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Abstract

In this paper, we propose a novel graph aggregation method based on feature distribution
around each ego-node (a node to which features are aggregated) for heterophily. In het-
erophily graphs, labels of neighboring nodes can be uniformly distributed. In such case,
aggregated features by existing GNNs will be always similar regardless of the label of ego-
node and fail to capture useful information for a node classification task. Since the existing
methods basically ignore label distribution around the ego-node, we attempt to handle
heterophily graphs through dynamic aggregations so that nodes with similar vicinity char-
acteristics exhibit similar behavior. In particular, we adjust the amount of aggregation
based on the features generated by higher-order neighbors, since they reflect the label dis-
tribution around each ego-node. By doing this, we can take the influence of distant nodes
into account while adapting local structures of each node. Extensive experiments demon-
strate that the proposed method achieves higher performance in heterophily graphs by up
to 14.68% compared with existing methods.
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1. Introduction

Graphs are well-known data structure, which can express relationships among entities. They
are widely used in many real world scenarios, such as social networks (Tang et al. (2009);
Li and Goldwasser (2019)), knowledge graphs (Wang et al. (2019)) and so on. Recently, in
order to extract hidden patterns or characteristics from graph data, Graph Neural Networks
(GNN) have been extensively studied (Zhang et al. (2020)). With the intention to let node
embedding involve patterns underlying graphs, typical GNNs utilize neighbor nodes of each
node by aggregating their features. In particular, graph convolutional network (GCN) (Kipf
and Welling (2017)) has exhibited powerful performance and have achieved great success
in many tasks, including community detection (Jin et al. (2021)), recommendation systems
(Wang et al. (2019); He et al. (2020)), fraud detection (Dou et al. (2020)), biology (Yan
et al. (2019)) and more.

Although GCN and other traditional GNNs, such as GAT (Veličković et al. (2018)),
are still popular, recent studies have pointed out that they can be ineffective unless the
input graphs have “homophily” characteristics. Homophily is a characteristic of a graph
in which two linked nodes are likely to share similar attributes. Citation networks, for
example, are typical homophily graphs since papers in close fields tend to be cited. Early
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studies focused on homophily datasets, such as Citeseer (Giles et al. (1998)), and obtained
significant performance gains (Goyal and Ferrara (2018)). However, real world graphs
do not necessarily have high homophily characteristics. Instead, they demonstrate high
“heterophily”. In molecular networks, for instance, different types of amino acids tend to
form links with each other (Zhu et al. (2020)). Similarly, in dating networks, most people
are likely to date with the opposite gender (Zhu et al. (2021)). These types of graphs are
referred to as heterophily graphs. Traditional GNNs do not deal with heterophily graph
well because their convolution operations only care about local neighbors or topology. This
fails to capture informative nodes with long-term distances (Zheng et al. (2022)). Hence,
GNNs that are supposed to have dedicated mechanisms for heterophily graphs have been
attracting attention.

In this connection, several methods have been proposed. Most of them try to utilize the
nonadjacent nodes and distant nodes since neighboring nodes do not necessarily show useful
characteristics in a heterophily graph. Geom-GCN (Pei et al. (2020)) discovers node pairs
representing similar latent features and considers them in the aggregation process in GCN.
In H2GCN (Zhu et al. (2020)), the authors argue that aggregating higher-order neighbors
and separating them from ego-node (a node to which features are aggregated) embedding
works well in a heterophily graph. Although it is known that simply stacking vanilla-
GCN layers might incur oversmoothing problems (Wu et al. (2019)), GCNII (Chen et al.
(2020)) and GGCN (Yan et al. (2021)) manage to capture higher-order neighbor signals
by mitigating this problem. Although various such techniques have been employed, those
methods, in principle, attempt to handle heterophily by incorporating the nodes’ features
through higher-order hops. In particular, as argued in H2GCN, aggregating higher-order
nodes can extract more distinguishable patterns of nodes, which directly contributes to
higher performance.

However, whether such aggregation mechanism performs well or not depends on the
correlation between each ego-node’s label and aggregated higher-order features. In partic-
ular, there can be a heterophily graph in which the labels of neighboring nodes tend to be
uniformly distributed. In this case, the aggregated features will be always similar regardless
of ego-node’s label, no matter how many hops away they are aggregated from. Nevertheless,
the existing methods basically ignore label distribution around the ego-node due to their
uniform aggregation. Accordingly, aggregation mechanisms should be determined based on
different vicinity features for each ego-node.

To provide more flexible aggregation for a heterophily graph, in this paper, we propose
EVAGNN (short for Ego-node Vicinity Adaptive GNN), a novel graph aggregation method
based on feature distribution around each ego-node for heterophily. The goal is to han-
dle heterophily graphs through dynamic aggregations so that nodes with similar vicinity
characteristics exhibit similar behavior. In particular, we adjust the amount of aggregation
based on the features generated by higher-order neighbors, since they reflect the label distri-
bution around each ego-node. By doing this, we can take the influence of distant nodes into
account while adapting local structures of each node. Extensive experiments demonstrate
that the proposed method EVAGNN shows the high performance in heterophily graphs and
has improvements of up to 14.68% compared with existing methods.

The contributions of this paper are as follows:



• To the best of our knowledge, ours is the first aggregation method, which can adapt
weight parameters according to the vicinity of each ego-node in a graph. As shown
in the experimental results, the performance is effective, especially in a heterophily
graph.

• Through the analysis of real world graphs, we show the reason why the existing
methods do not effectively work in specific graphs. We believe that this observation
sheds light on a new perspective for handling heterophily graphs.

The rest of this paper is organized as follows. We describe the notations, the formal
homophily definition, and a brief GNN introduction in Section 2. Section 3 outlines related
studies on both homophily and heterophily graphs and clarifies how our proposed method
differs from them. The proposed method EVAGNN is presented in Section 4. Extensive
experiments with nine standard benchmark datasets are conducted, and the results are
reported in Section 5. Finally, we conclude the paper in Section 6.

2. Preliminaries

We first define the notations used throughout the paper. Furthermore, important concepts,
homophily/heterophily definitions and an introduction to GNN are also presented in this
section.

2.1. Notations

We assume graphs without edge weights. A graph G consists of a set of n nodes V =
{v1, v2, . . . , vn} and a set of edges E = {eij} ⊆ V × V . The graph structure is denoted
by the adjacency matrix A = [aij ] ∈ Rn×n. aij = 1 if there is an edge eij between nodes
i and j; otherwise, aij = 0. The neighbors of node i are denoted by the node set of
Ni = {vj |aij = 1}. Each node has its own feature vector, and all n nodes’ features are
represented by X ∈ Rn×f , where f indicates the length of each node’s feature. The i-th
row of X corresponds to node i’s feature, which is hereafter denoted by Xi. The set of node
labels is denoted by C = {c1, c2, . . . , cm}, where m is the number of classes. Every node
has one label, and C(vi) denotes a node i’s label.

2.2. Homophily and Heterophily

The term “homophily” indicates that two linked nodes tend to share similar attributes in a
graph. Thus, one way to define homophily on a graph basis is to count how many neighbors
with the same label each node has and then taking its average over all nodes. Thus, the
homophily ratio h of the graph is defined by

h =
1

|V |
∑
Ni

|{vj |C(vi) = C(vj)}|
|Ni|

∈ [0, 1] , (1)

where |·| is the number of elements in the set. Note that 0 ≤ h ≤ 1. The term “heterophily”
indicates the opposite of homophily; thus, high homophily corresponds to low heterophily.
We use these terms interchangeably throughout the paper.
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2.3. Graph Neural Network

GNNs are often used to solve prediction tasks related to graphs. Almost all GNN methods
attempt to represent nodes by aggregating their neighbor information. The graph convo-
lutional network (GCN) (Kipf and Welling (2017)) is a popular GNN, and it aggregates
neighbor features by

X(l+1) = ÂX(l)W, (2)

where Â, X(l), and W are the degree normalized adjacency matrix with added self-loop, l-th
GCN layer’s output, and trainable weight matrix, respectively. Such aggregation operations
are frequently employed in both traditional methods (e.g., GAT (Veličković et al. (2018))
and GraphSAGE (Hamilton et al. (2017))) and recently proposed methods described in the
next section. A series of procedures in which features (messages) are aggregated and then
updated through neighbor nodes is called “message passing”.

3. Related Work

Traditional GNNs suffer from degradation when applied to heterophily datasets as we have
discussed in Section 1. To deal with heterophily graphs, in which neighbor nodes become
less informative than in homophily graphs, several mechanisms try to include distant nodes
in aggregation operations. In this section, we introduce representative studies that can
handle the heterophily.

Most of them try to utilize the nonadjacent nodes since neighboring nodes show different
characteristics in a heterophily graph. Geom-GCN (Pei et al. (2020)) discovers node pairs
representing similar latent features, and lets them be considered in the aggregation process
in GCN. That scheme enables nodes that are far apart to be taken into account and thereby
the performance is improved compared with vanilla-GCN. In H2GCN (Zhu et al. (2020)), the
authors argue that aggregating higher-order neighbors (k-hop away from an ego-node) and
separating them from ego-node embedding works well in heterophily graphs. While Geom-
GCN and H2GCN directly aggregate higher-order neighbors, GCNII (Chen et al. (2020))
and GGCN (Yan et al. (2021)) focus on deepening the GNN layers and try to capture
higher-order neighbors’ signals through repeated aggregations. Although it is known that
simply stacking vanilla-GCN layers might incur oversmoothing problems (Wu et al. (2019)),
GCNII proposes simulating ResNet’s skip connection (He et al. (2016)) in the GNN field
and makes more GCN layers available. In GGCN (Yan et al. (2021)), the authors develop a
negative message propagation mechanism based on the similarity of node representations.
Negative messages can negate messages sent by differently labeled neighbors and adapt to
heterophily settings. A similar idea is adopted in FAGCN (Bo et al. (2021)), which aims to
separate features into low- and high-frequency components based on message passing.

3.1. Problems

As mentioned in Section 1, we argue that aggregation mechanisms should be determined
based on different vicinity features for each ego-node. Fig. 1 shows a toy example of a
heterophily graph. In this figure, while most of neighbors of blue nodes are red nodes
in region 1 and 2, yellow nodes surround blue nodes in region 3. When using normal
aggregation, aggregated features of blue nodes in region 1 and 2 will be similar. On the
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Figure 1: A toy example of a heterophily graph. The colors of the nodes represent their
labels. The distribution of labels differs by region, i.e., while most of the neighbors of blue
nodes are red nodes in regions 1 and 2, yellow nodes surround blue nodes in region 3.
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(a) Cora label=“0” (Homophily)
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(b) Cora label=“1” (Homophily)
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(c) Chameleon label=“0” (Heterophily)
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(d) Chameleon label=“1” (Heterophily)

Figure 2: 2-hop neighbor’s labels distribution of nodes with same label (Chameleon dataset).
10 nodes that have the same label are randomly picked up for this comparison.

other hand, one of region 3 will not resemble them. Therefore, in order to identify them
correctly, it is necessary to change weights according to each blue node in the aggregation
process. However, none of existing approaches has regarded this perspective.
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To demonstrate the difference of label distribution around each node in the real datasets,
we investigate Cora (homophily) and Chameleon (heterophily) dataset (see details in Sec-
tion 5). Fig. 2 shows 2-hop neighbor’s label distribution of the nodes labeled as “0” and “1”
in Cora and Chameleon. As shown in Fig. 2a and Fig. 2b, in the homophily graph, most
of 2-hop neighbors’ labels are the same as the ego-nodes regardless of their labels. On the
other hand in the heterophily graph, we can see in Figs. 2c and 2d that there are obvious
differences in 2-hop neighbors label distribution from homophily ones. These figures imply
that even if the labels of nodes are the same, they do not necessarily resemble each other
in terms of higher-order neighbors’ labels in heterophily graphs. This is the reason that we
believe current state-of-the-art heterophiliy-aware methods, which have never considered it,
can be further improved.

4. Proposed Method

To provide more flexible aggregation for a heterophily graph, we propose EVAGNN (short
for Ego-node Vicinity Adaptive GNN), a novel graph aggregation method based on feature
distribution around each ego-node for heterophily. The goal is to handle heterophily graphs
through dynamic aggregations so that nodes with similar vicinity characteristics exhibit
similar behavior. In particular, we adjust the amount of aggregation based on the features
generated by higher-order neighbors, since they reflect the label distribution around each
ego-node. By doing this, we can take the influence of distant nodes into account while
adapting local structures of each node.

4.1. Algorithms

First, we define the k-hop vicinity feature of node i by aggregating its neighbors as

Hk
i =

∑
j∈Nk

i

Xj

|Nj |
∈ Rd, (3)

where Nk
i indicates the k-hop neighbor of node i and H0

i = Xi. The k-hop neighbors can
be computed through Lemma 1.

Lemma 1 Given an adjacency matrix A, the element (i, j) of Ak gives the number of walks
of length k from node i to node j. Therefore, for k ≥ 2, we can obtain k-hop neighbors by
checking Ak

ij > 0 and Ak−1
ij = 0

To express the node i-centered vicinity features over the k-hop, we concatenate node i’s
vicinity features as

Hi = H0
i || H1

i || . . . || Hk
i ∈ Rd(k+1), (4)

where || denotes concatenation operation. Let H denote vicinity features over k-hop of all
n nodes. Using H, we compute the convolution weights. Here, we use the self-attention
mechanism (Vaswani et al. (2017)) to capture the relationships of features across hops and
robustly represent weights. The query, key and value are all derived from H as



Figure 3: Overview of the proposed convolution. Each neighbor node around node i (e.g.,
j0) has another vector (e.g., Hj0) associated with it apart from its feature vector. It is
named the “vicinity feature”. This new type of feature reflects the vicinity nodes’ label
distribution for each node (i.e., vicinity characteristics), and based on this the vicinity
similarity can be further derived. Using this perspective, the weight of each node (e.g.,
αij0) in convolutions is determined depending on this vicinity feature so that nodes with
similar vicinity characteristics exhibit similar behavior.

Q = HWq ∈ Rn×d, (5)

K = HWk ∈ Rn×d, (6)

V = HWv ∈ Rn×d, (7)

where Wq, Wk, Wv, and d are trainable parameters and the size of embedding dimensions,
respectively. The proposed convolution weight, α, is obtained by

α = softmax

(
QKT

√
d

)
V ∈ Rn×d. (8)

Note that the attention weights might converge to some values at some point across
multiple iterations, since the vicinity features are precomputed. However, they keep updated
while the weights (Wq,Wk, and Wv) change. By taking elementwise product of α and X,
the features passed to each node are obtained. The output of the proposed convolution is
obtained by multiplying the adjacency matrix as

Xconv = σ(A(α�X)). (9)

where σ is an activation function (we use ReLU). Similar to H2GCN, we encode the ego-
node separately from aggregated features since an ego-node in a heterophily graph is likely
to be dissimilar with its neighbors in terms of class labels. This different encoding can
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contribute to more representation capacity. Ego-node features are generated by MLP, and
the final representation of nodes are

Xout = σ(XWMLP) +Xconv = σ(XWMLP) + σ(A(α�X)). (10)

Note that multiple layers can be piled up, although a single convolution is conducted in
the above description. In this case, Xout will be the input of the following layer. How the
proposed aggregation operates is presented in Fig. 3. As shown in this figure, we calculate
the convolution weight from Hj , vicinity features of vj . Since the weights can be changed
according to vicinity features, i.e., the local structure of a graph, the proposed convolution
can automatically determine which neighbor nodes are important and are worth being
passed.

4.2. Optimization objective

We focus on the node classification task. The objective of this task is to predict the labels
of unlabeled nodes by using node features and the graph structure. That is, for node i, we
need to learn the mapping function f(X,A) 7→ C(vi).

To adjust the embedding size to the number of classes, we linearly transform Xout by
the weight matrix W ∈ Rd×m and obtain the probabilities that each node belongs to each
class as

B = softmax(XoutW ) ∈ Rn×m. (11)

Let Θ and Vtrain denote all trainable parameters in the model and the set of labeled nodes,
respectively. We minimize the cross-entropy loss and get optimal parameters Θ∗ as

Θ∗ = argmin
Θ

∑
v∈Vtrain

L(bv, C(v)), (12)

where L and bv are the cross-entropy loss function and the predicted class of node v calcu-
lated based on B, respectively.

5. Experiments

In this section, we evaluate EVAGNN on the real world datasets and compare it with the
latest baselines.

5.1. Baselines

We compare EVAGNN with 8 approaches. Four of them are latest heterophily-aware GNNs
(Geom-GCN (Pei et al. (2020)), H2GCN (Zhu et al. (2020)), GCNII, (Chen et al. (2020)),
and GGCN (Yan et al. (2021))), and three of them are traditional GNN methods (GCN
(Kipf and Welling (2017)), GAT (Veličković et al. (2018)), and GraphSAGE (Hamilton
et al. (2017))). We also check the performance of MLP.



Table 1: Statistics of datasets. We regard the first six datasets as heterophily datasets,
while the last three as homophily datasets.

Homo. ratio h # of Nodes # of Edges # of classes

Texas 0.11 183 295 5
Wisconsin 0.21 251 466 5

Film 0.22 7,600 26,752 5
Squirrel 0.22 5,201 198,493 5

Chameleon 0.23 2,277 31,421 5
Cornell 0.30 183 280 5

Citeseer 0.74 3,327 4,676 7
Pubmed 0.80 19,717 44,327 3

Cora 0.81 2,708 5,278 6

5.2. Datasets and Training Details

The following nine real datasets are used:

WebKB includes “Texas”, “Wisconsin”, and “Cornell”. Nodes and edges are web pages
and their hyperlinks.

Wikipedia networks includes “Chameleon” and “Squirrel”. Nodes are web pages in
Wikipedia. Edges are their mutual hyperlinks.

Actor co-occurrence networks includes “Film”. Each node is an actor. Edges are
created when two actors appear on the same Wikipedia page.

Citation networks include “Citeseer”, “Pubmed”, and “Cora”. Nodes are papers and
edges indicate their citation relationships.

Tab. 1 shows the statistics of each dataset. For these, the homophily ratio h is calculated
by Equation (1). As h shows, the graphs in WebKB, Wikipedia networks, and Actor co-
occurrence networks tend to be heterophily, and citation networks tend to be homophily. We
obtain these data through PyG (Fey and Lenssen (2019)) framework and use the ten data
splits provided by the authors of Geom-GCN (Pei et al. (2020)), which are commonly used by
researchers who study heterophily-aware GNNs. We report the accuracy averaged over these
10 splits. For MLP, GCN, GAT, and GraphSAGE, we use the same hyper parameter settings
as GGCN. For other methods, the original codes provided by the authors are used with the
default parameters. For EVAGNN, we fix the number of layers and embedding dimension
to 1 and 64, respectively. The tuning range of k is [1, 5]. We use multi-head attention,
and the number of heads is tuned within the range of [1, 16]. Other hyperparameters are
tuned by using the same range as GGCN. Each model is optimized by the Adam optimizer
(Kingma and Ba (2015)).
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(a) Wisconsin hop= 1
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(b) Wisconsin hop= 2
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(c) Chameleon hop= 1
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(d) Chameleon hop= 2
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(e) Film hop= 1
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(f) Film hop= 2

Figure 4: The connecting probability among labels on different datasets. In (a), about 20 %
of 1-hop neighbors of a node with label 1 are nodes with label 2. We choose representative
datasets for each type of datasets, i.e., WebKB, Wikipedia networks, and Actor networks.



Table 2: Node classification accuracy on each dataset. The results of GraphSAGE and
H2GCN are taken from (Zhu et al. (2020)) and (Yan et al. (2021)). Best performance in
each dataset is emphasized in bold, and second best performance is underlined.

(a) Heterophily dataset

Texas Wisc. Film Squi. Cham. Corn.

MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40

GCN 55.14±5.16 51.76±3.06 27.34±1.08 53.33±2.09 64.85±2.24 60.54±5.30

GAT 52.16±6.63 49.41±4.09 27.55±0.93 40.72±1.44 60.13±2.43 61.89±5.05

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01

Geom-GCN 67.84±3.91 65.29±3.83 31.59±1.19 38.46±0.71 60.42±2.80 60.27±2.72

H2GCN 84.86±7.23 87.65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28

GCNII 77.57±3.83 80.39±4.30 37.48±1.31 38.23±1.74 62.26±3.70 78.92±4.65

GGCN 84.86±4.55 86.67±3.70 37.49±1.57 54.65±1.69 71.12±1.79 85.68±6.63

EVAGNN 87.57±3.67 87.25±3.75 35.72±1.00 69.33±1.73 78.49±1.31 84.32±6.92

(b) Homophily dataset

Cite. Pubm. Cora

MLP 74.02±1.90 87.16±0.37 75.69±2.00

GCN 76.67±1.51 88.37±0.52 86.90±1.03

GAT 76.62±1.33 86.11±0.58 87.22±1.21

GraphSAGE 76.04±1.30 88.45±0.50 86.90±1.04

Geom-GCN 78.21±1.05 89.96±0.43 85.37±1.50

H2GCN 77.11±1.57 89.49±0.38 87.87±1.20

GCNII 77.26±1.68 90.16±0.28 88.37±1.29
GGCN 77.14±1.45 89.14±0.37 87.95±1.05

EVAGNN 76.26±1.47 88.23±0.52 86.00±1.28

5.3. Main Results

Tab. 2a shows the accuracy of the different methods on heterophily graphs. EVAGNN shows
the high performance on these dataset. Especially, in Squirrel and Chameleon dataset,
EVAGNN has the the best performance compared with other methods. As mentioned in
Section 3.1, the label distribution of these heterophily dataset has less correlation with ego-
node’s label than in homophily datasets. Thus, uniformly aggregated features at higher
hops employed in Geom-GCN and H2GCN are insufficient to identify labels. EVAGNN can
learn how to aggregate features, i.e., which feature should be emphasized, and this brings
better performance.
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Table 3: Node classification accuracy of EVAGNN without MLP on heterophily datasets.
The results of normal EVAGNN are shown again.

Texas Wisc. Film Squi. Cham. Corn.

EVAGNN
w/o MLP

72.97±10.26 67.65±5.21 25.61±1.20 71.62±1.94 78.42±1.14 57.30±3.38

EVAGNN 87.57±3.67 87.25±3.75 35.72±1.00 69.33±1.73 78.49±1.31 84.32±6.92

To further analyze the results, we investigate the connecting probability among labels.
Fig. 4 shows the connecting probability among labels in three datasets (see caption for
how to read figures). In Wisconsin dataset shown in Figs. 4a and 4b, we can see that the
areas with high probability (i.e., areas with light color) at hop=2 do not always appear
also at hop=1 and the number of connection patterns is small. In such cases, higher-order
aggregation performs well since the aggregated features show distinguishable characteristics
according to the hops. EVAGNN also works well since it can easily capture local structures
around each node. On the other hand, Chameleon dataset has more patterns, and there are
small difference among connecting probabilities, as shown in Figs. 4c and 4d. We consider it
hinders learning efficiency in the existing baselines since aggregated features, which should
be distinctive, are prone to become similar. Although the tendency of connecting probability
of Film dataset in Figs. 4e and 4f looks similar to one of Chameleon dataset, the performance
of EVAGNN is not so high. We consider this is because the labels are not balanced, i.e.,
while every label has almost the same number of nodes in Chameleon and Squirrel dataset,
label 4 has more than twice nodes than label 0 in Film dataset. In addition, as mentioned
in (Zhu et al. (2020)), low-quality node features might also affect performance.

On the other hand, as shown in Tab. 2b, the performance of EVAGNN on homophily
datasets is inferior to the other heterohphily-aware baselines. GCNII and GGCN, which
utilize more layers, show better results. EVAGNN achieves the equivalent performance
to traditional GNNs. As shown in Section 3.1, 2-hop neighbor aggregation works well in
homophily dataset. Although EVAGNN takes distant nodes into account in calculating
aggregation weight, it only aggregates 1-hop neighbors. Thus, compared with EVAGNN,
Geom-GCN and H2GCN show better results since they can directly aggregate higher-order
neighbors. To more effectively handle homophily graphs is a future work. However, whether
a graph is heterophily or homophily can be easily judged just by computing the homophily
ratio h as shown in Tab. 1. Given that those results demonstrate the proposed EVAGNN
outperforms other baselines or shows at least competitive accuracy to them, people can use
either EVAGNN if a graph with low h is obtained or other methods if one with high h is
obtained, to stably accomplish high performance.

5.4. Ablation Study

5.4.1. Effectiveness of MLP addition

Motivated by the fact that MLP works well in the heterophily dataset, we evaluate EVAGNN
without using MLP output defined in Equation (10). Tab. 3 shows the performance of
EVAGNN without MLP. As we can see from this table, the performances degrade compared
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Figure 5: Performance on syn-products. This dataset has three graphs for each h, and the
average accuracy is reported here. The number of nodes in each graph is 10,000, and the
mean number of edges is 59,467.

with Tab. 2a in all datasets except for Squirrel. As for WebKB datasets (Texas, Wisc,
and Cornell), they often include nodes with few edges. That fact seems to impact on
the performance of aggregating features on GNNs. It is also demonstrated by 10.11% of
decrease in accuracy that MLP is essential for handling Film. By contrast, the performance
on Squirrel has further 2.29% improvement, and the performance on Chameleon has little
change. As shown in Tab. 2a, MLP does not improve performance in these two dataset.
Overall, for datasets in which MLP effectively works by itself, we should separately add the
ego-node embedding to the proposed aggregation method as shown in Equation (10). This
generates a synergistic effect in terms of learning representation. Otherwise, it might incur
slight noise, which leads to poorer performance. We note that GCNII and GGCN also have
similar terms which handle ego-node embeddings in aggregation process.

5.4.2. Performance on Synthetic Dataset

To further analyze the performance of EVAGNN, we conduct an experiment on the synthetic
dataset (called “syn-products” (Zhu et al. (2020))), in which the homophily ratio h varies
from 0 to 1. Fig.5 shows the performance on syn-products where y and x axes indicate
the classification accuracy and h, respectively. We can observe almost the same trend as
the results from the real dataset, i.e., EVAGNN performs much better than other GNN
methods in heterophily graphs (smaller h), while it shows a slightly worse performance in
homophily graphs (larger h). Based on the results from the real and synthetic datasets,
it is true that the proposed EVAGNN may lose its performance in homophily graphs. As
mentioned in Section 5.3, to more effectively handle homophily graphs is a future work.
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6. Conclusion

In this paper, we have proposed EVAGNN, a novel graph aggregation method based on
feature distribution around each ego-node for heterophily. Through analyzing dataset, we
have found the necessity for aggregation method based on the vicinity of each ego-node.
EVAGNN modifies the aggregation in existing GNNs, and we adjust the amount of aggre-
gation based on the features generated by higher-order neighbors. Extensive experiments
have demonstrated that EVAGNN shows the high performance especially in heterophily
graphs and shows competitive performance in homophily dataset.
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