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Abstract

Acquiring continuous spatial data, e.g., spatial ground motion is essential to assess the
damaged area and appropriately assign rescue and medical teams. To this purpose, spatial
interpolation methods have been developed to estimate the value of unobserved points lin-
early from neighbor observed values, i.e., inverse distance weighting and Kriging. Recently,
realistic spatial continuous environmental data with various scenarios can be generated by
3D finite difference methods with a high-resolution structure model. It enables us to collect
supervised data even for unobserved points. Along this line, we propose a framework of
supervised spatial interpolation and apply highly advanced deep inpainting methods where
we treat spatially distributed observed points as a masked image and non-linearly expand
them through convolutional encoder-decoder networks. However, the property of trans-
lation invariance would avoid locally fine-grained interpolation since the relation between
the target and surrounding observation points varies over regions due to its topography
and subsurface structure. To overcome this problem, we propose introducing position-
dependent convolution where kernel weights are adjusted depending on their position on
an image based on the trainable position-feature map. We show the effectiveness of our
proposed method, called, PoDIM (Position-dependent Deep Inpainting Method), through
experiments using simulated ground-motion data.

Keywords: spatial interpolation; image inpainting; partial convolution; deep network

1. Introduction

In recent years, many signs of a megathrust earthquake have occurred in Japan. Such
earthquakes will likely cause severe damage over a wide area of Japan shortly. In order
to reduce the damage, gathering continuous spatial data of ground motion just after the
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(a) Observation sites
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(b) Spatial continuous simulation

Figure 1: (a) Distribution of seismic observation sites in the region from Kyushu to Tohoku
in Japan. Black dots represent the location of strong motion stations K-NET and
KiK-net operated by NIED (National Research Institute for Earth Science and
Disaster Resilience (NIED) (a), National Research Institute for Earth Science
and Disaster Resilience (NIED) (b))—there are totally 1740 sites throughout
Japan. White and gray areas represent unobserved locations on land and sea,
respectively. (b) an example of spatial continuous simulated velocity response
spectra [m/s] for a megathrust earthquake occurred in Nankai trough—the value
is clipped at 8.0 for visualization purposes.

earthquake would play a significant role—it will enable us to assess the damaged area
and make adequate plans for rescue operations and emergency medical services. However,
environmental data like seismic motion are typically collected from point sources due to the
cost and difficulty of installing sensors.

More specifically, Fig. 1(a)subfigure depicts the location of strong motion stations K-
NET and KiK-net operated by NIED (National Research Institute for Earth Science and
Disaster Resilience (NIED) (a), National Research Institute for Earth Science and Disaster
Resilience (NIED) (b)) in the region from Kyusyu to Tohoku in Japan. The figure indicates
that although observation points (in black) are distributed broadly over Japan, there are
large blank areas (in white) between the points, especially in coastal areas (in white and
gray boundaries) and central areas corresponding to mountains.

To acquire the values even in unobserved points, spatial interpolation methods have
been studied and put to practical use in geostatistics and environmental fields, such as
mining, meteorology, and soil science (Li and Australia (2008), Yang and Xing (2021)).
These methods estimate the value of an unobserved target point by a weighted sum of
the ones of neighbor observed points. The weights are set based on the distance between
the target and observed points, e.g., in IDW (inverse distance weighting) (Lu and Wong
(2008), Li et al. (2018)), and on the variogram models, e.g., in Kriging (Matheron (1963), Li
and Australia (2008)).

In recent years, with high-resolution and large-scale structure models, 3D finite-difference
methods enable us to simulate realistic environmental surface data. For instance, ground-
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motion data for the Nankai trough megathrust earthquakes in southwest, Japan can be
generated with various rapture scenarios given parameters, e.g., source and magnitude,
a pattern of asperities, and rapture initiation points (Maeda et al., Moschetti et al.).
Fig. 1(b)subfigure depicts an example of spatial continuous simulated velocity response
spectra [m/s] for a megathrust earthquake occurred in Nankai trough.

Given these highly accurate spatial continuous data, we can formulate the problem of
spatial interpolation in a supervised learning manner where supervised values are given
even in unobserved points in the training phase. As a supervised spatial interpolation,
one can apply deep inpainting methods. Image inpainting is a computer vision task of
reconstructing missing regions in an image and is applied to the enhancement of damaged
images, e.g., with scratches and noises and object removal from images (Elharrouss et al.
(2020)). Recently, deep convolutional encoder-decoder network based approaches have been
actively developed (Liu et al. (2018), Yan et al. (2018), Zeng et al. (2019)). The semantic
context of an image is encoded into a latent feature space by the encoder, and then semantic-
coherent patches are generated by the decoder. These deep inpainting methods enable
adaptive and nonlinear spatial interpolation model based on the pattern of surrounding
observed values, allowing us to spatially coherent interpolation, e.g., smooth surface.

However, the property of translation invariance induced by convolutional operations
in the encoder-decoder network, would limit further performance improvement since the
relationship between the target and its surrounding observed points varies from region to
region depending on the local environment, e.g., topography and subsurface structure.

To overcome this translation-invariant problem in deep inpainting methods for spatial
interpolation, we propose a position-dependent convolution kernel in which kernel weights
are adaptively adjusted depending on the position of an image. More specifically, we obtain
a position-feature map adaptively, each pixel corresponding to the scale or bias adjustment
value of kernel weights at each position, through the training process of the encoder-decoder
network. Then, we apply it at a specific encoder layer to extract position-dependent context
and generate position-coherent patches by the decoder.

Through experiments with simulated ground-motion data, we show the effectiveness
of our proposed method, called, PoDIM (POsition-dependent Deep Inpainting Method),
on spatial interpolation in comparison with classical linear models and deep inpainting
methods.

2. Related works

In this section, we review existing spatial interpolation methods and deep inpainting meth-
ods.

2.1. Spatial interpolation methods

Spatial interpolation methods estimate the value of an unobserved target point from its
neighbor observed values (Li and Australia (2008)). Let us denote observed spatial data of e-
th event by the m-pair of point xobs and its observed value yobs, i.e., dobse =

{
(xobs

i , yobsei )
}m

i=1

where observed points {xobs
i }mi=1 are fixed over events. Then, we estimate the value yj of

a point xj given the observation dobse . In the spatial interpolation methods, a linear model
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flinear(·), i.e, a weighted sum the observed values {yobsei }mi=1 (Lu and Wong (2008)) is used
as

ŷej = flinear
(
xj

∣∣ dobse

)
≡

m∑
i=1

wjiy
obs
ei . (1)

where wji is the weight for the observed value yobsei and it is set based on the relationship
between two points, i.e., xj and xobs

i .

2.1.1. Inverse distance weighting

IDW (inverse distance weighting) (Lu and Wong (2008), Li et al. (2018)) sets the weight
based on the distance between a point xj and its neighbor observed points {xobs

i }i∈S(xj) as

wji =
r(xj ,xi)

−α∑
i′∈S(xj)

r(xj ,xi′)−α
, r(x,x′) ≡ ∥x− x′∥2, (2)

where S(xj) is a set of indices of neighbor observation points of the point xj and α is a
power parameter. The power parameter is usually set at 1 or 2 and can be adaptively
set based on the relative distance w.r.t. the expected distance (Lu and Wong (2008)).
IDW assumes neighbor observation points are uniformly distributed w.r.t. the target point
xj . However, the neighbor observed points could be distributed with a cluster in a specific
direction in reality, and the clustered observed values strongly influence the estimated value.
The influence of the imbalanced observed points could be alleviated by adjusting weights
based on the similarities between observation points (Li et al. (2018)).

2.1.2. Kriging

Kriging optimizes weights w so as to minimize the variance of estimated value ŷej which
is computed using the variance γ(r) of the deviation of values y between two points in a
distance r as

γ(r) =
1

2
var

[
y(x+ r)− y(x)

]
, (3)

where y(x) is the value at point x. The variance, called variogram, is modeled by linear,
exponential, and Gaussian functions, and parameters of which are estimated using neighbor
observations {(xobs

i , yobsi )}i∈S(xj) (Matheron (1963), Li and Australia (2008)). Since the
larger the distance r usually causes the higher variogram γ(r), the weights are tuned so that
nearer observation points are likely to have higher weights, similarly to IDW. In addition, to
estimate the variogram accurately, Kriging assumes that the target point xj is surrounded
by neighbor observation points. Thus, in practice, neighbor observations are selected using
Delaunay triangulation—vertices of the triangle containing the target point xj , i.e., 1

st-
order triangle, and vertices of the triangle and its adjacent triangles, 2nd-order triangle, are
used as neighbor observed points S(xj) (Hessami et al. (2001)).

2.1.3. Problem of linear model

These spatial interpolation methods estimate the value of unobserved points linearly with
their neighbor observed values. This linear model estimation would be acceptable in regions
with dense observation sites; however, it is likely to degrade the interpolation accuracy in
sparse sites due to its high non-linearity against the observed values.
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2.2. Image inpainting

Image inpainting is a computer vision task of reconstructing missing regions in an image (El-
harrouss et al. (2020)). Let us denote training data by N tr-pair of image Y ∈ Rdh×dw and
its mask M ∈ Rdh×dw , i.e., Dtr = {(Ye,Me)}N

tr

e=1 where dh and dw are the height and width
of an image, and mask M is defined as

M [h,w] =

{
0 if pixel at (h,w) is missing
1 otherwise.

(4)

Then, we consider an inpainting function f(·) to convert masked images into unmasked ones
as

Ŷe = f
(
Ye ⊙Me

)
. (5)

where ⊙ is element-wise multiplication. Recently, deep convolutional encoder-decoder
network based approaches have been actively developed (Liu et al. (2018), Yan et al.
(2018), Zeng et al. (2019)).

2.2.1. Partial convolution

Partial-conv is one of the state-of-the-art deep inpainting methods (Liu et al. (2018)) where
the convolution operation is performed against a masked image as

ŷl+1 =

{
pconv(Y l,M l) sum(1)

sum(c(M l))
+ b if sum(c(M l)) > 0

0 otherwise,

pconv(Y,M) ≡ sum
(
W ⊙ c

(
YM

))
,

YM ≡ Y ⊙M (6)

where l, W ∈ Rs×s and b are a layer index, kernel weight matrix and bias respectively, and
sum(X) and c(X) ∈ Rs×s are the sum of all elements in a matrix X and the cropped map

X for the current convolution window respectively. In addition, 1 ∈ Rs×s and sum(1)
sum(c(M l))

are

the matrix of all elements being 1 and the ratio of missing area in the current convolution
window, to adjust the scale of output ŷ. We note that this operation of partial-conv without
the bias-term at one layer is exactly same as the linear spatial interpolation model flinear(·)
in Eq. 1.

The mask is also updated at each layer as

ml+1 =

{
1 if sum(c(M l)) > 0
0 otherwise,

(7)

where since the updated maskM is set to 1 even if the mask c(M) contains only one observed
pixel, the ratio of the missing area is shrunk layer by layer. Then, encoder-decoder network
architecture, i.e., U-Net, is used as an inpainting function f(·) as

Ŷe = f(Ye ⊙Me) = (decϕ ◦ encθ)(Ye ⊙Me), (8)

where ◦ denotes function composition, and θ and ϕ are parameters of convolution in encoder
and decoder networks respectively. Parameters in networks are tuned to minimize the loss
function.
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Through the encoder-decoder architecture with partial convolution and loss functions,
partial-conv enables us to estimate the value of missing regions non-linearly with neighbor
observed values with a smooth surface in terms of both values and semantic context.

2.2.2. Problem of translation invariance

The property of translation invariance in convolutional operations, would be adequate for
general image inpainting tasks; that is, the position of target objects with missing regions,
i.e., person, building, and scene, is arbitrary, and a common interpolation strategy would
be helpful for all locations. However, in the spatial interpolation of environmental data, the
relationship between the target and its surrounding observed point values varies from region
to region depending on the environment, e.g., topography and subsurface structure, even if
the surrounding observation patterns are the same. Therefore, the property of translation
invariance could disturb fine-grained spatial interpolation.

3. Proposed method

To realize nonlinear and position-dependant fine-grained spatial interpolation in environ-
mental data, we propose to apply and extend existing deep inpainting methods by intro-
ducing adaptive position-dependant convolution.

3.1. Creation of mask-map and image from environmental data

To apply deep inpainting methods to spatial interpolation problems, we encode the location
of observation sites and spatial environmental surface data into images. Let us denote the
coordinate transformation function from image pixel (h,w) to the world coordinate xhw,
e.g., latitude and longitude, by xhw = p(h,w). Then, we create mask map M expressing
observation sites and an image expressing environmental surface data as

M [h,w] =

{
1 if (h,w) = argmin

(h′,w′)∈{1...dh}×{1...dw}
∥xobs − p(h′, w′)∥2 ∀xobs ∈ Xobs

0 otherwise,
(9)

Y [h,w] = y
(
p(h,w)

)
, (10)

where Xobs = {xobs
i }mi=1 and the resolution of mask M and image Y , i.e., dh×dw is set as the

same resolution of environmental surface data. Fig. 2(a)subfigure depicts the illustration
of the process of mask-map creation and Fig. 2(b)subfigure depicts an example of mask
created for seismic observation sites in Fig. 1(a)subfigure—the resolution of mask is set
as the same resolution of the environmental surface data, (dh, dw) = (518, 508). We note
that the mean absolute error between actual seismic observation sites and mask observation
points in latitude and longitude are as small as 0.00426 and 0.00626 degrees corresponding
to about 0.47 and 0.57 km, respectively.

3.2. Position-dependent convolution

To overcome the translation invariance problem of convolution operation for spatial inter-
polation tasks, we propose a position-dependent kernel by introducing an adaptive position-
feature map. Let us denote the position-feature map by P ∈ Rdh×dw each element of which
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Figure 2: (a) Illustration of mask creation process for (dh, dw) = (4, 4) —if grid point p(h,w)
is the nearest point from one of observed points Xobs, then M [h,w] is set to 1 (in
white), otherwise 0. (b) An example of mask-map M created for observation sites
in Fig. 1(a)subfigure—the resolution of mask is set as the same resolution of the
environmental surface data, (dh, dw) = (518, 508) in Fig. 2(b)subfigure. White
dots and black surfaces indicate M [h,w] = 1 and M [h,w] = 0 respectively.

is a trainable scalar parameter. Then, as shown in Fig. 3, we transform kernel weight W
dependently on the position of an image it applies using the position-feature map P as

W ′ = g
(
W, c(P )

)
, ppconv(Y,M,P ) = sum

(
W ′ ⊙ c(YM )

)
, (11)

where g(·) and ppconv(·) are a kernel transformation and position-dependent convolution
functions respectively. We consider various types of transformation.

3.2.1. Scale-adjustment function

We adjust the scale of each element of kernel-weight W dependent on the position as

gscale
(
W, c(P )

)
= W ⊙ c(P + 1). (12)

where 1 is the matrix of all elements being 1 with the same size of the position-feature
map P . The position-dependent convolution ppconv(·) with the scale-adjustment can be
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position-feature map 𝑃𝑃

kernel weight𝑊𝑊

transformation function
𝑔𝑔(𝑊𝑊, 𝑐𝑐 𝑃𝑃 )

transformed kernel weight𝑊𝑊𝑊

cropped c(𝑃𝑃)

Figure 3: Illustration of position-dependent convolution in which kernel-weight W is
transformed based on position-feature map P using transformation function
g(W, c(P )).

performed with modification of partial-conv pconv(·) in Eq. 6 as

ppconvscale(Y,M,P ) = sum
((

W ⊙ c(P + 1)
)
⊙ c(YM )

)
= sum

(
W ⊙ c

(
YM )

)
+ sum

(
W ⊙ c

(
YPM )

)
,

= pconv(Y,M) + sum
(
W ⊙ c

(
YPM )

)
,

YPM ≡ Y ⊙ P ⊙M. (13)

where sum
(
W ⊙ c

(
YPM )

)
is a variant of partial-conv against masked and scale-adjusted

image YPM .

3.2.2. Bias-adjustment function

We adjust the bias of each element of kernel-weight W dependent on the position as

gbias
(
W, c(P )

)
= W + c(P ). (14)

The position-dependent convolution operation with the bias adjustment can also be per-
formed with a small modification of pconv(·) as

ppconvbias(Y,M,P ) = sum
((

W + c(P )
)
⊙ c(YM )

)
= sum

(
W ⊙ c(YM )

)
+ sum

(
c
(
P ⊙ YM

))
= pconv(Y,M) + sum

(
c
(
YPM

))
. (15)
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Figure 4: Illustration of the framework of our proposed method, PoDIM for spatial inter-
polation, consisting of U-Net and position-feature branch. In encoder enc(·) and
decoder dec(·) networks, partial convolutions are repeatedly applied to extract
feature map from observed pixels. In position-feature branch, initial 1-channel
position-feature maps Ps and Pb are converted to multi-channel feature maps P ′

s

and P ′
b through convolution networks. Then, at a target layer of the encoder-

network, e.g., m = 2, position-dependent convolution using transformation func-
tion; scale-adjustment gscale(·), bias-adjustment gbias(·) or affine-transformation
gaffine(·) is applied.

3.2.3. Affine transformation function

We adjust both the scale and bias of each element of kernel-weight W dependent on the
position as

gaffine

(
W, c(Ps), c(Pb)

)
= W ⊙ c(Ps + 1) + c(Pb), (16)

where Ps and Pb are position-feature maps for scale and bias adjustment. The convolution
operation with the affine transformation can be performed by the combination of scale and
bias adjustment functions as

ppconvaffine(Y,M,Ps, Pb) = sum
((

W ⊙ c(Ps + 1) + c(Pb)
)
⊙ c

(
YM

))
= ppconvscale(Y,M,Ps) + sum

(
c
(
YPM

))
. (17)

3.3. Position-feature branch

To apply position-dependent convolution to arbitrary target layer m, we prepare position-
feature map Pm ∈ Rdmh ×dmw with the same resolution as the one of the feature-map of the
m-th target-layer and then convert it to Pm′ ∈ Rcm×dmh ×dmw in position-feature branch with
convolution operations as

Pm′
= branchγ(P

m), (18)
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where γ is the parameter of convolution in the position-feature branch and (cm, dmh , dmw ) are
the channel, height, and width of the feature-map in the m-th layer.

3.4. Entire architecture and training

The architecture of our proposed method, called PoDIM (Position-dependent Deep Inpaint-
ing Method), is illustrated in Fig. 4, consisting of U-Net with partial and position-dependent
convolution layers and position-feature branch. Thus, the inpainting function f(·) in our
architecture is defined as

Ŷe = f(Ye ⊙Me) = (decϕ ◦ encθ)(Ye ⊙Me, P
m′
s , Pm′

b ). (19)

Parameters θ, ϕ, Ps, Pb and γ are tuned so as to minimize the loss function as

min
θ,ϕ,γ

[ 1

N tr

Ntr∑
e=1

{
10Lobs

e + Lunobs
e

}]
, (20)

where Lobs and Lunobs are losses for observed and unobserved points, respectively, defined
as

Lobs
e ≡

∥∥∥S ⊙Me ⊙
(
Ye − Ŷe

)∥∥∥
1
,

Lunobs
e ≡

∥∥∥S ⊙
(
1−Me

)
⊙
(
Ye − Ŷe

)∥∥∥
1
. (21)

where S ∈ Rdh×dw is the evaluation target-mask to exclude outer region, e.g., sea and lakes,
from the evaluation, defined as

S[h,w] =

{
0 if pixel (h,w) is in the outside of evaluation-region
1 otherwise.

(22)

To train both encoder-decoder networks and position-feature branch effectively, we use
multi-phase training. As the phase-1, we freeze position-feature map Ps and Pb, and pa-
rameters γ in position-feature branch after setting initial values as Ps = Pb = 0 so as to
disable kernel transformation function p(·), i.e., pscale(·) = pbias(·) = paffine(·) = pconv(·).
That is, in phase-1, the entire network is equivalent to partial-conv. In phase-2, we freeze
parameters θ and ϕ in the encoder-decoder network and train only position-feature map
and position-feature branches. Lastly, in phase-3, we refine the encoder-decoder networks
with a fixed position-feature map and position-feature branch.

4. Experimental evaluation

We evaluate the performance of spatial interpolation of our proposed method, PoDIM us-
ing simulated ground-motion data, in comparison with classical spatial interpolation meth-
ods: IDW (in Sec. 2.1.1) and Kriging (in Sec. 2.1.2), and deep image inpainting method:
partial-conv (in Sec. 2.2.1). We use PSNR (Peak Signal-to-Noise Ratio) for the performance
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evaluation of spatial interpolation, defined as

PSNR = 10 log10
MAX2

MAE
,

MAE ≡ 1

N tesum(S)
sum

(
S ⊙

(
Ye − Ŷe

)
⊙
(
Ye − Ŷe

))
. (23)

where N te and MAX are the number of test data and the maximum possible error, respec-
tively. We perform L-fold cross-validation where data D are split into L-group {Dl}Ll=1

and a model is trained using {Dl}l ̸=l′ and its performance is evaluated using Dl′ for each
l′ = 1, 2, . . . , L. Thus, in total, all data are used for the evaluation with L different models,
i.e., Dte = {Dl}Ll=1.

We compare the performance of spatial interpolation generated by the following meth-
ods:

• IDW, α = 1 & 1st-triangle (in Sec. 2.1.1)—the power parameter is set as α = 1 and
three vertices of the triangle including a target point xtar are used as observation
points {xobs

i }3i=1. Triangles are generated by Delaunay triangulation as shown in
Fig. 4 in the supplementary document.

• IDW, α = 1 & 2nd-triangle (in Sec. 2.1.1)—the vertices of adjacent triangles and the
triangle including a target point xtar are used as observation points {xobs

i }3∼6
i=1 .

• IDW, α = 2 & 1st-triangle (in Sec. 2.1.1)—the power parameter is set as α = 2

• IDW, α = 2 & 2nd-triangle (in Sec. 2.1.1)

• Kriging, linear & 1st-triangle (in Sec. 2.1.2)—linear variogram model is used

• Kriging, linear & 2nd-triangle (in Sec. 2.1.2)

• Kriging, exp & 1st-triangle (in Sec. 2.1.2)—exponential variogram model is used

• Kriging, exp & 2nd-triangle (in Sec. 2.1.2)

• Partial-conv (in Sec. 2.2.1)—10-layer encoder-decoder-network with skip-connection,
which corresponds to the model trained at the phase-1 in our proposed method,
PoDIM (see Sec. 3) with disabled position-feature branch, as shown in Fig. 4

• PoDIM, m = 2 & scale (in Sec. 3)—our proposed method where scale adjustment
function gscale(·) is applied at m = 2 layer as shown in Fig. 4, in which given the
model trained at the phase-1 for partial-conv, it is updated through the phase-2 and
-3.

• PoDIM, m = 2 & bias (in Sec. 3)—our proposed method where bias adjustment
function gbias(·) is applied at m = 2 layer

• PoDIM, m = 2 & affine (in Sec. 3)—our proposed method where affine transformation
function gaffine(·) is applied at m = 2 layer

As for training partial-conv and PoDIM, early stopping based on the PSNR of randomly
selected validation data from Dtr with the patience of 10-epoch is used, and the model with
the maximum PSNR in the training epochs is saved.
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Figure 5: Variability of the possible earthquake rupture parameters for the anticipated
megathrust earthquakes in the Nankai trough (Maeda et al.). (a) 15 patterns of
the earthquake source area, denoted by red lines, and the earthquake magnitude
labeled as Mw. (b) Spatial patterns of the location of the asperities. Asperities are
set according to the combination of three patterns of the square-shaped patches
in the deeper zone on the fault with two patterns of banana-shaped patches in
the shallower zone near the trench. (c) 10 patterns of the location of the rupture
initiation points, denoted by stars.

4.1. Ground-motion data

For the experiments, we used simulated ground-motion data obtained from 3-D earthquake
ground-motion simulations for as many as 360 rupture scenarios for the anticipated megath-
rust earthquakes in the Nankai trough (Maeda et al.). Ground-motion simulation is a nu-
merical computation (finite-difference) of seismic wave propagation from the earthquake
source to the ground surface within a 3-D medium, as shown in the schematic drawing
in Fig. 5 in the supplementary document. The earthquake source fault, or the rupture
area within Earth’s crust, is modeled as an ellipse-like shape extending beneath the islands
and consists of several asperities, or the patches on the fault that are modeled to generate
stronger seismic waves compared to the other area. In this study, the rupture process of
each earthquake source model is referred to as rupture scenario. As depicted in Fig. 5, 360
rupture scenarios have been set to describe the variability of the possible earthquake rup-
ture parameters, including (a) the earthquake source area and magnitude, (b) the spatial
pattern of the asperity locations, and (c) the location of the rupture initiation point, etc.;
therefore, the simulated ground motion varies from one scenario to another, reflecting the
difference in the rupture parameters.
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The simulated ground-motion waveforms are transformed into 5% damped velocity re-
sponse spectra (Sv) at the period of 5 seconds, a type of ground-motion intensity often
used for earthquake engineering purposes. The simulated Sv data are obtained at a total
of 77609 grids on the ground surface with approximately 2 km intervals. Fig. 1(b)subfigure
depicts an example of simulated ground-motion data when parameters (a), (b) and (c) in
Fig. 5 are set to No.1, the combination of pattern-1 and pattern-A, and h01, respectively.
Note that we clip the value of response spectra in the range [0, 8] and normalize it to [0, 1]
for experimental evaluation purpose.

We consider the following three experimental settings;

• All—all 360 scenarios using L = 10 cross-validation

• East—150 scenarios with east rapture initiation points, h04, h05, h09 and h10 (see
Fig. 5 (c)) using L = 5 cross-validation

• West—140 scenarios of west rapture initiation points, h01, h02, h06 and h07 (see
Fig. 5 (c)) using L = 5 cross-validation

4.2. Evaluation results

Table 1 depicts the performance comparison using PSNR for three settings: All, East,
and West. The table shows that among classical methods, more complex models, e.g.,
IDW with α = 2 and Kriging with exponential variogram, using a greater number of
observations, e.g., 2nd-triangle tend to have higher performance, indicating that spatial
interpolation in ground-motion would require models to have high expression capability.
Related to this point, the table shows that deep inpainting methods tend to have much
higher performance than all variants of classical interpolation methods since inpainting
methods have highly nonlinear representation capability w.r.t. observed values Y ⊙M and
high-dimensional models are optimized through supervised learning. Our proposed method,
PoDIM, further improves the performance over partial-conv in all data sets; All, East and
West, more than about 1-point, indicating position-dependent convolution applied at the
layer m = 2 is effective for locally fine-grained interpolation. Fig. 6 depicts examples of
PSNR values computed using training and validation data in the phase-1, -2, and -3 of
training of our proposed method, PoDIM. The figures show that although the training of
phase-1, corresponding to partial-conv converges, by training the position-feature map P
and position-feature branch branchγ(·) in the phase-2, PSNR further improves in phase-3,
indicating position-dependent convolution enables fine-grained interpolation.

Fig. 7 depicts examples of masked image Y ⊙M , true image Y , and interpolated image
Ŷ and Fig. 8 depicts true vs. predicted values. Figures show that given extremely sparse
observed values (b), our proposed method, PoDIM (f), can produce fine-grained interpolated
images which look much similar to the true one (a) and have higher PSNR scores than
existing methods.

Overall, these experimental results show that our proposed method, PoDIM, could be
an effective spatial interpolation method, as our proposed method outperforms existing
methods.
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Table 1: Performance comparison using PSNR for ground-motion data. The method with
the best score is indicated in bold.

Group Method All East West

Classic

IDW, α = 1 & 1st-triangle 29.10 29.76 27.82
IDW, α = 1 & 2nd-triangle 28.84 29.57 27.57
IDW, α = 2 & 1st-triangle 29.16 29.79 27.86
IDW, α = 2 & 2nd-triangle 29.18 29.83 27.91
Kriging, linear & 1st-triangle 28.64 29.30 27.41
Kriging, linear & 2nd-triangle 28.28 29.02 27.05
Kriging, exp & 1st-triangle 28.65 29.32 27.42
Kriging, exp & 2nd-triangle 28.90 29.55 27.65

Inpainting

Partial-conv 35.32 33.27 31.61
PoDIM, m = 2 & scale 36.79 33.95 32.44
PoDIM, m = 2 & bias 36.44 33.87 32.70
PoDIM, m = 2 & affine 36.30 33.83 32.35
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Figure 6: Examples of training curves; PSNR values computed using training and validation
data over epochs in phase-1, -2, and -3 training in our proposed method, PoDIM
with scale-adjustment for l = 1-fold cross validation in all seismic motion data.

5. Conclusion

In this work, we proposed a new deep learning framework for spatial interpolation for
environmental data by introducing position-dependent convolution into U-Net-based image
inpainting architecture where the scale and bias of kernel weights are adjusted depending
on its position on an image. We showed the effectiveness of our proposed methods through
experiments with seismic ground-motion data. Further analysis of the proposed method
with other environmental data would be future work.
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