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Abstract
Most existing deep neural networks (DNNs) are easily disturbed by slight noise. However,

there are few researches on physical attacks by deploying lighting equipment. The light-
based physical attacks has excellent covertness, which brings great security risks to many
vision-based applications (such as self-driving). Therefore, we propose a light-based physical
attack, called adversarial laser spot (AdvLS), which optimizes the physical parameters
of laser spots through genetic algorithm to perform physical attacks. It realizes robust
and covert physical attack by using low-cost laser equipment. As far as we know, AdvLS
is the first light-based physical attack that perform physical attacks in the daytime. A
large number of experiments in the digital and physical environments show that AdvLS
has excellent robustness and covertness. In addition, through in-depth analysis of the
experimental data, we find that the adversarial perturbations generated by AdvLS have
superior adversarial attack migration. The experimental results show that AdvLS impose
serious interference to advanced DNNs, we call for the attention of the proposed AdvLS.
The code of AdvLS is available at: https://github.com/ChengYinHu/AdvLS.
Keywords: DNNs; Physical attacks; AdvLS; Adversarial perturbations; Genetic algorithm;
Robustness and covertness

1. Introduction

The applications based on computer vision are gradually popularized in daily life, such as
autonomous vehicle, face recognition system and so on. At the same time, adversarial attack
technology has become the focus of many scholars. In the digital environment, adversarial
attacks are performed by manipulating pixel-level perturbations Goodfellow et al. (2015);
Moosavi-Dezfooli et al. (2016), perturbations generated in this setting are invisible to the
naked eye. In the physical environment, stickers are attached to the target object as the
perturbations to perform adversarial attacks Kurakin et al. (2018); Duan et al. (2020);
Eykholt et al. (2018), which are visible to the naked eye. For example, attaching small pieces
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Figure 1: Visual comparison.

of paper to road signs can cause deep neural networks to misclassification, with disastrous
results.

In the physical world, there are many natural factors that play the role of imperceptible
adversarial perturbations. Such as light, shadow, background environments, etc. If an
attacker deliberately mimics the physical adversarial perturbations similar to the natural
factor, this physical attack method will inadvertently execute adversarial attacks, resulting
in unimaginable consequences. For example, Zhong et al. (2022) introduced a shadow-based
physical attacks, which not only ensures the success of physical attacks, but also makes people
ignore the existence of the perturbations. Most physical attacks use stickers as physical
adversarial perturbations Eykholt et al. (2018); Brown et al. (2017), road signs with stickers,
for example, trick deep neural networks. However, these methods have a disadvantage, that
is, physical perturbations are always retained on the target objects, so this kind of method
has a poor covertness. Some researchers have proposed light-based physical attacks Duan
et al. (2021); Gnanasambandam et al. (2021), which make use of the nature of instantaneous
attack to ensure the covertness and achieve effective attack. However, these methods usually
perform adversarial attacks in dim nighttime environments. In well-lit daytime, they will be
completely disabled.

In this paper, we demonstrate a novel light-based physical attack, AdvLS, which uses
laser spots as physical perturbations to perform instantaneous attacks on target objects.
The advantages of using laser spots to perform physical attack include: (1) Laser spot
projection area is puny, with better covertness; (2) Laser performs instantaneous attacks,
adversarial perturbations will not be permanently retained on the target objects; (3) Laser spot
adversarial attack is currently the first light-based physical attack that perform adversarial
attacks in the daytime, making AdvLS more aggressive. Figure 1 shows a comparison of our
method with RP2 Eykholt et al. (2018) and AdvLB Duan et al. (2021), showing that our
approach is much better at covertness.

Our method is simple to execute physical attacks. Firstly, we formalize the physical
parameters of laser spots, use genetic algorithm Holland (1992) to find the physical parameters
of the most aggressive laser spots. Finally, based on the physical parameters of laser spots, we
use laser pointers to project laser spots to the target objects and generate physical samples.
We verify the robustness and covertness of AdvLS through comprehensive experiments in
both digital and physical environments, at the same time, some ablation experiments are
also presented. Furthermore, by analyzing the misclassification of adversarial samples, we
find that the laser spots have some semantic features of clean samples, such as Envelope and
Petri dish.

The difficulties of physical attacks mainly include: Print perturbation loss, physical
perturbations covertness, robustness, etc. AdvLS uses the nature of light-speed attack
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to overcome the difficulty of covertness, but also avoids print perturbations. Our main
contributions are as follows:

• We propose a novel physical attack, AdvLS, which is the first light-based method
capable of executing physical attacks in the daytime. Our attack equipment is cheap,
requires only a set of laser pointers to perform effective physical attacks (See Section
1).

• We introduce and analyze the existing methods (See Section 2). Then, design strict
experimental method and conduct comprehensive experiments to verify the effectiveness
of AdvLS (See Section 3, 4). In particular, the light-speed attack nature of laser allows
AdvLS to achieve covertness.

• We conduct a comprehensive analysis of AdvLS, including prediction errors cased
by AdvLS, attack migration of AdvLS, etc. These studies will help scholars explore
light-based physical attacks (See Section 5). At the same time, we look into some
promising mentality for light-based physical attacks (See Section 6).

2. Related work

2.1. Digital attacks

Szegedy et al. (2014) firstly proposed adversarial attack. After this work, many adversarial
attacks were proposed successively Wiyatno and Xu (2018); Su et al. (2019); Moosavi-Dezfooli
et al. (2017). Goodfellow et al. (2015) proposed an efficient and simple method called fast
gradient sign method (FGSM), which utilizes the gradient information of the model to
perform efficient adversarial attacks. Moosavi-Dezfooli et al. (2016) proposed Deepfool,
their work effectively calculated the perturbations that fooled advanced DNNs, thereby
reliably quantizing the robustness of many advanced classifiers. Carlini and Wagner (2017a)
designed a new loss function, which verified that their adversarial perturbations were more
difficult to detect, and pointed out that the inherent characteristics considered as adversarial
samples were not in fact. Chen et al. (2018a) proposed an adversarial attack called EAD,
experiments showed that EAD could generate adversarial samples with slight distortion
and obtain attack effects similar to those of the most advanced methods in different scenes.
Carlini and Wagner (2017b) proposed C&W attack, and proved that defensive distillation
network did not significantly improve the robustness of deep neural networks through three
attack algorithms. Dong et al. (2018) proposed an iterative algorithm based on momentum
to enhance the adversarial attack, which stabilize the update direction and avoid the local
maximum value in the iteration process, generating more transferable adversarial samples.
Xie et al. (2019) improved the migration of adversarial examples by creating different input
modes and applying random transformation to input images in each iteration, experiments
have shown that the proposed method is more aggressive. Hosseini and Poovendran (2018)
introduced a new adversarial sample: "Semantic adversarial sample", which first converts
RGB images into HSV color space and then randomly moves hue and saturation components
while keeping value components constant to generate adversarial samples. Shamsabadi et al.
(2020) proposed a black-box adversarial attack based on content, which uses image semantics
to selectively modify colors within the selected range of human natural perception, generating
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unlimited perturbations. Zhao et al. (2020) used human color perception to minimize the
disturbance size of perceived color distance and generate adversarial samples.

Different from the above methods, which are executed in the digital environment, physical
attacks can not directly modify the input images.

2.2. Physical attacks

Kurakin et al. (2018) discovered the adversarial samples in the physical world, input the
adversarial images obtained by mobile phone camera into the target model. Experimental
results showed that, even perceived by the camera, a large proportion of adversarial samples
were misclassified. Duan et al. (2020) disguise adversarial examples in the physical world as
reasonable natural styles, which could both fool classifiers and achieve covertness. Eykholt
et al. (2018) proposed a general attack in the physical world, called RP2, which achieves
a robust attack success rate for road sign classifiers in the physical world. Xu et al. (2020)
proposed an adversarial T-shirt, which could avoid the pedestrian detector even if the T-shirt
would be deformed with pedestrians. Brown et al. (2017) proposed a method to create generic,
robust and targeted adversarial patches, even if the patches were puny, they would make the
target model to ignore other items in the scene. Sharif et al. (2016) designed an adversarial
eyeglass frame for attacking face recognition system, and successfully implemented white-box
and black-box attacks under different conditions. Athalye et al. (2018) designed adversarial
sample with robustness to synthetic noise, distortion and affine transformation, printed the
first 3D adversarial sample, proving the existence of robust 3D adversarial samples. Chen
et al. (2018b) proposed ShapeShifter, which generate Stop signs of reverse interference, and
these signals are always mistaken by classifier as other objects.

Different from the above physical adversarial attacks, light-based physical attacks have
better covertness. Shen et al. (2019) proposed VLA, which is based on visible light, projecting
a carefully designed adversarial beam onto the human face to attack the face recognition
system. Nguyen et al. (2020) studied the real-time physical adversarial attack effect of
adversarial light projection on face recognition system, proved the vulnerability of face
recognition model to light projection attack. Zhou et al. (2018) used infrared ray as
adversarial perturbations to generate adversarial samples, and interpreted the threat of
infrared adversarial sample to face recognition system. Duan et al. (2021) proposed adversarial
laser beam (AdvLB), which implements efficient physical adversarial attacks by manipulating
the physical parameters of the laser beam. Gnanasambandam et al. (2021) introduced an
attack system consisting of low-cost projectors, cameras and computers, the proposed attack
method can implement effective optical adversarial attack to real 3D objects.

3. Approach

3.1. Adversarial sample

Generating adversarial samples can be regarded as an optimization problem. The input
image can be regarded as a high-dimensional vector, in which each element represents a
pixel value of the image. Supposing X represents a clean sample, ground truth label Y , f
represents the classifier, f(X) represents the classification result of picture X by classifier
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Figure 2: Schematic diagram of AdvLS.

f , the classifier f associates with a confidence score fY (X) to class Y , Xadv represents the
adversarial sample. the optimization problem can be expressed as:

f(Xadv) ̸= f(X) = Y s.t. ||Xadv −X|| < ϵ (1)

Where, || · ||represents lp norm, ϵ represents the threshold of perturbation size. Firstly,
the adversarial samples fool the classifier. Secondly, the size of the adversarial perturbation
is limited to a certain threshold.

Figure 2 shows our method. Firstly, generating simulation laser spots, the genetic
algorithm is used to optimize the physical parameters of laser spots and generate adversarial
samples in the digital environment. Secondly, manipulating the laser pointers to generate
adversarial samples in the physical environment by referring to digital adversarial samples.

3.2. Genetic algorithm(GA)

GA Holland (1992) is a natural heuristic algorithm proposed by John Holland. As the
name implies, GA is an algorithm inspired by the genetic and evolution of nature, simulated
and implemented on the computer to solve the optimization problems in real life. It is an
algorithm that can avoid local optimal solutions.

In this work, we do not use the gradient information of the model, but only the confidence
score and prediction label of the model. The advantages of using GA to optimize adversarial
samples include:

(1) Simplicity and efficiency: GA is a random optimization algorithm, which does not
require excessive mathematical requirements for optimization problems. This algorithm
avoids local optimal solutions and find the optimal solution of AdvLS quickly.

(2) Nonlinear problem solving: GA solves the optimization solution of linear problems as
well as nonlinear problems. The optimization objective of AdvLS is a nonlinear optimization
problem, which can be solved by GA effectively

(3) Requires little information about the target system: GA does not require the opti-
mization problem to be differentiable like the classical optimization problem (e.g. Gradient
descent method), which is important in our work, For example, 1) some networks are not
differentiable, and 2) computing gradients requires additional information, which in many
cases increases the time cost.

3.3. Laser spot definition

In this work, we define a laser spot with two parameters: Center position L(m,n) and
color C(r, g, b). Each parameter is defined as follows:
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Center position L(m,n): L(m,n) represents the center position of the laser spot. We
assume that the laser spot is circular, and use a double tuple (m,n) to represent the center
position of the laser spot, where m represents the horizontal coordinate of the center, n
represents the vertical coordinate.

Color C(r, g, b): C(r, g, b) represents the color of the laser spot. r represents the red
channel of the laser color, g represents the green channel, and b represents the blue channel.
In the digital environment, laser spots of any color can be generated to carry out adversarial
attacks. In the physical environment, due to the limitation of conditions, we choose the
green C(0, 255, 0) laser to execute physical attacks.

The parameters L(m,n) and C(r, g, b) form a laser spot: θ(L,C). Therefore, the definition
of the laser spot group can be expressed as Gθ = (θ1, θ2, ..., θi). We define a simple function
S(X,Gθ) that synthesize clean image with laser spot group to generate adversarial samples,
which means to adopt a simple linear image fusion method to fuse clean image X and laser
spot group Gθ:

Xadv = S(X,Gθ) (2)

Where, Xadv represents adversarial sample under the perturbation of the laser spot group.
In the digital environment, Formula 2 represents the generation of adversarial samples. In
the physical environment, in order to ensure that the laser spot group appears on the target
objects, we design a l function to limit the position area of the laser spot group. Therefore,
the adversarial sample generation formula in the physical environment is shown in Formula 3:

Xadv = S(X, l(Gθ)) (3)

By using the l function, we ensure that the laser spot group position is limited to the
region of the target object.

3.4. Adversarial laser spot

Our method consists of two parts :(1) Generating adversarial samples by randomly
generating laser spots in the digital environment; (2) In the physical environment, optimizing
the physical parameters of laser spots with GA, so as to generate simulated adversarial
samples, then using laser pointers to generate physical adversarial samples. Our task is to
find adversarial laser spot group Gθ that can fool the classifier by GA, the projection area of
laser spot on the target area is puny, which allows AdvLS to achieve better covertness. Our
optimization objective function is defined as formula 4:

argmin
Gθ

fY (S(X, l(Gθ))) (4)

fY (S(X, l(Gθ))) represents the confidence score of the adversarial sample on the correct
label. The smaller the confidence is, the more adversarial the adversarial sample is. The
physical parameters of adversarial laser spot group are optimized and searched by GA, the
physical parameter Gθ is output when adversarial sample fool the classifier.

In the digital environment, we verify the effectiveness of AdvLS by randomly generating
adversarial laser spot group to generate adversarial samples. Then, based on GA, design the
adversarial attack algorithm in the physical environment.
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Algorithm 1 Pseudocode of AdvLS
Input: Input X, Classifier f , Label Y , Population size Seed, Iterations Step, Crossover

probability Pc, Mutation probability Pm;
Output: A vector of parameters G⋆

θ;
Initiation Seed, Step, Pc, Pm;
Encoding laser spot group Gθ(i) randomly;
for steps in range(0, Step) do

for for seeds in range(0, Seed) do
Xadv(seeds) = S(X, l(Gθ(seeds)));
fY (Xadv(seeds))← (f(Xadv(seeds));Y );
if f(Xadv) ̸= Y then

G⋆
θ = Gθ(seeds);
Output G⋆

θ;
Exit();

end
end
Selection with fY (Xadv(seeds)), Crossover with Pc, Mutation with Pm;

end

As shown in Algorithm 1, AdvLS takes a clean sample X, classifier f , population size
Seed, iterations Step, crossover probability Pc and mutation probability Pm as input decided
by the attacker. Details of the algorithm have been explained in Algorithm 1. In this work,
our selection strategy is to replace the top tenth of individuals with the highest fitness value
with the lowest top tenth of individuals (note that the smaller the fitness value is, the more
adversarial the individual is). The advantage of using this selection strategy is to weed out
the least aggressive individuals and reduce the time cost. In addition, we set crossover rate
Pc and mutation rate Pm to 0.7 and 0.1, respectively. Experimental results show that our
selection strategy, crossover rate and variation rate achieve efficient optimization solution
to the target problem. The optimum physical parameter G⋆

θ of laser beam group is output
finally, which is used for further carrying out adversarial attacks in the physical world.

4. Experiment

4.1. Experimental setting

As with the method in AdvLB Duan et al. (2021), we use ResNet50 He et al. (2016) as
a target model to carry out the adversarial attack experiment in both digital and physical
environments. In the digital environment, we randomly selected 1000 correctly classified
images from ImageNet Deng (2009) for testing. In the physical environment, we use street
sign, cleaver as target objects for testing. Our experimental devices are shown in Figure 3.
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Figure 3: Experimental devices.
In the physical environment, we perform adversarial attacks with laser pointers. We set

the number of physical adversarial laser spots to 10, so we need to use 10 laser pointers and
10 tripods, use an iPhone6s as a camera device. It has been verified that different camera
devices will not affect the effectiveness of AdvLS. For all tests, we use attack success rate
(ASR) as the metric to report the effectiveness of AdvLS.

Figure 4: Adversarial samples in the digital environment.

4.2. Evaluation of AdvLS

To ensure the feasibility of AdvLS, we execute experimental tests in the digital environ-
ment. Then, the robustness and covertness of AdvLS are verified by physical experiments.

Digital test: We conduct digital attack experiments on 1000 correctly classified images
selected from ImageNet Deng (2009). We conduct digital attack experiments on random
color, red, green and blue laser spots respectively. The experimental results are shown in
Table 1:

Table 1: Attack success rate (ASR) in the digital environment.
Color Random Red Green Blue
AdvLS 75.8% 82.6% 87.7% 78.7%
Query 237.6 204.9 143.0 241.3
AdvLB 95.1% Ø Ø Ø
Query 834.0 Ø Ø Ø
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Figure 5: Statistics of misclassification in the digital environment.

Table 1 shows the attack success rate and average queries of AdvLS in the digital
environment. The number of laser spots ranges from 10 to 50. It can be seen that the
adversarial laser spot has a strong antagonism and achieves a robust attack success rate in
the digital environment. Even the attack success rate of AdvLS is not as good as AdvLB
Duan et al. (2021), it’s more efficient. In addition, Figure 4 shows the digital adversarial
samples generated by AdvLS, which lead to classifier classification errors by adding a small
number of adversarial laser spots that are imperceptible to the naked eye without changing
the semantic information of the original image. For example, by adding a few adversarial
laser spots to a clean sample, the classifier misclassifies Quail as Peacock, Mosquito net, etc.

On the other hand, we make statistics on the misclassification results. As shown in Figure
5, most of the adversarial samples were misclassified as Hair Slide, Joystick, etc. By looking
at the original clean sample of Hair Slide in ImageNet’s training set Deng (2009), we find that
the Hair slide image had many shiny plastic crystals, and these elements were very similar to
the effect against laser spots. Some of the same phenomena will be shown in Section 5.

Physical test: In the physical environment, light and shadow affect the accuracy of the
classifiers. In order to accurately verify the effectiveness of AdvLS, more carefully designed
experiments are conducted. We divide the physical experiments into indoor experiments and
outdoor experiments to verify the robustness of AdvLS. In an indoor environment, we perform
physical attacks by manipulating the physical parameters of the laser spots. Through a large
number of experiments, we achieve a 100% attack success rate and verified the feasibility
of AdvLS in the indoor environment (ASR of 100% in AdvLB Duan et al. (2021)). In the
outdoor environment, we choose stop sign as the target object. In order to study the attack
robustness under different angles, we conduct physical attack from different angles. Through
extensive experiments, we verify the robustness of AdvLS. The experimental results are
shown in Table 2.

Table 2: ASR at different angles.
Angle 0◦ 30◦ 45◦

AdvLS 80.56% 77.78% 41.67%
AdvLB 77.40% Ø Ø

As can be seen from the experimental results in Table 2, AdvLS achieves a robuster
performance than AdvLB Duan et al. (2021) in outdoor test. As can be seen from Figure 6,
the adversarial samples generated by AdvLS have excellent covertness and execute adversarial
attacks during the daytime. Note that this is the only light-based physical attack we know
of that can be deployed during the daytime. The experimental results in Table 2 and the



Hu Wang Tiliwalidi Li

Figure 6: Demonstration of adversarial samples from different angles.

demonstration of adversarial samples in Figure 6 verify the robustness and covertness of the
proposed AdvLS.

In the physical environment, the simulation laser spots are generated on the computer,
the optimal simulation adversarial sample is obtained by GA, then the physical parameters
of the adversarial laser spots are saved. Finally, controlling laser pointers to project on the
target objects, generate physical adversarial samples. Through the analysis and comparison
of simulated samples and physical samples, it can be seen from Figure 7 that digital samples
have an excellent consistency with physical samples.

Figure 7: Comparison of digital and physical samples in indoor and outdoor
environments.

On the whole, although the ASR of AdvLS is lower than AdvLB in the digital environment,
its query efficiency is much better, and AdvLS is significantly more robust than AdvLB in
the physical environment. Therefore, comprehensive experiments confirm the effectiveness of
our proposed AdvLS in the both digital and physical environments.

4.3. Ablation study

In this section, we perform a series of experiments on ImageNet Deng (2009) to study
the adversarial effect of AdvLS with different parameters. The main parameters we study
include the number of laser spots and the color of laser spots.

In order to study the influence of the number of laser spots on the adversarial effect of
AdvLS, we set the value range from 5 to 100 with an interval of 5 for the number of laser
spots. As for the color of laser spots, we study the influence of random color, red, green and
blue laser spots on AdvLS respectively. The experimental results are shown in Figure 8.

The experimental results in Figure 8 show that: (1) AdvLS achieves a high ASR even
with fewer laser spots. When the number of laser spots is 35, it can be seen that AdvLS
achieves an ASR about 70%. Even when we use only 15 laser spots, AdvLS achieves an ASR
about 50%. According to the digital adversarial sample in Figure 4, when the number of
laser spots is 15, the adversarial perturbations can hardly be detected by naked eyes. (2)
Blue laser spots compared with other colors, more antagonistic effect. This phenomenon is
consistent with the experimental results in De and Pedersen (2021).
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Figure 8: Influence of different color and number of laser spots on AdvLS
adversarial effect.

5. Discussion

In this section, we discuss some interesting phenomena of AdvLS in both digital and
physical environments.

Figure 9: Characteristic analysis of adversarial samples in the digital environment.
In the digital environment, it can be seen from the experimental results in Table 1 that

the adversarial perturbations generated by AdvLS have a robust adversarial effect. As shown
in Figure 9, laser spots contain semantic features of many image categories. By adding
adversarial laser spots to clean images, adversarial samples will be misclassified as Bubble,
Carton, Envelope, Petri dish, etc. In ImageNet’s training set Deng (2009), we check the
training set samples of Bubble, Carton, Envelope and Petri dish respectively, we find that
the adversarial laser spots are very similar to the image features in the training sets. Thus,
with the perturbation of a small number of laser spots, the adversarial samples can fool
advanced DNNs.

In the physical environment, we manipulate 10 laser Pointers to attack the target objects.
In the outdoor environment, a total of 108 physical adversarial samples at various angles are
obtained. By analyzing the adversarial samples that could be successfully attacked, we find
that the adversarial samples were mainly misclassified as Park bench, Lawn mower, etc. In
the indoor environment, a total of 25 adversarial samples are obtained, most of which are
misclassified as Modem, Croquet ball, etc.
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In addition, we test the adversarial attacks mobility of AdvLS in digital and physical
environments. First of all, in the digital environment, the data set is the digital adversarial
samples that successfully attack ResNet50 He et al. (2016), which contains adversarial samples
generated by laser spots with random colors, red, green and blue. The experimental results
are shown in Table 3. Secondly, in the physical environment, the data set is the physical
adversarial samples that successfully attack ResNet50 He et al. (2016), which contains the
physical adversarial samples of 0◦, 30◦ and 45◦. The experimental results are shown in Table
4.

Table 3: Attack migration in the digital environment (%).
Classifier Random Red Green Blue

Inception_V3 Szegedy et al. (2016) 46.0 46.9 31.5 65.4
VGG19 Simonyan and Zisserman (2015) 81.3 82.0 83.2 88.3

ResNet101 He et al. (2016) 82.7 75.3 73.7 90.7
GoogleNet Szegedy et al. (2015) 63.0 62.8 55.0 81.3
AlexNet Krizhevsky et al. (2012) 95.9 97.2 96.6 97.2

DenseNet Huang et al. (2017) 64.6 67.2 54.5 75.7
MobileNet Sandler et al. (2018) 92.0 91.8 87.6 96.2

Table 4: Attack migration in the physical environment (%).
Classifier 0◦ 30◦ 45◦

Inception_V3 Szegedy et al. (2016) 10.34 64.29 80.00
VGG19 Simonyan and Zisserman (2015) 20.69 39.29 66.67

ResNet101 He et al. (2016) 100 100 86.67
GoogleNet Szegedy et al. (2015) 96.55 100 86.67
AlexNet Krizhevsky et al. (2012) 100 100 100

DenseNet Huang et al. (2017) 100 100 100
MobileNet Sandler et al. (2018) 82.76 85.71 100

As can be seen from the experimental results in Table 3, in the digital environment :(1)
the adversarial samples generated by AdvLS have very strong adversarial attack migration,
which means that AdvLS have excellent performance to perform black-box adversarial attack.
(2) When AlexNet Krizhevsky et al. (2012) is attacked by adversarial samples, the classifier
was almost completely paralyzed, MobileNet Sandler et al. (2018) and VGG19 Simonyan and
Zisserman (2015) are also almost paralyzed, while Inception_V3 Szegedy et al. (2016) shows
excellent classification performance. On the other hand, according to the experimental results
in Table 4, in the physical environment :(1) The adversarial samples generated by AdvLS
also have strong adversarial attack migration. (2) When AlexNet Krizhevsky et al. (2012)
and DenseNet Huang et al. (2017) are attacked by physical adversarial samples generated
by AdvLS, they are completely paralyzed, and ResNet101 He et al. (2016) is also almost
completely paralyzed. In general, AlexNet Krizhevsky et al. (2012) has almost no robustness
to adversarial samples generated by AdvLS, while Inception_V3 Szegedy et al. (2016) has
better robustness.
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The experimental results in Table 1 and Table 2 show that AdvLS has robust adversarial
effect in both digital and physical environments, which means that AdvLS has a non-negligible
adversarial effect in white-box conditions. The experimental results in Table 3 and Table
4 show that AdvLS has strong adversarial attack migration in both digital and physical
environments, which means that AdvLS is effective to conduct black-box attacks. The
experimental results of this work show that AdvLS has robust adversarial attack capability
and attack migration under different environments, AdvLS conduct robust adversarial attack
under white-box condition and black-box condition. In a nutshell, AdvLS pose a significant
security threat to the advanced vision-based systems, so we call for AdvLS to receive
widespread attention.

6. Conclusion

In this paper, we propose a light-based physical attack, AdvLS, which performs adversarial
attack by optimizing the physical parameters of laser spots through GA. The advantages of
AdvLS include: (1) AdvLS has robust adversarial attack performance in different environ-
ments, and shows excellent adversarial attack performance in both white-box and black-box
settings; (2) In the physical environment, AdvLS uses laser spots as adversarial perturbations,
which allows AdvLS achieve excellent covertness; (3) AdvLS is the only light-based physical
attack capable of executing attacks in the daytime. In addition, the cost of deploying AdvLS
is cheap, it’s easy for an attacker to implement. The attacker performs a quick physical attack
by remotely controlling the laser device. Our work shows that AdvLS poses a non-negligible
security threat to many vision-based systems. In the future, light-based physical adversarial
attack technology will also become a research hotspot.

In the physical world, the quantification of physical adversarial perturbations is not
achievable, which is also a defect of physical adversarial attack technology so far. In the
future, we will continue to study light-based physical attack (e.g. spotlight attack, shadow
attack). The security of vision-based systems and applications can be further improved only
when more robust and covert physical attacks are explored.
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