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Abstract

Universal domain adaptation (UniDA) is a new sub-topic of unsupervised domain adaptation.
It handles the problem that the source or target domain possibly has open-class samples.
The inborn challenge is to detect the open-class samples in the test phase. Pioneering
studies could be viewed as dependent-detector-based methods. They cleverly design efficient
uncertainty metrics (e.g ., confidence, entropy, distance) based on the outputs of domain
adaptation models (predictor) to detect open-class samples. However, they have a pain point
in setting extremely-sensitive and task-dependent thresholds on the uncertainty metrics to
filter open-class samples. To bypass this pain point, we propose a semi-separated-detector-
based method, Semi-Separated Uncertainty Adversarial Learning (SNAIL). We build a
semi-separated uncertainty decision-maker to enable sensitive-threshold-free detection. It
receives multiple uncertainty metrics as attributes and separately learns the thresholds
of uncertainty metrics in a multi-level decision rule. For some challenging tasks, the
uncertainty margins between common and open classes are subtle, leading to difficulty
learning optimal decision rules. We present the uncertainty separation loss to enlarge the
uncertainty margin. Further, forcibly aligning the distributions could incorrectly align the
open classes to common classes. Thanks to the open-class detection strategy, we design the
conditional-weighted adversarial loss that adversarially and selectively matches the feature
distributions to defeat the distribution misalignment problem. Extensive experiments show
that SNAIL remarkably outperforms the state-of-the-art domain adaptation methods, with
over 25% improvements in open-class detection accuracy for some tasks.
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1. Introduction

As one of the booming branches of artificial intelligence, machine learning has been con-
tinuously connected to various data analysis and processing scenarios, actively promoting
the intelligent process of application fields, generating substantial economic and social
benefits (Shalev-Shwartz and Ben-David, 2014). Machine learning techniques already demon-
strate more stable performance in closed and static task environments where the identical
distribution assumption is well satisfied (LeCun et al., 2015; He et al., 2016). However, this
assumption does not hold in one of the open and dynamic task environments where the data
distribution does change over time (Han et al., 2020). Unsupervised domain adaptation is a
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superb strategy that enables an algorithm to transfer from a labeled source domain to an
unlabeled domain under the distribution shift (Han et al., 2021; Ben-David et al., 2007).

Further, the distribution shift problem often co-occurs with another problematic situation
in the open and dynamic task environment: the openness of the label set. The label set of
source or target domain perhaps holds open classes, further degrading the robustness of
machine learning techniques. For example, before the emergence of COVID-19, the standard
domain adaptation algorithm for pneumonia detection could only identify common-type
pneumonia cross domains (e.g ., different hospitals, various types of devices). After COVID-
19 suddenly emerges in clinical but has not yet been detected, the target domain possibly
contains COVID-19 samples. At this time, one cannot guarantee the algorithm’s robustness.
Thus it is urgent to develop new domain adaptation algorithms to detect COVID-19 timely.
To overcome this latest issue, we advance the new topic called universal domain adaptation
(UniDA) to remove the label set constraints (You et al., 2019).

The new problem setting introduces two entangled challenges: (1) How to detect the
open-class samples without prior knowledge about the label set? Since open-class samples
usually have larger uncertainties than common class samples, most of the pioneering UniDA
works are dependent-detector-based methods that depend on the output of the domain
adaptation models (e.g ., confidence metric, entropy metric, similarity) to detect open
classes (You et al., 2019; Fu et al., 2020). However, they require extremely-sensitive and
task-dependent thresholds acted on the above uncertainty metrics to split open and common
classes. The quality of a dependent detector is also highly influenced by the quality of the
model output (Hendrickx et al., 2021). (2) How to match the distributions across domains
under the unexpected category shift? Forcibly aligning the distributions could incorrectly
align the open classes to common classes, leading to catastrophic misalignment (Saito et al.,
2020). Solving the first challenge is the prerequisite for the second challenge. Only when we
accurately identify the open classes will reduce its impact on distribution alignment.

In this paper, we propose Semi-separated uNcertainty AdversarIal Learning (SNAIL),
an effective and comprehensive solution that enables sensitive-threshold-free open-class
detection and weak distribution alignment. The key insight is that, rather than designing a
dependent detector, a separated detector is agnostic of domain adaptation models (predictor)
and can be trained independently of the predictor. The separated detector could be
an extra decision-maker that can separately decide the classification boundary between
open and common classes without sensitive thresholds. However, not sharing information
between the predictor and detector results often in sub-optimal detection performance. To
balance the independence and optimal performance, we propose a semi-separated uncertainty
decision-maker that depends on the outputs of predictors as attributes and separately learns
the thresholds of them to classify each sample into an open or common class. For some
challenging tasks, the boundary between open and common classes is ambiguous and difficult
to learn. Thus we propose the uncertainty separation loss that draws an explicit uncertainty
boundary with a large uncertainty margin. We further propose the conditional-weighted
adversarial loss that adversarially and selectively matches common class feature distributions
by leveraging the uncertainty boundary to avoid the catastrophic misalignment problem.
We ultimately integrate our methods into an end-to-end solution, successfully mitigating the
negative influence of the category gap and the distribution shift.

The main contributions of this paper are:
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(1) We propose the semi-separated uncertainty decision-maker to resolve the common
pain point regarding the manual thresholds of uncertainty metrics. We establish the clear
separation between the detector and the predictor and make it transparent why a prediction
was or was not made. The proposal can also blend into other UniDA frameworks.

(2) We propose two novel learning objectives: uncertainty separation loss and conditional-
weighted adversarial loss, designed for category gap and distribution shift, respectively.

Method H-score

ResNet 25.4
DANN 25.7
RTN 26.0
IWAN 27.6
PADA 23.1
ATI 26.3
OSBP 27.3
UAN 30.5
CMU 34.6
Ours 59.8
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Figure 1: Open-class detection per-
formance on VisDA.

Their novelty lies in the uncertainty boundary with
large margins that help filter out open-class samples to
promote common-class adaptation when conducting
adversarially training.

(3) We empirically validate the proposal on four
UniDA benchmarks, on which SNAIL outperforms
pioneering methods on multiple evaluation metrics,
especially in open-class detection. Taking Figure 1
as an example, the open-class detection performance
(e.g ., H-score) of our method remarkably outperforms
the state-of-the-art method (CMU) by almost 25%
H-score on the VisDA dataset.

2. Related Work

This section outlines closed-set domain adaptation, partial domain adaptation, open-set
domain adaptation, and universal domain adaptation. Figure 2 shows their differences.

Closed-set domain adaptation has been gaining momentum in the past decade to
cope with the distribution shift (Han et al., 2021). Previous works have fulfilled in-depth
research in theory, which have firmly established the algorithm foundation (Han et al.,
2020; Ben-David et al., 2007; Zhang et al., 2019). From the way of aligning distribution
shift, previous works can be assorted into importance estimation (Sugiyama et al., 2008),
moment matching (Huang et al., 2006; Long et al., 2015), pseudo labeling (Sener et al., 2016;
Saito et al., 2017), and adversarial training (Ganin and Lempitsky, 2015; Long et al., 2018).
Previous works implicitly assume the label set is closed, which is difficult to hold in practice.

Partial domain adaptation assumes the label set of the target domain is a subset of the
source domain. This problem occurs when a source domain has a large annotated dataset,
such as ImageNet (Deng et al., 2009), Global Financial Development Database (Cihak
et al., 2012). There are two strategies to deal with this problem. One intuition strategy
down-weights or picks source examples that are dissimilar to target samples (Cao et al.,
2018a,b). Another strategy uses a domain discriminator to estimate the domain similarity
between private source examples and target samples (Cao et al., 2019; Zhang et al., 2018).
The drawback of partial domain adaptation is the limited application scope.

Open-set domain adaptation deals with that both source and target domains have
common and open classes, but the prior knowledge about the emergence of open classes
is known (Jing et al., 2021; Pan et al., 2020). One of the pioneering works in this line is
proposed by Busto and Gall (2017) that learned to map from the source domain to the
target domain by jointly solving the assignment problem defined by a binary linear program.
Motivated by this, Saito et al. (2018) utilized adversarial training to learn domain-invariant
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features that align the target samples of common classes with the source domain and detect
the target samples of open classes. Baktashmotlagh et al. (2019) learned low-dimensional
features to factorize the target data into shared and private parts. The limitation of open-set
domain adaptation is that the prior knowledge is known.

Source Domain 
Label Set

Target Domain 
Label Set

Closed Set DA Partial DA

Open Set DA 

Universal DA

unknown

Figure 2: Label set differences.

Universal domain adaptation relaxes the
prior knowledge and removes all constraints on the
label sets. It thus has a broader scope of application
but poses a challenge to detect open-class samples.
You et al. (2019) opened this problem and proposed
the novel universal adaptation network that can mea-
sure domain similarity and entropy to evaluate the
transferability of target samples. Fu et al. (2020)
further designed multiple classifiers to calibrate the
uncertainties. However, they use a soft-weighted loss
to align the distributions across domains that could
incorrectly move the open-class features to common
classes. To avoid this problem, Saito et al. (2020)
proposed a domain adaptative neighborhood clus-
tering to align the feature distributions between two
domains weakly. Lifshitz and Wolf (2021) proposed
to score the target samples and apply a threshold to
select common class samples. The common bottle-
neck of previous studies is that they require manual

thresholds for prediction uncertainty metrics, causing them to drop robustness.

3. Methodology

3.1. Learning Setup

In universal domain adaptation, we denote by x the input, y the label, and d the Bernoulli
variable indicating to which domain x belongs. A sample of ns labeled training examples
(xi

s,y
i
s)

ns

i=1 (d = 0) is drawn according to the source distribution p defined on X s × Ys. X s

is the input set and Ys is the label set. Meanwhile, a sample of nt unlabeled test examples
(xi

t)
nt

i=1 (d = 1) is drawn according to the target distribution q defined on X t × Yt. The
crucial difference is that both source label set Ys and target label set Yt contains common
label set and private label set. Y = Ys ∩ Yt is the common set shared by source domain
and target domain. Ȳs = Ys \ Y and Ȳt = Yt \ Y are the private label sets held by both
domains, respectively. Note that the target label set is unavailable at training and only used
to define the UniDA problem. The objective is to detect target open-class data in Ȳt and
predict the accurate label for target data in Y.

3.2. Technical Challenges and Overview

As pointed out in the pioneering work (You et al., 2019), the key technical challenges are
the category gap and the domain gap between two domains without any prior knowledge
about category information. The challenges hinder the naive application of existing closed,
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Figure 3: The framework of the semi-separated umcertainty adversarial learning.

partial, or open-set domain adaptation methods on the UniDA problem. A natural idea to
detect target open-class data in UniDA is to define a threshold to separate the quantities of
uncertainty metrics termed wt (e.g ., confidence, entropy). With a threshold z0, the class c
of an input sample x can be predicted by thresholding class probability vector ŷ w.r.t. z0:

c =

{
unknown wt(x) < z0

arg max(ŷ) wt(x) ≥ z0
(1)

which either detects the target sample x as an “unknown” class or classifies it to one of the
common classes. While the thresholding strategy is intuitive, the threshold parameters are
susceptible to set because we need cross-validation to develop validated thresholds manually.
Setting a fixed threshold of z0 by cross-validation is impractical in domain adaptation because
we cannot access the annotated data of the target domain. Moreover, since the quantities of
uncertainty metrics have substantial differences across different transfer tasks, the fixed (task-
independent) thresholds will cause biased decisions, while the task-dependent thresholds
are time-consuming. To avoid the manual setting of susceptible threshold parameters,
we propose the semi-separated uncertainty decision-maker (SUD) that can adaptatively
determine the thresholds of multiple uncertainty metrics and cut them into multi-level
decision rules (elaborated in Sec. 3.3). Further, it is in the expectation that open-class data
have larger uncertainty quantities than common class data in the target domain. However,
the uncertainty metrics are less discriminative due to the underlying domain gap and the
task difficulty. To ensure the uncertainty quantities are distinguishable, we propose the
novel uncertainty separation (US) loss to keep the target open-class samples far from the
common class samples (elaborated in Sec. 3.4). Moreover, depending on the semi-separated
uncertainty decision-maker, we realize the conditional-weighted adversarial (CA) loss to
avoid incorrectly aligning the open classes to common classes (elaborated in Sec. 3.5).

As shown in Figure 3, the architecture of Semi-separated uNcertainty AdversarIal
Learning (SNAIL) includes four essential parts: the feature extractor F to learn the domain-
invariant feature representation, the target classifier G to predict the labels of inputs, the
ensemble classifiers G1, ..., Gm to estimate and calibrate multiple uncertainty metrics (Fu
et al., 2020; Venkat et al., 2020), and the adversarial domain discriminator D to adversarially
match the feature distributions and quantify the similarity zsimi of x to the source domain.
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3.3. Semi-separated Uncertainty Decision-maker

To avoid the manual threshold z0 in Eq. (1), we propose the semi-separated uncertainty
decision-make. Compared with previous dependent-detector methods, the semi-separated
uncertainty decision-maker adaptatively learns optimal thresholds to detect open-class
samples. Given each input target sample x, its quantities of multiple uncertainty metrics
v(x) = (z1, · · · , zu), and its categorical prediction ŷ over the source label set Ys, the class c
can be predicted with the non-parametric SUD:

c =

{
unknown SUD(v(x)) = 1

arg max(ŷ) SUD(v(x)) = 0
(2)

which either detects the target sample x as an “unknown” class or classifies it as one of the
common classes. If a leaf node predicts x being an open class, then the domain adaptation
model outputs an open class, and ŷ otherwise.

In practice, we adopt the classification and regression tree (CART) (Breiman et al., 1984)
to establish the semi-separated uncertainty decision-maker because CART can provide uncer-
tainty selection, tree generation, and pruning simultaneously. The generation process of the
semi-separated uncertainty decision-maker is recursively constructing a binary classification
and regression tree. We utilize the Gini index minimization criterion to perform uncertainty
selection. The smaller the Gini index, the more optimal the uncertainty metric. We use the
Gini index rather than information gain because information gain contradicts the entropy,
one leader of the uncertainty metrics. Gini Index, also known as Gini impurity, calculates
the amount of probability of a specific attribute that is classified incorrectly when selected
randomly. The period of semi-separated uncertainty decision-maker generation is after the
training of the domain adaptation network (predictor) because the predictor outputs are
more stable at this time.

To train the semi-separated uncertainty decision-maker, we construct a new training
dataset. We collect multiple uncertainty metrics: energy zener (Liu et al., 2020), entropy zentr,
confidence zconf, consistency zcons, distance zdist, and similarity zsimi of each target instance.
We normalize them by minmax normalization to unify them in [0, 1]. Then we compute z by
aggregating the six uncertainties: z = (zener + zentr + (1− zconf) + zcons + zdist + (1− zsimi))/6.
The higher the z(xt), the more likely xt is in open classes. We further sort the aggregated
uncertainties of all target samples (zt) in ascending order. To ensure label cleanness and
class balance, we select top n% samples as open-class data and select bottom n% samples as
common class data. Although n% is a parameter that needs to be set, it is not sensitive and
different from z0 in Eq. (1) because n% does not directly affect the open-class detection. It
only affect the training data amount of the semi-separated uncertainty decision-maker. Indeed,
we have empirically proved that different values n% have same performance on multiple
datasets. We finally create the training dataset termed D = {(v1, y1), (v2, y2), · · · , (vN , yN )}.
vi = (ziener, z

i
entr, z

i
conf, z

i
cons, z

i
dist, z

i
simi) is the attribute vector. yi ∈ {−1,+1} is a class label

where the positive class represents open-class while the negative class represents common
class. The learning objective is to establish the semi-separated uncertainty decision-maker
according to the constructed dataset.

Multiple uncertainty metrics can promote each other in a complimentary from the
perspectives of prediction results and feature representation. The details of the six uncertainty
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metrics are in the appendix. Experimental results demonstrate the necessity of each
uncertainty metric. For example, energy can estimate the physical properties and the outlier
degrees of target samples. Still, energy is always dominated by the maximum logit and
ignores the values of non-maximum logits. To mitigate this issue, we introduce entropy to
consider output probability distributions carefully. Further, the relative difference in entropy
values between unknown and common classes is minimal when a high number of target classes.
To remedy this problem, we adopt confidence to measure the non-smooth distributions.
Finally, the confidence of some samples is misplaced in poor-calibrated neural networks. We
introduce consistency between multiple classifiers to calibrate the over-confidence values.
Thus, the aggregated uncertainty metric would satisfy the following inequalities:

Ex∼pYzs(x) < Ex∼pȲszs(x)

Ex∼qYzt(x) < Ex∼qȲtzt(x)
(3)

The advantages of the semi-separated uncertainty decision-maker in disentangling open
and common class data are three-fold. Firstly, it directly predicts whether a target instance
belongs to an open class by feeding multiple uncertainty quantities without the manual
thresholds and further without cross-validation. Secondly, it can adaptatively determine
the importance of each uncertainty metric with less sensitivity. It also can cut them into
multi-level decision rules and is more interpretable than other classifiers, such as neural
networks, support vector machines, naive Bayes, and k-nearest neighbor. Thirdly, thanks to
the feature selection function, it plays a vital role in automated uncertainty metric selection
by Gini index minimization that is more robust to invalid uncertainty metrics for the current
task because the indiscriminative and conflicting uncertainty metrics can be pruned.

3.4. Uncertainty Separation Loss

Semi-separated uncertainty decision-makers attempt to seek an optimal decision boundary
between common and open classes, but this is hard to find. Since open-class samples
intuitively have large uncertainties, we should better make the boundary more explicit by
decreasing the uncertainty metrics of common class samples while keeping the open-class
samples far from the common class samples. Thus we need an explicit optimization objective
to encourage the uncertainty metrics to become more well-separated. Inspired by the
pioneering work (Saito et al., 2020), we propose to draw a boundary between open and
common samples with aggregated uncertainty zUS of above-mentioned uncertainty metrics.
Note that the chief difference of our work with Saito et al. (2020) is that we consider the
aggregated uncertainty. We denote by ρ the boundary and |zUS(x)−ρ| the distance between
the aggregated uncertainty and boundary. Through maximizing the distance, zUS(x) is far
from ρ. We expect that the aggregated uncertainty of target open-class samples will be
larger than ρ whereas, for the target common class samples, it will be reached zero. However,
the boundary is ambiguous in many cases and can change due to domain shifts. Therefore,
we introduce a tightening parameter γ ≥ 0 to set a boundary margin that only penalties
confident samples. The final form of the uncertainty separation loss is

Lus = Ex∼qLsus(zUS(x)) , where

Lsus(zUS(x)) =

{
−|zUS(x)− ρ| |zUS(x)− ρ| > γ

0 otherwise

(4)
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in which ρ is set to the mean of zUS to avoid cross-validation and does empirically work well.
The principle behind US loss is to push the target open-class data towards their seman-

tically close neighbors by encouraging high uncertainty predictions. When |zUS(x)− ρ| is
sufficiently large, the aggregated uncertainty metric likely satisfies the following inequalities:

Ex∼pYzs(x)� Ex∼pȲszs(x)

Ex∼qYzt(x)� Ex∼qȲtzt(x)
(5)

such that this loss promotes the semi-separated uncertainty decision-maker to separate the
open-class and common class data easily.

3.5. Conditional-Weighted Adversarial Loss

Recall that the domain gap appeared as a critical challenge in UniDA, and it also influenced
the reliability of uncertainty metrics. The vanilla adversarial loss (Ganin and Lempitsky,
2015) only supports matching the feature distributions for the whole label set, resulting in the
class misalignment problem. We would better align the common label set solely between two
domains such that we need a validated mechanism to exclude the open-class samples during
adaptation. Following the uncertainty separation loss, we leverage the distance |zUS(x)− ρ|
between the aggregated uncertainty and boundary as the validated mechanism. Denote by D
the adversarial domain discriminator and F the feature extractor. The conditional-weighted
adversarial loss Lca is formally defined as

Lca =− Ex∼p1(|zUS(x)− ρ| < γ) logD(F (x))

− Ex∼q1(|zUS(x)− ρ| < γ) log(1−D(F (x)))
(6)

where 1 is the indicator function. If a sample has remarkably low uncertainty, it can be
viewed as a common class sample, participates in optimization, and excludes otherwise.

With well-established distance, |zUS(x) − ρ|, the adversarial domain discriminator D
is confined to distinguish the source and target data in the common label set Y. Unlike
previous works (You et al., 2019; Fu et al., 2020; Lifshitz and Wolf, 2021) that consider the
soft weight of each sample, we consider the hard weight that strictly excludes the open-class
samples with the validated boundary ρ and the remarkable margin γ. Saito et al. (2020)
used a deep clustering to construct the neighborhood clustering loss to make the target
samples well-clustered and well-aligned to source samples. However, we cannot guarantee
that the target data points can form clusters based on the proximity to Euclidean space.

Finally, we unify the uncertainty separation loss Lus and the conditional-weighted
adversarial loss Lca with the cross-entropy loss Lcs in a joint optimization problem:

max
D

min
F,G,Gi|i=1

Lcs + λ(Lus − Lca) (7)

where λ is a hyper-parameter to trade-off between discriminability and uncertainty. We also
utilize the efficient gradient reversal layer (GRL) (Ganin and Lempitsky, 2015) to reverse
the gradient between F and D to optimize the model in an end-to-end solution.
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4. Experiments

4.1. Setup

We conduct experiments on Office-31 (Saenko et al., 2010), Office-Home (Venkateswara
et al., 2017), VisDA-2017 (Peng et al., 2017), and DomainNet (Peng et al., 2019). For
the first three datasets, we follow the setup of You et al. (2019). For DomainNet, we follow
the setup of Fu et al. (2020). The more details of datasets are in the appendix.

We compare our designed SNAIL algorithm with state-of-the-art methods: (1) Source
only: ResNet-50 (He et al., 2016)); (2) Closed-set domain adaptation: Domain Ad-
versarial Network (DANN) (Ganin and Lempitsky, 2015)), Residual Transfer Networks
(RTN) (Long et al., 2016); (3) Partial domain adaptation: Importance Weighted Ad-
versarial Nets (IWAN) (Zhang et al., 2018), Partial Adversarial Domain Adaptation
(PADA) (Cao et al., 2018b); (4) Open-set domain adaptation: Assign-and-Transform-
Iteratively (ATI) (Busto and Gall, 2017), Open Set Back-Propagation (OSBP) (Saito et al.,
2018); (5) Universal domain adaptation: Universal Adaptation Network (UAN) (You et al.,
2019), Calibrated Multiple Uncertainties (CMU) (Fu et al., 2020), Domain Adaptative
Neighborhood Clustering via Entropy optimization (DANCE) (Saito et al., 2020), Domain
Consensus Clustering (DCC) (Li et al., 2021), Sample Selection Approach (SSA) (Lifshitz
and Wolf, 2021). We report the accuracy and H-score. H-score is the harmonic mean of the
accuracy of the common and open classes (Fu et al., 2020), serving more credible evaluation.

Our method enjoys a minimal number of hyperparameters. We implement our algorithm
in Pytorch with ResNet-50 (He et al., 2016) backbone pretrained on ImageNet (Deng et al.,
2009). We set λ in Eq. (7) as 0.05, γ in Eq. (4) and Eq. (6) as 0.15. We use the same batch
size, learning rate, and epoch for all the tasks. We set ensemble classifier numbers m to 2 to
empirically calibrate the multiple uncertainty metrics. Since it is insensitive to set the ratio
n%, we set the ratio n% to 30% for all the tasks. In such a way, the constructed dataset has
a certain amount of data and accurate labels, such that we can use this reliable dataset to
generate an effective semi-separated uncertainty decision-maker.

Table 1: Accuracy (%) on Office-31 for universal domain adaptation (ResNet-50).

Method
A→W D→W W→D A→D D→A W→A Avg

Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

ResNet (He et al., 2016) 75.9 47.9 89.6 54.9 90.9 55.6 80.5 49.8 78.8 48.5 81.4 49.0 82.9 50.9
DANN (Ganin and Lempitsky, 2015) 80.7 48.8 80.9 52.7 88.1 54.9 82.7 50.2 74.8 47.7 83.5 49.3 81.8 50.6
RTN (Long et al., 2016) 85.7 50.2 87.8 54.7 88.9 55.2 82.7 50.2 74.6 47.7 83.3 49.3 83.8 51.2
IWAN (Zhang et al., 2018) 85.3 50.1 90.1 54.1 90.0 55.4 84.3 50.6 84.2 49.7 86.3 49.8 86.7 51.6
PADA (Cao et al., 2018b) 85.4 49.7 79.3 52.6 90.9 55.6 81.7 50.0 55.3 42.9 82.6 49.2 79.2 50.0
ATI (Busto and Gall, 2017) 79.4 48.6 92.6 55.0 90.1 55.5 84.4 50.5 78.9 48.5 81.6 49.0 84.5 51.2
OSBP (Saito et al., 2018) 66.1 50.2 73.6 55.5 85.6 57.2 72.9 51.1 47.4 49.8 60.5 50.2 67.7 52.3
UAN (You et al., 2019) 85.6 58.6 94.8 70.6 98.0 71.4 86.5 59.7 85.5 60.1 85.1 60.3 89.2 63.5
CMU (Fu et al., 2020) 86.9 67.3 95.7 79.3 98.0 80.4 89.1 68.1 88.4 71.4 88.6 72.2 91.1 73.1
DCC (Li et al., 2021) 91.7 78.5 94.5 79.3 96.2 88.6 93.7 88.5 90.4 70.2 92.0 75.9 93.1 80.2
DANCE (Saito et al., 2020) 92.8 67.4 97.8 89.9 97.7 90.7 91.6 70.8 92.2 79.1 91.4 71.9 93.9 78.3
SSA (Lifshitz and Wolf, 2021) 90.1 - 95.3 - 98.2 - 90.6 - 90.0 - 90.5 - 92.4 -

SNAIL (Ours) 93.2 80.6 98.7 96.5 99.1 94.2 93.5 82.4 92.2 86.4 92.1 84.2 94.8 87.4

4.2. Results

Table 1 reports the results on Office-31. Our algorithm significantly outperforms all compared
methods regarding classification accuracy and open-class detection. It is worth noting that our
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Table 2: Accuracy (%) on Office-Home for universal domain adaptation (ResNet-50).
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet (He et al., 2016) 59.4 76.6 87.5 69.9 71.1 81.7 73.7 56.3 86.1 78.7 59.2 78.6 73.2
DANN (Ganin and Lempitsky, 2015) 56.2 81.7 86.9 68.7 73.4 83.8 69.9 56.8 85.8 79.4 57.3 78.3 73.2
RTN (Long et al., 2016) 50.5 77.8 86.9 65.1 73.4 85.1 67.9 45.2 85.5 79.2 55.6 78.8 70.9
IWAN (Zhang et al., 2018) 52.6 81.4 86.5 70.6 71.0 85.3 74.9 57.3 85.1 77.5 59.7 78.9 73.4
PADA (Cao et al., 2018b) 39.6 69.4 76.3 62.6 67.4 77.5 48.4 35.8 79.6 75.9 44.5 78.1 62.9
ATI (Busto and Gall, 2017) 52.9 80.4 85.9 71.1 72.4 84.4 74.3 57.8 85.6 76.1 60.2 78.4 73.3
OSBP (Saito et al., 2018) 47.8 60.9 76.8 59.2 61.6 74.3 61.7 44.5 79.3 70.6 55.0 75.2 63.9
UAN (You et al., 2019) 63.0 82.8 87.9 76.9 78.7 85.4 78.2 58.6 86.8 83.4 63.2 79.4 77.0
CMU (Fu et al., 2020) 63.5 83.8 88.9 77.7 79.4 86.9 78.6 59.3 88.3 84.1 64.6 81.4 78.0
DCC (Li et al., 2021) 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9
DANCE (Saito et al., 2020) 64.1 84.3 91.2 84.3 78.3 89.4 83.4 63.6 91.4 83.3 63.9 86.9 80.4
SSA (Lifshitz and Wolf, 2021) 65.1 86.4 91.4 79.5 84.9 89.6 82.0 56.8 89.8 79.5 61.5 89.0 79.6

SNAIL (Ours) 68.3 83.6 93.3 82.9 77.2 91.1 83.7 68.0 92.5 82.8 67.3 87.6 81.5

Table 3: H-score (%) on Office-Home for universal domain adaptation (ResNet-50).
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet (He et al., 2016) 44.7 48.0 50.1 46.6 46.9 49.0 47.5 43.2 50.2 48.5 44.8 48.4 47.3
DANN (Ganin and Lempitsky, 2015) 42.4 48.0 48.9 45.5 46.5 48.4 45.8 42.6 48.7 47.6 42.7 47.4 46.2
RTN (Long et al., 2016) 38.4 44.7 45.7 42.6 44.1 45.5 42.6 36.8 45.5 44.6 39.8 44.5 42.9
IWAN (Zhang et al., 2018) 40.5 47.0 47.8 45.0 45.1 47.6 45.8 41.4 47.6 46.3 42.5 46.5 45.3
PADA (Cao et al., 2018b) 34.1 41.9 44.1 40.6 41.5 44.0 37.0 32.6 44.2 43.1 35.8 43.4 40.2
ATI (Busto and Gall, 2017) 39.9 45.8 46.6 44.1 44.4 46.6 44.7 41.2 46.6 45.1 41.8 45.5 44.4
OSBP (Saito et al., 2018) 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5
UAN (You et al., 2019) 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
DANCE (Saito et al., 2020) 35.9 29.3 35.2 42.6 18.0 29.3 50.2 45.4 41.1 19.8 38.8 52.6 36.5

SNAIL (Ours) 55.9 57.9 63.1 52.5 55.4 56.4 66.8 53.5 61.1 64.3 53.8 63.2 58.6

algorithm has a significant improvement in open-class detection. For example, it outperforms
DANCE by almost 20% H-score and ResNet by almost 40% H-score. Table 2 and Table 3
reports the accuracy and H-score on the tough Office-Home, respectively. Our algorithm
also achieves state-of-the-art accuracy on complex tasks, making a remarkable performance
boost. Table 4 summarizes the results on the two most challenging and large-scale datasets:
DomainNet, and VisDA-2017. Our algorithm consistently shows large margins on almost all
tasks compared to all baselines. The above results validate that our algorithm performs well
and has great application potential in large-scale datasets with large distribution shifts.

CMU (Fu et al., 2020) performs inadequately on open-class detection and per-class
accuracy because of the following two points. Firstly, the manual thresholds make CMU
inadequate to detect open-class samples because the thresholds are sensitive to set. Secondly,
forcibly aligning (using soft weights) the distributions causes the mistaken alignment between
the open and common classes. Our algorithm outperforms CMU on H-score by a large margin
(25% in VisDA). The higher H-scores demonstrate that the semi-separated uncertainty
decision-maker and the uncertainty separation loss enable higher-quality transferability
measures to detect open classes more accurately. The higher accuracy verifies that the
conditional-weighted adversarial loss encourages the weak alignment (hard weights) of
distributions to promote common-class adaptation.

4.3. Analysis

Ablation Study. We dissect the efficacy of the proposed method by evaluating variants
of SNAIL on Office-31 as shown in Table 5. (1) SNAIL w/o semi-separated uncertainty
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Table 4: Performance on DomainNet and VisDA.

Method
DomainNet (H-score) VisDA

P2R R2P P2S S2P R2S S2R Avg Acc H-score

ResNet (He et al., 2016) 30.1 28.3 27.0 27.0 26.9 29.7 28.2 52.8 25.4
DANN (Ganin and Lempitsky, 2015) 31.2 29.3 27.8 27.8 27.8 30.8 29.1 52.9 25.7
RTN (Long et al., 2016) 32.3 30.3 28.7 28.7 28.6 31.9 30.1 53.9 26.0
IWAN (Zhang et al., 2018) 35.4 33.0 31.2 31.2 31.1 34.9 32.8 58.7 27.6
PADA (Cao et al., 2018b) 28.9 27.3 26.0 26.0 26.0 28.6 27.2 45.0 23.1
ATI (Busto and Gall, 2017) 32.6 30.6 29.0 29.0 28.9 32.2 30.4 54.8 26.3
OSBP (Saito et al., 2018) 33.6 33.0 30.6 30.5 30.6 33.7 32.0 30.3 27.3
UAN (You et al., 2019) 41.9 43.6 39.1 39.0 38.7 43.7 41.0 60.8 30.5
CMU (Fu et al., 2020) 50.8 52.2 45.1 44.8 45.6 51.0 48.3 61.4 34.6

SNAIL (Ours) 60.6 52.8 47.0 45.2 42.4 57.0 50.8 64.9 59.8

Table 5: Ablation study on Office-31 (ResNet-50).

Method
D→W A→D W→A Avg (six tasks)

Acc H-score Acc H-score Acc H-score Acc H-score

SNAIL 98.7 96.5 93.5 82.4 92.1 84.2 94.8 87.4

w/o Uncertainty Decision-maker 97.4 84.7 88.7 69.8 90.4 70.5 92.4↓ 76.6↓
w/o Uncertainty Separation Loss 95.3 92.1 83.5 74.2 82.4 80.9 86.4↓ 82.4↓
w/o Adversarial Loss 97.3 86.2 88.9 76.9 91.0 79.5 91.9↓ 80.2↓
w/o Ensemble Classifiers 96.7 79.3 91.3 81.4 91.6 76.0 92.9↓ 78.4↓
w/o Entropy 98.0 93.5 87.2 75.1 90.0 80.0 92.2↓ 84.0↓
w/o Consistency 98.4 96.3 88.0 75.7 89.9 81.5 92.3↓ 83.4↓
w/o Confidence 98.2 95.9 88.2 74.1 89.7 82.6 91.7↓ 84.6↓
w/o Distance 98.5 95.1 88.0 77.6 90.0 84.0 92.3↓ 84.8↓
w/o Similarity 97.9 95.0 88.7 77.8 89.0 83.8 91.0↓ 83.6↓
w/o Energy 98.5 95.3 87.6 75.3 89.2 83.7 91.9↓ 83.3↓

decision-maker is the variant without using the semi-separated uncertainty decision-maker
but using threshold parameters to split the overall uncertainty by Eq (1). SNAIL remarkably
outperforms it, indicating the contribution of the domain-level transferability criterion with a
global view. Figure 4(a) visualizes the learned semi-separated uncertainty decision-maker on
the A→D task, in which it adaptatively assigns the weights of four uncertainties and selects
out two redundant uncertainty metrics. (2) SNAIL w/o uncertainty separation loss and w/o
conditional-weighted adversarial loss are the variants without the corresponding objective,
respectively. (3) SNAIL w/o ensemble classifiers is the variant without using multiple
ensemble classifiers but only using the target classifier to calculate multiple uncertainties. (4)
SNAIL w/o each uncertainty metric is the variant without using the corresponding uncertainty
metric when building the semi-separated uncertainty decision-makers. As shown in Table 5,
SNAIL remarkably exceeds these variants, proving the necessity of the corresponding modules.
Figure 4(c) further verifies that the conditional-weighted adversarial loss promotes learning
more discriminative domain-invariant features than the vanilla adversarial loss.

Varying Size of Ȳt and Ȳs. Following UAN and DANCE, with fixed |Ys ∩ Yt| and
|Ys ∪ Yt|, we examine the H-score with numerous sizes of open classes Ȳt (Ȳs also changes
correspondingly) on task A→D in Office-31. As shown in Figure 5(a), SNAIL consistently
achieves the better performance than all the compared methods by large margins with various
|Ȳt|, which demonstrate that SNAIL has robustness and generalizability to diverse Ȳt and
Ȳs. In particular, when |Ȳt| is large (over 15), SNAIL also obtain the best performance.
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Figure 4: (a) The visualization of the semi-separated uncertainty decision-maker on A→D.
(b) Varying the value of three hyperparameters. (c) t-SNE (Donahue et al., 2014)
plots of target examples (Best viewed in color). Black dots represent open-class
examples, while other colors represent common class examples.
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(a) H-score w.r.t Ȳt
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Figure 5: (a)(b) H-score with respect to Ȳt and Y. (c) Accuracy and H-score of various
reliable instance ratios.

Varying Size of Common Label Set Y . We investigate another dimension of SNAIL
by ranging the size of |Y| and fix |Ys ∪ Yt| on task A→D in Office-31. Following UAN
and DANCE, we let |Ȳt| = |Ȳs|+ 1 and range |Y| from 0 to 31. As shown in Figure 5(b),
SNAIL consistently gets better performance than all the compared methods by large margins
on all the sizes of Y. In particular, when |Y| is near zero, the performance of SNAIL is
more stable than previous methods, indicating its robustness in the open and dynamic task
environment. When |Y| tends to 31, the task is turning into closed set domain adaptation,
and the performance of SNAIL is comparable with DANN’s performance.

The Sensitivity to Hyperparameters. Figure 4(b) reveals the sensitivity to hyper-
parameters (γ, ρ, and λ) on the D→W task. We can see that when we increase the value
of ρ, more samples will be decided as common classes, then the accuracy of common class
decreases. Figure 5(c) shows that it is insensitive to the ratio n% of reliable target samples in
training the uncertainty decision-maker. One may claim that the semi-separated uncertainty
decision-maker is invalid when the target label set does not contain open class. Our algorithm
still achieves the best accuracy when the open-class size is near zero as shown in Figure 5(a).
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5. Conclusion

This paper presented a novel framework: semi-separated uncertainty adversarial learning. We
designed a novel semi-separated uncertainty decision-maker to free the sensitive thresholds of
multiple uncertainty metrics estimated and calibrated by the domain adaptation model. We
proposed the uncertainty separation loss and the conditional-weighted adversarial loss. Both
can simultaneously alleviate the category gap and the distribution shift. Comprehensive
experiments have demonstrated that our framework achieves a balanced capacity to detect
open classes and classify common class examples accurately. Our framework is simple
and orthogonal to other algorithms. One can integrate our semi-separated uncertainty
decision-maker into their UniDA to abolish the manual threshold parameters.
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