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Abstract

Data augmentation is an effective and universal technique for improving the generalization
performance of deep neural networks. Current data augmentation implementations usually
involve geometric and photometric transformations. However, none of them considers the
topological information in images, which is an important global invariant of the three-
dimensional manifold. In our implementation, we design a novel method that finds the
generator of the first homology group, i.e. closed loops cannot shrink to a point, of 3D
image and erases the bounding box of a random loop. To the best of our knowledge, it
is the first time that data augmentation based on the first homology group of the three-
dimensional image is applied in medical image augmentation. Our numerical experiments
demonstrate that the proposed approach outperforms the state-of-the-art method.
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1. Introduction

Data augmentation is a popular technique that generates new instances by processing avail-
able training data to increase its amount and variance. Data augmentation improves the
network’s generalization, performance, and robustness for image segmentation tasks. Some
augmentation techniques use handcrafted operations (e.g., scale, rotation, colour changes,
and so on), while others learn the desired operations from these operations that can achieve
the most accurate results (e.g., Cubuk et al. (2019); Xu et al. (2020); Li et al. (2020)).
Despite the improvements achieved by these techniques, no matter for handcrafted data
augmentation or policy search-based data augmentation, the final augmented image changes
only under geometric and photometric transformations, without considering the topology
transformation. This limitation can hurt the model’s generalization ability and robustness.

Generally, a manifold (surface) has two important invariants, topology and geometry.
Topological information is global information, and geometric information is local infor-
mation. For example, all the curvature information on the three-dimensional manifold
(Riemann curvature tensor, Ricci curvature tensor, scalar curvature, section curvature) is
essentially the complicated combination of the first derivative and the second derivative,
only describing the local bend of the surface. The topological information is global, rep-
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resenting the manifold’s invariant information under large-scale global deformation. For
example, no matter how we stretch or deform the surface in Figure 1, it always has three
”holes”. In fact, the origin of topology is precisely to characterize intuition about ”holes”
in strict concepts. Homology is an important topological concept whose original definition
relies on the so-called complex, such as triangulation of common 2D meshes. However, its
final result does not depend on how the manifold is decomposed. For the three-dimensional
manifold represented by the three-dimensional image, we first need to define the three-
dimensional decomposition, such as the hexahedral mesh of the three-dimensional space,
corresponding to the image voxel. Then we calculate the first homology group on the hex-
ahedral mesh, the closed loops that cannot shrink to a point. The bounding boxes of these
closed loops will be used for random erasure during data augmentation.

This paper proposes a topology-based data augmentation framework by finding the first
homology group, i.e. the closed loops that cannot shrink to a point. It is the first automatic
data augmentation work involving homology basis in 3D image. The contributions of our
paper are as follows:

• Following the classical mathematical definition of homology, we design a method to
find the first homology group of a three-dimensional manifold, i.e. a three-dimensional
image. To the best of our knowledge, no one has proposed this approach before.

• We take full advantage of the topological information of 3D images and design a
topology-based data augmentation method. After computing all homology groups
offline, it performs like any common method.

• Experiment shows that our method outperforms CutOut DeVries and Taylor (2017),
CutMix Yun et al. (2019), MixUp Zhang et al. (2017).

Therefore, our paper is organized as follows: Section 2 presents more detailed back-
ground information on data augmentation and homology, Section 3 presents the representa-
tion of hexahedral meshes for arbitrary regions of 3D images, Section 4 presents our original
method for finding the first homology group in hexahedral meshes, Section 5 is the pseu-
docode, Section 6 is the detailed implementation on a private dataset and a public dataset,
and Section 7 is the conclusion.

2. Related Work

2.1. Data Augmentation

Deep neural networks have accomplished incredible progress in medical image segmentation
tasks and promoted successful computer-assisted intervention development in the past few
years. This has benefitted research and clinical treatment of disease diagnosis, treatment
design, and prognosis evaluation. Researchers proposed various 3D medical image segmen-
tation models for supervised or semi-supervised tasks given the training data. However, the
conduct of deep learning models profoundly relies on adequate well-labeled data. Common
image data augmentation techniques are geometric and photometric transformations such
as flipping, cropping, rotation, translation, noise injection, kernel filters, mixing images,
random erasing, and so on Moreno-Barea et al. (2018); Jurio et al. (2010); Taylor and
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Figure 1: The 2D surface has three ”holes” and thus six closed loops (in red and yellow)
that cannot contract to a point, so its first homology group has six generators.
However, if the surface is considered a solid 3D surface (or 3D manifold more
formally), then the three yellow curves can contract to a point inside the solid.
Therefore, only three red lines remain in the generator of the first homology group
of the three-dimensional manifold. This paper will find the first homology group
of 3D manifold, which is naturally equivalent to 3D image.

Nitschke (2018); Kang et al. (2017); Inoue (2018); Summers and Dinneen (2019); Takahashi
et al. (2019); Zhong et al. (2020); DeVries and Taylor (2017); Yun et al. (2019); Zhang et al.
(2017). Besides these classical methods, GAN-based data augmentation Zhu et al. (2018);
Li et al. (2018) and Neural Style Transfer Gatys et al. (2015); Jackson et al. (2019) are also
conducted for generating extra data. However, these methods do not explicitly consider
the topology of the image. Recently, reinforcement learning and evolution based date aug-
ment have been proposed due to the appearance of neural architecture search. The neural
architecture search-based data augmentation either searches from the policy space of the
geometric and photometric transformations, such as Xu et al. (2020); Cubuk et al. (2019);
Terauchi and Mori (2021); Lim et al. (2019), or searches from the predefined net struc-
ture such as Neural Style Transfer Perez and Wang (2017), the structure providing optimal
mixing of images Lemley et al. (2017). As mentioned before, geometric and photometric
transformations (policies to be searched) and predefined net structures do not explicitly
consider the topological information about the image, especially in 3D images.

2.2. Homology

Homology theory can be said to start with the Euler polyhedron formula, or Euler char-
acteristic Stillwell (2012). This was followed by Riemann’s definition of genus and n-fold
connectedness numerical invariants in 1857 and Betti’s proof in 1871 of the independence
of ”homology numbers” from the choice of basis Rotman (2008). Homology itself was de-
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Figure 2: Different hexahedrons and ranks of H1. The first row shows three different 3D
bool arrays, each with size 3× 3× 1. The second row shows their corresponding
hexahedral mesh. Each sub caption shows the number of hexahedral mesh and
the rank of the first homology group. The middle mesh is not considered stable,
since the edge in red colour can be perturbed such that the mesh wound have the
same shape as the left mesh. So our definition of hexahedral mesh is consistent
with intuition, although it has a complicated form.

veloped to analyze and classify manifolds according to their cycles – closed loops (or more
generally submanifolds) that can be drawn on a given n dimensional manifold but not
continuously deformed into each other Richeson (2019).

Intuitively, all closed loops on a sphere can be contracted to a point with continuous
deformation. For more complex surfaces, not all closed loops have such trivial properties.
As an example, a sphere with three rings, as the 2D surface in Figure 1, has six closed curves
that can’t contract continuously to a point. These six curves are the inherent invariants
of the surface, reflecting its important global structure. Informally, these nontrivial curves,
and their properties, are the main content of the homology study.

Medical images are usually 3D manifolds, and the homology of 3D manifolds is slightly
different from 2D. If regarding Figure 1 as a solid, in other words, the so-called two-
dimensional manifold in the above paragraph is exactly the boundary of the three-dimensional
shape. Then the solid shape has three special closed loops (in red) because all yellow loops
can contract to a point through the interior. It is exactly this three-dimensional homology
that this paper refers to.

3. Hexahedral Mesh

There is a natural structure of hexahedral mesh in three dimensional CT image. More
precisely, an arbitrary 3D bool array is equivalent to a hexahedral mesh. Two simple
examples of the bool array with size 3 × 3 × 1 and corresponding hexahedral mesh are
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Figure 3: Net of two connected hexahedrons with the common face abcd. Each arrow is a
4-tuple with struct (vertex, edge, face, volume), and four different relationship
operations β0, β1, β2, β3 have been shown on the image.

shown in Figure 2a and Figure 2c, respectively. It is easy to see that in mesh of Figure 2a,
rank of first homology group is 0, and its rank in mesh of Figure 2c is 1. However, the array
in Figure 2b with a shape between Figure 2a and Figure 2c confuses the corresponding
hexahedral mesh. How to define the edge of the mesh on the red line? Or, is there one edge
or two edges on the red line? The rank of the homology group is 1, which is topologically
equivalent to Figure 2c, in the former case, or 0, which is topologically equivalent to Figure
2a, in the latter case. One important thing to consider when defining hexahedral mesh is
to reduce the topological noise as much as possible, i.e., reduce the rank of the homology
group in a mesh like Figure 2b. So there are two edges in the red line of Figure 2b in our
definition. The way we define it is also intuitive because we can intuitively feel that the
mesh in Figure 2b is unstable; thus, it can be continuously deformed to Figure 2a.

It is easy to see that the definition of hexahedral mesh is equivalent to counting the
number of vertexes, edges, faces, and volumes on the mesh in a given mesh. For example,
in Figure 2b, the red edge is counted twice, and its two endpoints are counted twice. So
the number of them are 32, 60, 36, and 7.

Our method is inspired by G. Damiand and P. Lienhardt Damiand and Lienhardt (2014),
the implementation of which can be found in CGAL Library The CGAL Project (2021).
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Figure 4: Algorithm design

Denote by X the set of 4-tuple, referring to (vertex, edge, face, volume), or (0-cell,1-
cell,2-cell,3-cell). The Figure 3 represents the net of two connected hexahedrons, and the
adjacent face is abcd. Then each arrow represents a tuple; that is, there are 48 darts in each
hexahedron. We marked some darts with numbers.

Define the relational operations on a tuple: β0, β1, β2, β3. βi(t0) = t1 means that
tuple t0 and t1 are same except the i-cell, for example β0((b), (bd), (abcd), the left cube) =
((d), (bd), (abcd), the left cube), or equivalently, β0(2) = 3, in Figure 3. Define four different
finitely generated groups Gi that has the generating set {βj |j ̸= i} =
{β0, . . . , βi−1, βi+1, . . . , β3}, every element of Gi can be written as the combination (under
the group operation) of finitely many elements of the finite set {βj |j ̸= i} and of inverse
of such elements. Let t be a tuple associated with an i-cell, and all the tuples Gi(t) are
the same i-cell, i.e., counted once. This means all of Gi(t) are equivalent. The number of
the equivalent class of i-cell is equal to the number of orbits under the group action Gi.
For example, in Figure 3, there are 8 tuples associated with the edge bd, the orbit of them
under action of G1 =< β0, β2, β3 > is itself: 2, 3, 8, 9, 7, 10, 11, 12. Then we count the
edge bd only once in the counting problem. However, in Figure 2, there are two orbits of
tuples associated with red line under action of G1. So the red line is counted twice.

4. First Homology Group

As mentioned above, we usually decompose manifold to study homology, such as the
common triangulation of two-dimensional manifolds and the hexahedral mesh of three-
dimensional manifolds in this paper. Once the manifold has a decomposition, the topo-
logical problem becomes an algebraic problem, which is precisely the tool that the original
mathematical definition of homology used.

For algebraic problems, the usual critical step is how to choose a basis, that is, all
elements are linear combinations of these basis elements. Therefore, the first step in this
problem is to find some closed loops, so that all closed loops can be represented as linear
combinations of these loops. We use a simplest example in Figure 4 to illustrate these
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concepts. It shows a graph G with 9 vertexes, 12 edges, 2 faces (yellow face), 2 holes (white
face) and a breadth-first search (BFS) tree (solid line) G0, with red vertex as root. There
are two types of edges in G, one of which is the edge in G0 (solid line), and the other is the
remaining edges (dashed line). Each edge e /∈ G0 corresponds to a unique cycle le in e

⋃
G0,

i.e. le1 , le2 , le3 , le4 in Figure 4. These closed loops are exactly the basis we are looking for,
i.e. all closed loops can be represented as their linear combination.

The first homology group is essentially looking for closed loops that cannot contract
to a point, equivalent to deleting all closed loops that can contract to a point. Note that
the boundary of each quadrilateral (i.e. the closed loop comprised of its four edges) can
obviously contract to a point through the quadrilateral’s face. Since the smallest face
elements are quadrilaterals in hexahedral mesh, we enumerate all quadrilaterals based on
this property, removing all trivial loops in the base.

Let L = {le|e /∈ G0, le is not removed}. When a quadrilateral f appears, the following
relationship occurs: ∑

lei = ∂f, lei ∈ L (1)

where the symbol ”=” means homologous. We expect to remove one of the lei while keep
remaining closed loop as short as possible, so we remove the one with the largest perimeter
among all the closed loops lei in Equation (1). More precisely, we remove such le that
∀i, length(le) ≥ length(lei). When the algorithm terminates, L is the generator of first
homology group. In other words, each closed loop in L can’t shrink to a point, as the le1
and le4 in Figure 4. We expect the obtained closed loop to be as short as possible; however,
the closed path le4 now does not meet this requirement because it can be simplified further.

As mentioned above, G0 is a BFS tree, the elements in L are the shortest loops that
passes through the root vertex. Next, we shorten each element in L by constructing a
sequence of subgraphs Gi: For an tuple (le1 , le2 , . . .), i < j ⇒ length(lei) ≤ length(lej ),
then Gi = Gi−1 ∪ lei . We denote l′ei the shortest circle containing edge ei in Gi. If lei is
the shortest circle that passes through a certain hole and the root node, which is obviously
also an element in L, then l′ei must be a non-trivial circle that passes through the same hole
with perimeter much less than lei .

Now we have the closed loops L′ = {l′e|le ∈ L}, as the red circles in G1 and G4 in Figure
4. In this example, it is already the global optimal solution. Figure 5 shows the results
of our algorithm on two other hexahedral meshes, where the red lines represent the closed
loops we wish to find. Note that the left graph does not have any closed loop because it is
not stable and can continuously deform to a solid sphere. Some closed loops can shrink to
a point on the right mesh, each having the shortest length.

5. Algorithm

We give two algorithms in this section. Algorithm 1 is a method of calculating the homol-
ogy basis, and Algorithm 2 is our main algorithm for data augmentation. Note that the
organs/tissues/tumours to be segmented in our dataset and all 10 datasets of the Medical
Segmentation Decathlon are topologically trivial, i.e. they can all continuously deform to
a solid sphere. Therefore, our data augmentation method theoretically does not mask the
ground truth.
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Figure 5: First homology group (red lines) in different hexahedral meshes. Note that ac-
cording to the definition of the hexahedral mesh in Section 3, there is no red line
in the left mesh, because the ”hole” of it is unstable, which is also consistent with
human intuition.

Algorithm 1 FirstHomologyGroup

Input: hexahedral mesh
Output: closed loops
1: construct shortest path tree G.
2: obtain cycle basis C = {Ce1 , Ce2 , . . . , Cen} in order of decreasing length.
3: obtain homology basis C∗ = {Cei1

, Cei2
, . . . , Ceik

} by solving (1)
4: for edge ej ∈ {en, en−1, . . . , e1} do
5: l′ej = shortest cycle containing ej in G
6: G = G ∪ ej
7: end for
8: return {l′ej | j ∈ i1, i2, . . . , ik}

Algorithm 2 DataAugmentation

Input: 3D CT image img
Output: new image img, new label L
1: Choose the bounding box of a random closed loop.
2: Initialize mask M with the same size as the image.
3: M(bounding box) = 0
4: img = img ⊗M
5: L(bounding box) = 0
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Figure 6: A hexahedral mesh of a large region in the ossicles dataset and its first homology
group, where the red lines represent all elements of the first homology group. It is
worth emphasizing again that this is a three-dimensional manifold, so it is a solid,
and its interior is also composed of hexahedrons. It has a lot of small ”holes”
and therefore a lot of topological noises. This is because we are using a simple
threshold to get the area, and the noise of the image will cause some small holes.
The easiest way to remove such small holes is to use morphological techniques in
digital image processing, although we currently use the perimeter of the closed
loops to filter the noise.
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Figure 7: Another side of the mesh in Figure 6, there are obviously some closed paths of
length 4, which are the smallest closed paths that can exist in our hexahedral
mesh, usually due to noise.

6. Experiment

Dataset We conduct the proposed method on two datasets respectively. One is the Heart
dataset in Medical Segmentation Decathlon. The data set consists of 30 mono-modal MRI
scans of the entire heart acquired during a single cardiac phase (free breathing with respi-
ratory and electrocardiogram (ECG) gating). The corresponding target ROI was the left
atrium. The other dataset is a private datset, consisting of 350 3D CT images from different
patients, 250 of whom were diagnosed with normal ossicles, and 100 were diagnosed with
deficient ossicles. The corresponding target ROI was the ossicles and the voxel space is
0.2734× 0.2734× 0.335. The images have dimensions of 150 pixels in height and 200 pixels
in width.
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Figure 8: A closed loop within a smaller area of the image. The left picture shows the
position of the cube region in one of the slices, and the right picture shows the
three closed paths within it obtained by our algorithm.

Figure 9: The real positions in CT image of the three closed loops from Figure 8.

Data augmentation We first need to divide the CT image into different regions to
build their hexahedrons. We adopted a simple thresholding method because grayscale
in medical images usually has specific anatomical meanings. That is, voxels in different
grayscale intervals usually have different anatomical meanings.

For the ossicles dataset, we divide the grayscale into three intervals, [0, 542], [542, 1704],
and [1704,+∞], which represent air, tissue, and bone, respectively. Since our data aug-
mentation method is somewhat equivalent to erasing an area and setting it to air, we do
not consider air intervals. Reconstruct the hexahedral meshes of the tissue and bone ar-
eas with the method of Section 3, and obtain the generators of the first homology groups
of them, that is, the closed loops on them that cannot shrink into a point, which will be
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Figure 10: The true position of one of the 3 closed loops from Figure 8.

Figure 11: Erase the bounding box of the closed loop in figure 10 for data augmentation.
From our observations, in both our dataset and all 10 public datasets in the
Medical Segmentation Decathlon, the organs to be segmented are topologically
trivial, i.e. equivalent to solid spheres. Therefore, our region removal does not
theoretically remove the organ to be segmented.

erased during data augmentation. Figure 6 and 7 show different sides of the hexahedral
mesh constructed from a big region in the ossicles dataset, where all voxels have grayscale
in interval [542, 1704]. The red lines represent all generators of the First Homology Group,
that is, all closed curves that cannot shrink to a point. In order to show their effect more
clearly, we selected a small 3D region from this data and showed its closed loops. The left
image of Figure 8 shows the region’s position (inside the red rectangle) in a slice of the
CT image, and the right image shows a total of 3 closed loops within this region. Figure
9 shows the actual locations of the 3 loops in the CT image. Although the CT image seen
from the 2D perspective limits our 3D imagination, we can still observe that the red region
of Figure 9 does have nontrivial topological properties, i.e. its three special closed loops. It
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is worth pointing out that the three curves in Figure 8 don’t intersect, but the red lines in
Figure 9 intersect. This is because a point on the hexahedral mesh established in Section 3
has 8 hexahedrons adjacent to it. Therefore, in Figure 9, we coloured in red all 8 adjacent
hexahedrons of each point in the closed loops from Figure 8.

Figure 10 only retains one closed loop in Figure 9. In our data augmentation process, we
select the bounding box of a random closed loop as in Figure 10 to erase, as shown in Figure
11. Our method can automatically select bounding boxes based on the topological properties
of the data instead of randomly selecting bounding boxes as in previous algorithms (e.g.
CutOut or CutMix). More importantly, from a practical perspective, after offline processing,
our algorithm can be computed as fast in pytorch as methods like CutOut without any
additional processing.

Notice that there are some closed curves with very short lengths, such as some loops of
length 4 in Figure 7, which are the theoretically shortest loops that can appear in hexahedron
mesh. These small loops usually represent a kind of topological noise, and we set an
empirical threshold to remove them. For example, we only consider closed loops with
perimeters greater than 10.

Finally, we store all closed loops for each data in corresponding files. In data augmen-
tation, we randomly select one of the closed paths stored before, and set the interior of
its bounding box to 0, instead of generating a rectangle with arbitrary size at a random
position each time as the CutOut or CutMix method. Since our algorithm computes all
closed paths to files offline, the final data augmentation process consumes the same time as
any other common data augmentation method.

For the heart dataset, we divide the grayscale into three intervals, [0, 100], [100, 500],
and [500,+∞]. The remaining process is the same as before.

In summary, our fundamental principle is to analyze the topological properties of differ-
ent anatomical structures and use the topological properties to guide the region removal.

Compared Methods We used MultiResUNet Ibtehaz and Rahman (2020) as net
struct, and compared our metod with three similar data augmentation methods CutOut,
MixUp, CutMix. We unify the identical voxel spacing resampling them to 0.7 mm ×0.7
mm ×0.7 mm firstly. The patches are generated with a sliding window moving across the
entire image with a stride of half patch size. The input batch consists of two patches with
size 128 × 128 × 128. The network is implemented in Pytorch 1.11.0 on an NVIDIA V100
GPU. For both dataset, We evaluate the performance with 5-fold cross validation. The
ADAM optimizer is applied with an initial learning rate of 3 × 10−4 and a weight decay
of 10−5, which will be reduced by 80% if the training loss is not reduced over 30 epochs.
We terminate the training once the learning rate is below 10−8. Table 1 shows our com-
parison results. We found that the CutOut method does not work as well as expected, and
the MixUp method does not perform well on the ossicles dataset. However, our method
outperforms the other three methods and achieves good results on all datasets.

7. Conclusion

We have proposed an automatic data augmentation strategy involving topology to accom-
modate 3D medical image segmentation tasks. The image’s topology information can be
calculated by constructing a hexahedral mesh followed by a method to find the first homol-
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Table 1: Comparison of four data augmentation methods, CutOut, MixUp, CutMix, and
ours, on the two datasets, our ossicles dataset and heart dataset in Medical Seg-
mentation Decathlon. The metric is the Dice similarity coefficient.

Ossicles Heart

MultiResUNet 80.28± 4.03 86.47± 0.66

MultiResUNet+CutOut 76.16± 2.49 84.32± 1.21

MultiResUNet+MixUp 79.42± 0.72 87.18± 1.96

MultiResUNet+CutMix 82.01± 1.75 87.43± 1.05

MultiResUNet+OURS 83.13± 0.31 89.83± 0.56

ogy group. The numerical results for 3D segmentation tasks show that it can improve the
performance of the segmentation model. By adding it to the search space of some automatic
augmentation methods, We believe that incorporating our method with existing methods
could further boost the segmentation’s performance.
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