
- w/o CITB 82.17/84.83 0.557 0.735 83.56/84.36 80.71/81.57 0.873 0.729 81.17/81.95
- w/o DAF 83.39/85.1 0.554 0.754 83.71/84.48 80.97/82.5 0.785 0.766 81.76/83.1

Table 3: The comparison experiments on IEMOCAP dataset (unaligned).
Models Happy Sad Angry Neural

Acc F1 Acc F1 Acc F1 Acc F1

EF-LSTM+CTC 76.2 75.7 70.2 70.5 72.7 67.1 58.1 57.4
RAVEN+CTC 77 76.8 67.6 65.6 65 64.1 62 59.5
MCTN+CTC 80.5 77.5 72 71.7 64.9 65.6 49.4 49.3

MulT 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7
PRM 86.4 83.3 78.5 75.3 75 71.3 63.7 60.9

BIMHA 86.3 85.3 83.6 82.9 74.2 74.4 70.1 71.2
LMR-CBT 85.7 79.5 79.4 72.6 76 70.7 63.6 60.5

CITN-DAF 86.7 85.4 83.2 83.6 74.4 73.7 65.7 61.2
- w/o CM 85.2 82.3 78.7 75.3 72.2 71.7 63.5 60.7

- w/o DAF 86.3 84.2 81.32 77.6 73.1 72.9 63.9 61.1
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Table 4: The ablation study in modalities on CMU-MOSEI.
Acc2(↑) F1(↑) MAE(↓) Corr(↑)

Text only 78.15/80.2 77.4/79.62 0.653 0.631
Audio only 63.1/64.75 65.63/67.17 0.764 0.310
Vision only 65.31/66.16 66.47/69.36 0.759 0.343

Text & Vision 80.17/81.63 81.9/82.57 0.543 0.752
Text & Audio 82.15/83.71 82.74/83.63 0.534 0.776

Vision & Audio 67.72/69.33 68.2/69.45 0.702 0.381

V, A→T 80.79/81.57 80.17/82.13 0.605 0.670
T, A→V 79.45/80.37 79.73/80.53 0.611 0.651
T, V→A 79.55/80.73 79.24/80.17 0.620 0.648

CITN-DAF 85.91/86.73 85.53/86.31 0.519 0.773

5. Results and Disscussion

5.1. Quantitative Results

The comparative results for MSA on three widely used benchmarks are presented in Table 2
(MOSEI & MOSI) and Table 3 (IEMOCAP). For a fair comparison, the evaluation on
MOSEI & MOSI consists of a word-aligned and an unaligned version. Generally, CITN-DAF
achieves better performance than the other baselines in most evaluation metrics, especially
on MOSEI dataset. However, the improvement on the MOSI dataset is not so obvious. We
infer that this might be caused by the capacity of data, since MOSI is a similar task to
MOSEI. We also find that the performance improvement of CITN-DAF in the unaligned
version is more significant than that in the word-aligned version, which indicates that our
approach is superior in cross-modal semantic interactions across distinct time steps. In
addition, to demonstrate the effectiveness of each module in the proposed method, we
provide two ablated models for comparison. The experimental results reveal the role of the
circular matrix and the DAF, respectively.

The results on the discrete IEMOCAP dataset are reported in Table 3. Compared with
the SOTA unaligned methods like BIMHA and LMR-CBT, we can see that CITN-DAF
achieves the best performance on both Acc-2 and F1-score of Happy emotion, competitive
performance on Angry and Sad emotion, and the worst on Neural emotion. We believe
that the unbalanced distribution of data in the dataset is one of the major causes of this
occurrence. Additionally, the ablation of CITB and DAF proves their effectiveness in all
metrics and datasets.

5.2. Ablation Study

5.2.1. Role of Modality

In order to investigate the influence of different modalities, ablation experiments are con-
ducted on the MOSEI dataset. Our experiments involve the following scenarios: (1) uni-
modal, where only text, audio or image is considered as input for affective computing; (2)
bimodal, where two of the three modalities are selected as input, i.e., text and video, text
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Figure 2: Visualizing joint embedding on CMU-MOSEI. The left is the SSE-based method,
and the right is based on default feature extractor.

and audio or video and audio; (3) multimodal, we take different branches for ablation, con-
sidering only one modality as the target. The experimental results are shown in Table 4.
According to the results, it is believed that the performance of model dramatically drops
without text modality, while similar drops do not occur when the other two modalities
are removed. We speculate that there are two reasons for this phenomenon. The first is
that text contains more semantic information and emotional tendencies. The other is that
ALBERT has a stronger representation capability than the other two embedding models.

5.2.2. Visualizing Joint Embedding

We compare SSE-based CITN-DAF(with modality-specific embedding) with that using the
default feature extractor of CMU-MOSEI and provide a visualization of joint embedding
sentiment distributions. The t-SNE algorithm is used to transform the integrated vectors
into a two-dimensional space before to the fusion stage. Fig. 2 shows that the points
within respective classes of positive and negative samples are more intensive and the inter-
class interval is clearer in the SSE-based CITN-DAF, demonstrating that modality-specific
embedding plays an important role in feature extraction.

5.2.3. Visualizing Attention Mechanism

This visualization is conducted to present the effects of attention mechanism over time series.
According to the Fig. 3, we can find that cross-modal attention has learned to attend to
meaningful signals across various modalities. For example, stronger attention is given to the
intersection of words that tend to suggest emotional tendencies (e.g., “dark”, “starring”)
and drastic facial expression changes in the video. This observation demonstrates one of the
aforementioned advantages of CITN-DAF that cross-modal attention allows CITN-DAF to
directly capture potentially long-range signals.
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Figure 3: Visualization of attention mechanism over time series. Utterances and keyframes
involving changes in expression are presented.

6. Conclusion

In this paper, we propose a circulant-interactive Transformer network for multimodal sen-
timent analysis. At the heart of the model is to alleviate temporal sensitivity across diverse
modalities while preserving semantic information within each modality. By incorporating
circulant matrices and cross-modal attention mechanism, our model can explore all possible
interactions between vectors of different modalities. Moreover, we introduce a dimension-
aware fusion module to project integrated representations into different subspaces for a
holistic view. Comprehensive experiments on four widely used benchmarks indicate that
our model is superior in cross-modal interactions and achieved comparable or better results
compared to the existing state-of-the-art methods.

We also find that current model performance is limited when faced with multiple clas-
sifications or insufficient datasets. In future work, we plan to explore one-shot learning
methods and factorized representations.
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