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1. Uncertainty Metrics

Differing from the existing UniDA methods that only consider single or few uncertainty mea-
sures, we consider all known uncertainty measures: energy, entropy, confidence, consistency,
distance, and similarity.

1.1. Energy

Energy is used to estimate the physical properties and the outlier degrees of target sam-
ples (Liu et al., 2020). Considering the ensemble classifiers, we define it by

zener(xt) = − τ
m

m∑
i=1

log
K∑
j=1

eGi(xt)/τ , (1)

where τ denotes the temperature parameter. The higher the negative energy of xt, the
higher the uncertainty of xt and the more likely it belongs to the open classes. However,
we find that energy is always dominated by the maximum logit and ignores the values of
non-maximum logits. To mitigate this issue, we introduce entropy for the comprehensive
consideration of output probability distributions as follows.

1.2. Entropy

Entropy is used to measure the prediction uncertainty and smoothness of class distribution
form the perspective of information theory. For each target instance xt, entropy is defined
by

zentr(xt) = − 1

m

m∑
i=1

K∑
j=1

[η̃ ◦Gi(xt)]j log[η̃ ◦Gi(xt)]j , (2)

where η̃ denotes the softmax function and symbol ◦ denotes function composition. The
higher the entropy of xt, the more likely xt is belonging to the open classes with large
uncertainty. Through minimizing the entropy separation loss, the entropy values of common
classes and open classes are highly distinguishable. Entropy exhibits low discriminability
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for highly uncertain and extremely sharp predictions (Fu et al., 2020), i.e., the relative
difference of entropy values between sharp predictions is very small when the target class
number is large. To remedy this problem, we adopt confidence to measure the non-smooth
distributions as follows.

1.3. Confidence

Confidence indicates how affirmative the estimated label yt of xt is. For each target instance
xt, the corresponding confidence is defined by

zconf(xt) =
1

m

m∑
i=1

max(η̃ ◦Gi(xt)) . (3)

The lower the maximum confidence, the more likely xt is an open-class instance with large
uncertainty. When training, the selection of unlabeled target samples with high confidence
predictions can move decision boundaries to low-density regions. However, some of these
selected samples are misplaced because the confidence only pays attention to the largest
probability, but which is easily misled by poor-calibrated neural networks. To calibrate
the over-confidence values, we introduce consistency between multiple diverse ensemble
classifiers.

1.4. Consistency

Consistency is more robust to prediction errors because all ensemble classifiers have a low
probability of making the same error (Fu et al., 2020). For each target instance xt, the
corresponding consistency is defined by

zcons(xt) = 1
K

∥∥∥ 1
m

∑m
i=1

(
η̃ ◦Gi(xt)− 1

m

∑m
i=1 η̃ ◦Gi(xt)

)2 ∥∥∥
1
. (4)

Consistency is higher for a more certain target data point in open classes. The above four
uncertainties only measure the openness of target samples from the perspective of prediction
results. We introduce the feature distance and domain similarity from the perspective of
feature representation.

1.5. Distance

Distance is used to measure the the Euclidean distance between the features of target samples
and the cluster centroids µ of source examples. For each target instance xt with feature f ,
the corresponding distance is defined by

zdist(xt) = min{‖f − µ1‖2, ..., ‖f − µK‖2} . (5)

Distance is higher for the target instance in open classes. We choose the minimum distance
as the uncertainty quantity because it is more like an open class if a target instance is far
from the most similar class in the source domain.
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1.6. Similarity

Similarity is used to estimate how far away each target instance is from the source domain.
For each target instance xt with feature f , its similarity is defined by

zsimi(xt) = [η̃ ◦D(f)]1 , (6)

where [·]1 denote the 1-th index of the softmax output. The lower the similarity, the more
likely xt is belonging to the open classes with large probability.

In summary, we integrate six active uncertainty measures that contribute to the accurate
detection of target open-class samples from the perspectives of prediction results and feature
representation, respectively. The above analysis shows that the six uncertainty measures
can promote each other in complementary. Thus they can further represent the attributes
of target samples to learn the transferable decision tree.

2. Datasets

Office-31 (Saenko et al., 2010) is a standard UDA dataset consisting of three distinct
domains, Amazon from the Amazon website, Webcam by the web camera, and DSLR by
digital SLR camera. It has 4,652 images with 31 unbalanced classes (see Figure 1).

Figure 1: Some example images in the Office-31 dataset.

Office-Home (Venkateswara et al., 2017) is a more challenging domain adaptation
dataset consisting of 15,599 images with 65 unbalanced classes. It consists of four more
distinct domains: Artistic images, Clip Art, Product images, and Real-world images (see
Figure 2).

DomainNet (Peng et al., 2019) is the most challenging domain adaptation dataset
consisting of six different domains: clipart collected from clipart images, real collected from
photo-realistic or real-world images, sketch collected from the sketches of specific objects,
infographic images with specific object, painting artistic depictions of objects in the form of
paintings and quickdraw, and quickdraw collected from the drawings of game (see Figure 3).
This dataset contains about 600,000 images distributed in 345 categories. In the alphabet
order, we use the first 150 classes as common classes Y, the next 50 classes as Ȳs, and the
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Figure 2: Some example images in the Office-Home dataset.

rest as Ȳt following (Fu et al., 2020). We choose three domains to construct six transfer
tasks due to the large amount of data.

Figure 3: Some example images in the DomainNet dataset.

VisDA-2017 (Peng et al., 2017) is a simulation-to-real dataset with two extremely
distinct domains: Synthetic 2D renderings of 3D models generated from different angles
and with different lighting conditions, and Real collected from photo-realistic or real-world
image datasets (see Figure 4). With 280,000 images in 12 classes, the scale of VisDA-2017
brings challenges to domain adaptation.

Figure 4: Some example images in the VisDA-2017 dataset.
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3. Result

3.1. Semi-separated Uncertainty Decision-maker

While extensive experimental results have proved the strengths of our semi-separated
uncertainty decision-maker in target open-class detection, we provide a broader spectrum for
more in-depth analysis. Figure 5 visualizes the learning results of semi-separated uncertainty
decision-maker on many UniDA tasks. We can observe that semi-separated uncertainty
decision-makers can adaptatively discover multiple uncertainties’ threshold parameters and
importance orders. Interestingly, entropy occupies most roots of these semi-separated
uncertainty decision-makers. The importance orders of other uncertainty measures meet
our expectations. These results indicate that the performance of semi-separated uncertainty
decision-makers is robust and is not susceptible to different tasks.

(a) A→W (b) D→W (c) W→D

(d) A→D (e) D→A (f ) w→a

Figure 5: The visualization of learned transferable decision trees on the six tasks of Office-
31.
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