
Proceedings of Machine Learning Research 189, 2022 ACML 2022

EENAS: An Efficient Evolutionary Algorithm for Neural
Architecture Search

Jian Zheng zhengjian2322@buaa.edu.cn

Wenran Han hanwenran@buaa.edu.cn

Ying Zhang yingzhang1998@buaa.edu.cn

Shufan ji* jishufan@buaa.edu.cn

Beihang University, Beijing, P.R. China, 100191.

* Corresponding Author

Editors: Emtiyaz Khan and Mehmet Gönen

Abstract

Neural Architecture Search (NAS) has been widely applied to automatic neural architec-
ture design. Traditional NAS methods often evaluate a large number of architectures,
leading to expensive computation overhead. To speed-up architecture search, recent NAS
methods try to employ network estimation strategies for guidance of promising architec-
ture selection. In this paper, we have proposed an efficient evolutionary algorithm for NAS,
which adapts the most advanced proxy of synthetic signal bases for architecture estimation.
Extensive experiments show that our method outperforms state-of-the-art NAS methods,
on NAS-Bench-101 search space and NAS-Bench-201 search space (CIFAR-10, CIFAR-100
and ImageNet16-120). Compared with existing works, our method could identify better
architectures with greatly reduced search time.

Keywords: Neural Architecture Search, Evolutionary Algorithm

1. Introduction

Nowadays neural architecture search has been widely applied to automatic neural archi-
tecture design in many domains, including image classification (Zoph et al., 2018; Real
et al., 2017), object detection (Wang et al., 2020b; Peng et al., 2019; Ghiasi et al., 2019),
semantic segmentation (Chen et al., 2019; Nekrasov et al., 2019; Liu et al., 2019a), speaker
recognition (Ding et al., 2020) and etc. NAS aims to search architectures with outstand-
ing performance in given search spaces and datasets. Traditional NAS methods include
random search (Bergstra and Bengio, 2012), reinforcement learning (Zoph and Le, 2017;
Zoph et al., 2018), evolutionary algorithms (Real et al., 2017; Wei et al., 2020; Lopes et al.,
2021), bayesian optimization (Kandasamy et al., 2018; White et al., 2021; Ru et al., 2021),
and predictor-based methods (Wen et al., 2020; Lu et al., 2021; Ning et al., 2020; Dudziak
et al., 2020; Wu et al., 2021). Although those methods could get promising results, they
are computationally expensive to train networks from scratch to convergence for hours and
days. To reduce training cost, some weight-sharing methods (Liu et al., 2019b; Pham et al.,
2018; Guo et al., 2020) have been proposed to share weights among subnets sampled from
a supernet. However, those shared weights are under-trained so as to have limited ability
to deliver optimal architectures.

© 2022 J. Zheng, W. Han, Y. Zhang & S. ji*.

Zheng Han Zhang ji*

Recently, to speed-up architecture search, some methods try to employ network estima-
tion strategies for guidance of promising architecture selection. NPENAS (Wei et al., 2020)
guides the evolutionary search by two predictors: a graph-based uncertainty estimation net-
work and a performance predictor. In addition, some proxy methods have been proposed to
estimate network performance, delivering architecture ranking according to proxies. Zero-
cost proxies use initial parameters with a single forward or backward propagation pass to
rank architectures (Abdelfattah et al., 2021; Mellor et al., 2021). Accordingly, a zero-proxy
estimator adopted by G-EA (Lopes et al., 2021) guides evolutionary algorithm(EA) to ex-
plore search space, which can efficiently rank offspring on NAS-Bench-201. In addition,
ProxyBO (Shen et al., 2021) combines BO with zero-cost proxies to select promising archi-
tectures. As there is a trade-off between the performance and time complexity of estimation
strategies, proxies delivering better architecture ranking with reasonable training cost would
provide better guidance for search. Li et al. (2021) has proposed a proxy based on Syn-
thetic Signal Bases(SSB) to measure the intrinsic capability of networks, which outperforms
zero-cost proxy methods in terms of ranking with near-zero training cost. Therefore, we
are motivated to try the most advanced estimation proxy SSB on evolutionary algorithm,
in order to search for better architectures with reduced search time.

In this paper, we propose an Efficient Evolutionary algorithm for NAS (EENAS),
which adapts the SSB proxy (Li et al., 2021) to EA, leading to improved architecture
search with greatly reduced search time. Compared with previous works, our method has
three following advantages.

• The adaption of SSB proxy could enhance the exploration and exploitation of EA, and
significantly accelerate NAS. Traditional EA methods have no estimation on offspring
at each EA iteration, leading to catastrophic training cost for optimal architecture
search. At each iteration of our EENAS, only the best offspring estimated by SSB
proxy is trained. As SSB proxy could provide reasonable estimation on offspring
with near-zero processing time (a few seconds for one single batch of data, much less
than network training cost), EENAS could get much better architecture with greatly
reduced search time.

• EENAS progressively optimizes SSB proxy with the increase of evaluated architec-
tures, so that the architecture estimation delivered by SSB proxy is continuously
improved, which would provide better guidance for architecture search.

• Extensive experiments show that our EENAS outperforms state-of-the-art methods
on NAS-Bench-101 (Ying et al., 2019) search space and NAS-Bench-201 (Dong and
Yang, 2020) search space (CIFAR-10, CIFAR-100 and ImageNet16-120). Especially,
EENAS successfully gets the optimal architecture on NAS-Bench-201 CIFAR-100 in
each repeated experimental trial.

2. Related Work

Neural Architecture Search. Zoph and Le (2017) is the first to bring NAS into research,
since then many works have been proposed to explore search spaces for neural architectures
with outstanding performance on given datasets. In general, NAS contains three compo-
nents: search space, search method and evaluation strategy.

EENAS

Search spaces determine the upper bound of NAS performance, which are usually classified
into global search spaces (Zoph and Le, 2017; Xie and Yuille, 2017; Tan et al., 2019) and
cell-based search spaces (Zoph et al., 2018; Liu et al., 2019b). Within cell-based search
spaces, some benchmarks with fully trained neural networks have been developed, including
NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong and Yang, 2020). As NAS
experiments usually take high computation resources to train and evaluate networks, those
benchmarks offer a convenient way of performance comparison for NAS methods.
Evaluation strategies deliver estimation of network performance. Synaptic saliency met-
rics (Lee et al., 2019; Wang et al., 2020a; Tanaka et al., 2020) measure the loss change of
removing a certain parameter, which are often applied in model compression. Fisher (Theis
et al., 2018) estimates the loss change of removing activation channels. NASWOT (Mellor
et al., 2021) uses activation patterns in untrained networks to estimate performance of archi-
tectures. KNAS (Xu et al., 2021) uses the Gram matrix of gradients to rank architectures.
TE-NAS (Chen et al., 2021) and NASI (Shu et al., 2021) have employed the theory of Neural
Tangent Kernel (NTK) (Jacot et al., 2018) for architecture estimation. Shu et al. (2022)
proposes HNAS which consistently boosts training-free NAS in a principle way. GenNAS (Li
et al., 2021) uses the combinations of synthetic signal bases, which can represent a wide
range of complicated real-world signals, to rank architectures with near-zero training cost,
and gets outstanding ranking performance on NAS-Bench-101 and NAS-Bench-201 search
spaces. Evaluation strategies that deliver efficient and reliable architecture estimation could
provide better guidance for optimal architecture search.
Search methods provide architecture search strategies for search space exploration. Tradi-
tional NAS methods usually get expensive computation in network training, which include
random search (Bergstra and Bengio, 2012), reinforcement learning (Zoph and Le, 2017;
Zoph et al., 2018), evolutionary algorithms (Real et al., 2017; Wei et al., 2020; Lopes et al.,
2021), bayesian optimization (Kandasamy et al., 2018; White et al., 2021; Ru et al., 2021),
and predictor-based methods (Wen et al., 2020; Lu et al., 2021; Ning et al., 2020; Dudziak
et al., 2020; Wu et al., 2021).

To reduce training cost, weight-sharing among subnets sampled from a supernet is widely
adopted for NAS methods (Liu et al., 2019b; Pham et al., 2018; Guo et al., 2020). For
example, DARTS (Liu et al., 2019b) and DARTS-PT (Wang et al., 2021) make continuous
search spaces so as to optimize the supernet via gradient-based methods. ENAS (Pham
et al., 2018) trains a controller to identify architectures through optimal subgraph search
within a large computational graph, which uses weight-sharing to accelerate the training
of sampled networks. However, those shared weights are under-trained, which have limited
ability to deliver optimal architectures.

Recently, NAS methods attempt to employ network estimation strategies for architec-
ture selection. NPENAS (Wei et al., 2020) guides the evolutionary search by two predictors:
a graph-based uncertainty estimation network and a performance predictor. G-EA (Lopes
et al., 2021) adopts a zero-proxy estimator to guide EA for architecture search. Prox-
yBO (Shen et al., 2021) combines bayesian optimization(BO) with zero-cost proxies to
select promising architectures. Those methods could deliver promising architectures with
much efficient search time, casting light on future NAS research.
Evolutionary Algorithm is one of the most popular methods in NAS. Traditional EA
selects parents with top performance from a population of architectures, and then generates

Zheng Han Zhang ji*

Initialization
Select strategy

Population Parents

Offspring
The most promising

offspring

Evaluate strategy

Mutation or Crossover

Figure 1: Pipeline of traditional EA

offspring through mutation or crossover (illustrated in Figure 1). At each iteration, the
offspring are evaluated and promising ones are added into the population. Xie and Yuille
(2017) performs a Russian roulette process to determine which individual will survive or
be discarded among the population according to their fitness. REA (Real et al., 2019)
proposes an aging evolution which replace the oldest individual in the population with
the most promising offspring. However, the time cost is catastrophic to evaluate multiple
offspring in order to select the most promising one. Instead, methods (e.g. NPENAS (Wei
et al., 2020), and G-EA (Lopes et al., 2021)) employing estimation strategies are proposed
for promising architecture selection. Therefore, we are motivated to try the most advanced
estimation proxy SSB (Li et al., 2021) on evolutionary algorithm, in order to search for
better architectures with reduced search time.

3. EENAS Algorithm

For a certain task, EENAS is to search for the optimal architecture in given search space
with efficiency. The performance of architectures is evaluated by accuracy, which usually
takes expensive training cost for validation. To reduce training cost, EENAS adapts the
most advanced estimation proxy SSB (Li et al., 2021) to efficiently estimate EA offspring.
In addition, the SSB proxy is progressively optimized with the increase of evaluated archi-
tectures (with validated accuracy), so as to deliver more reliable estimation.

3.1. EENAS Framework

EENAS adopts evolutionary algorithm for search space exploration. As shown in Algo-
rithm 1, EENAS is to identify the architecture of highest validated accuracy in search

EENAS

Algorithm 1 EENAS

Input: Search space A, Max iteration T , Population size PS, Random probability E ,
Random pool size RPS, Parent candidate size PCS, Mutation sizeMS, Proxy update
interval M

Output: The architecture with highest validated accuracy
1: population← empty queue
2: history ← ∅
3: while size of population < PS do
4: arch = RandomArchitecture()
5: accuracy = ValidatedAccuracy(arch)
6: history = history ∪ (arch, accuracy)
7: population.add(arch)
8: end while
9: proxy ← OptimalSSB(history)

10: for iter from 1 to T do
11: if Random() >= E then
12: candidates← Random.sample(population, PCS)
13: parent← architecture of highest validated accuracy in candidates
14: offspring ← MUTATE(parent, MS)
15: removal← parent
16: else
17: offspring ← Random.sample(A\history, RPS)
18: removal← architecture of lowest validated accuracy in population
19: end if
20: individual← Estimator(offspring, proxy)
21: individual.accuracy = ValidatedAccuracy(individual)
22: history = history ∪ (individual, individual.accuracy)
23: if individual.accuracy > removal.accuracy then
24: population.add(individual)
25: population.delete(removal)
26: end if
27: if iter! = 0 and iter%M == 0 then
28: proxy ← OptimalSSB(history)
29: end if
30: end for
31: return Architecture with highest validated accuracy in history

space A with given iterations T . The population contains architectures with validated ac-
curacy, which are initialized with PS architectures randomly sampled from search space A
and validated by training. Architectures with validated accuracy in the population are kept
in history(Lines 3-8). Then the estimator SSB proxy is initialized with the initial history by
function OptimalSSB() (Line 9), which will return the optimal proxy for the given history.

At each iteration, offspring will be generated by either parent mutation (Line 14) or
random selection (Line 17). With a probability no less than E , offspring are generated by

Zheng Han Zhang ji*

3×3 conv

1×1 conv

3×3 avg pool

Skip-connect

zeroize

Skip-connect

Mutation

3×3 conv

1×1 conv

3×3 avg pool

Skip-connect

zeroize

3×3 conv

Parent Offspring

(a) NAS-Bench-201 search space

In

Out

3×3

MP1×1

3×3 MP

In

Out

3×3

MP1×1

3×3 MPMutation

Parent Offspring

(b) NAS-Bench-101 search space

Figure 2: Examples of offspring produced by mutation on NAS-Bench-201 and NAS-Bench-
101 search spaces, with 1×1, 3×3, and MP referring to 3×3 convolution, 1×1 convolution,
and 3×3 max-pool, respectively.

parent mutation. And the parent is the architecture with the highest validated accuracy
in parent candidate set, randomly sampled from the population. Mutation is conducted
by randomly replacing one operation with another (e.g. NAS-Bench-201 search space in
Figure 2(a)), or adding/removing an edge between two nodes (e.g. NAS-Bench-101 search
space in Figure 2(b)). To avoid local optimization, offspring will also be generated by
random sampling from search space outside the history, with a probability less than E . We
suggest that the number of sampled offspring (RPS) should be much larger than that of
mutated offspring (MS), in that random sampling might have less chance to get outstanding
architectures.

Instead of evaluating offspring by expensive training, SSB proxy is employed as an
estimator to efficiently return the promising architecture (with lowest proxy score) of all
offspring (Line 20). Only the promising architecture is evaluated by training to get its
validated accuracy (Line 21), and then kept in the history (Line 22). At the end of each
iteration, the population is updated (Lines 23-26) in the way that 1) mutated offspring with
higher validated accuracy (better) than its parent will replace its parent; and 2) random
offspring better than the worst architecture in the population will replace the worst archi-
tecture. As such, the population could be progressively improved and no architecture would
dominate the population. In order to get more reliable offspring estimation, the SSB proxy
is progressively optimized with the increase of history in every M iterations (Lines 27-29).

Figure 3 illustrates the search procedure for optimal architecture on NAS-Bench-201
CIFAR-100 via t-SNE, where architecture ranking is encoded by different colors. The
rankings of all architectures on NAS-Bench-201 search space are shown in Figure 3(a),
with the red star representing the optimal architecture. In the first iteration (Figure 3(b)),
offspring (square points) of the initial population (round points) are generated by mutation,
from which the most promising architecture (magenta triangle point) is figured out by SSB
estimator. Later in the third iteration (Figure 3(c)), more offspring are generated by random
sampling from the rest of the search space, and another promising architecture is detected.

EENAS

60

40

20

0

20

40

60

(a) All Architectures

 Optimal

(b) 1 iteration

 Optimal
 Promising Offspring

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(c) 3 iteration

 Optimal
 Promising Offspring

60 40 20 0 20 40 60
(d) 6 iteration

 Optimal
 Promising Offspring

1

2000

4000

6000

8000

10000

12000

14000

15625

Te
st

 A
cc

ur
ac

y
Ra

nk
in

g

Figure 3: Visualization of optimal architecture search on NAS-Bench-201 CIFAR-100 via
t-SNE. (a) The ranking of all architectures on NAS-Bench-201 search space. (b) The first
iteration with offspring generated by mutation. (c) The third iteration with offspring gen-
erated by random sampling. (d) The sixth and finial iteration with optimal architecture
returned from offspring. Note that the round points, square points, magenta triangle point,
and red star denote population, offspring, most promising offspring, optimal architecture,
respectively.

Finally in the sixth iteration (Figure 3(d)), the optimal architecture is among the mutated
offspring and successfully returned by SSB estimator.

3.2. Estimation by SSB Proxy

Efficient architecture estimation is an important guidance for offspring selection. Here,
we take the most advanced SSB proxy (Li et al., 2021) for architecture estimation, which
contains four types of synthetic signal basis: (1) 1-D frequency basis (Sin1D defined in
Equation 1, with x and y representing pixel indices); (2) 2-D frequency basis (Sin2D defined
in Equation 2); (3) Spatial basis (Dot and GDot); and (4) Resized input signal (Resize).
Dot is defined as randomly setting k % pixels to ±1 on zeroed feature maps according
to biased Rademacher distribution (Montgomery-Smith, 1990), and GDot is generated by
applying a Gaussian filter with σ = 1 on Dot and normalizing between ±1.

Sin1D : sin(2πfx + ϕ) or sin(2πfy + ϕ), (1)

Zheng Han Zhang ji*

Sin2D : sin(2πfxx + 2πfyy + ϕ), (2)

For a certain architecture estimation task, function OptimalSSB() (Lines 9 and 28
in Algorithm 1) will search for the optimal synthetic signal basis combination in given
SSB search space. Spearman’s ρ is taken to evaluate the estimation performance of SSB
combination. SSB combination with highest Spearman’s ρ will be returned as the best
SSB proxy. SSB proxy can efficiently estimate an architecture by calculating the MSE
loss between feature map tensor and synthetic signal tensor, detailed in Li et al. (2021).
Architecture with lowest proxy score (MSE loss) will be returned by function Estimator()
(Line 20 in Algorithm 1) as optimal architecture.

As it is time expensive to get SSB combinations from SSB search space, SSB com-
binations are searched only once with initial architecture history, and those with higher
Spearman’s ρ are kept in a proxy pool. In later SSB proxy optimization, Spearman’s ρ of
each combination in the proxy pool is recalculated according to updated history, based on
which the best SSB combination is returned by OptimalSSB().

4. Experimental Results

In this section, we take NAS-Bench-101 search space (Ying et al., 2019) and NAS-Bench-
201 search space (Dong and Yang, 2020) as benchmark, and compare the performance of
EENAS with state-of-the-art NAS methods. Estimation performance of SSB proxy (Li
et al., 2021) is also studied.

4.1. Benchmark

NAS-Bench-101 search space is the first benchmark for image classification on CIFAR-10,
which contains 423,624 different cell-based architectures. The maximum number of nodes
and edges for each cell are 7 and 9, respectively. Each node can be chosen from operators
of 1×1 convolution, 3×3 convolution, and 3×3 max-pooling. The edges between two nodes
are represented by a 7 × 7 upper-triangular binary matrix.
NAS-Bench-201 search space contains 15625 different architectures, stacked by repeated
cells. For each cell, the number of edges and nodes are fixed at 6 and 4, respectively.
Different from NAS-Bench-101, the edge in NAS-Bench-201 represents an operation that
can be chosen from a candidate pool with 1×1 convolution, 3×3 convolution, 3×3 avg-
pooling, skip-connect, and zeroize. NAS-Bench-201 provides results of each architecture on
three datasets: CIFAR-10, CIFAR-100 and ImageNet16-120.

Both search spaces provide validation accuracy and test accuracy in three different runs.
We take the average validation accuracy as the return for function V alidatedAccuracy() in
Algorithm 1, and employ average test accuracy for experimental evaluation.

4.2. Parameter Setting

In our experiments, the parameters of our algorithms are set as follows: max iteration for
architecture search T = 90; population size PS = 10 and parent candidate size PCS = 4;
probability to generate random sampled offspring E = 0.2; random pool size for sampled
offspring RPS = 400; mutation size for mutated offspring MS = 10; SSB proxy update

EENAS

Table 1: Performance Evaluation of SSB proxy by Spearman’s ρ (@iteX refers to Xth

iteration).

@initialization @ite10 @ite20 @ite30 @ite40 @ite50 @ite60 @ite70 @ite80

Mean 0.912 0.918 0.920 0.928 0.931 0.934 0.931 0.934 0.930
Std 0.041 0.041 0.025 0.027 0.036 0.026 0.030 0.028 0.030
Max 0.962 0.951 0.964 0.957 0.954 0.972 0.966 0.968 0.970
Min 0.783 0.817 0.853 0.841 0.858 0.864 0.849 0.857 0.849

interval M = 10. We maintain a SSB proxy pool of size 20. All results are reported based
on the average of 50 repeated trials.

4.3. Performance Evaluation on SSB Proxy

As SSB Proxy is employed as important guidance for architecture search in EENAS, we
firstly evaluate the performance of SSB proxy on architecture estimation. We randomly
sample 1000 architectures from NAS Bench-101 search space, to calculate Spearman’s ρ (Li
et al., 2021) of SSB proxy on different EENAS iterations.

As shown in Table 1, the Spearman’s ρ is getting better with the increase of iterations,
indicating that the estimation accuracy of SSB proxy could be improved with the increase
of evaluated architectures. Therefore, progressively updating SSB proxy is necessary in
optimal architecture search. As we find that ρ becomes relatively stable after 40 iterations,
we stop updating SSB proxy after 40 iterations in the following experiments.

Table 2: Comparison of EENAS vs. state-of-the-art NAS methods on four benchmarks.

Method Validated No. NAS-Bench-101
NAS-Bench-201

CIFAR-10(VALID) CIFAR-100 ImageNet16-120

Traditional Methods
RS 100 6.41± 0.14 9.27± 0.30 28.41± 0.73 54.48± 0.55
RL 100 6.36± 0.12 9.15± 0.25 28.35± 0.66 54.21± 0.66

REA 100 6.32± 0.20 8.82± 0.30 27.33± 0.78 53.59± 0.51
NAS-BOWL 100 5.95± 0.14 8.68± 0.30 26.70± 0.41 53.32± 0.34

Weight-sharing Methods
ENAS ≈7 8.17± 0.42 46.11± 0.58 86.04± 2.33 85.19± 2.10

DARTS-PT ≈18 7.79± 0.61 15.33± 2.23 34.03± 2.24 61.36± 1.91

Predictor-based Methods
BRP 100 6.18± 0.19 8.77± 0.29 26.82± 0.50 53.43± 0.59

WeakNAS 100 6.01 ±0.12 8.64± 0.27 26.78± 0.49 53.51± 0.32

Proxy-based Methods
G-EA 100 6.77± 0.21 8.73± 0.25 26.82± 0.38 53.39± 0.23

ProxyBO 100 6.00± 0.15 8.58± 0.12 26.68± 0.18 53.19± 0.31
EENAS 100 5.82± 0.04 8.49± 0.03 26.49± 0.00 52.74± 0.07

Benchmark Optimal / 5.68 8.48 26.49 52.69

Zheng Han Zhang ji*

20 40 60 80 100
Number of Architectures Evaluated

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Av
er

ag
e

Te
st

 E
rro

r

(a) NAS-Bench-101 CIFAR-10

20 40 60 80 100
Number of Architectures Evaluated

8.4

8.6

8.8

9.0

9.2

9.4

9.6

Av
er

ag
e

Te
st

 E
rro

r

(b) NAS-Bench-201 CIFAR-10(VALID)

20 40 60 80 100
Number of Architectures Evaluated

26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0

Av
er

ag
e

Te
st

 E
rro

r

(c) NAS-Bench-201 CIFAR-100

20 40 60 80 100
Number of Architectures Evaluated

53

54

55

56

57

Av
er

ag
e

Te
st

 E
rro

r

(d) NAS-Bench-201 ImageNet16-120

WeakNAS
Reinforcement

EENAS
ProxyBo

BRP
Random Search

REA
G-EA

NASBOWL

Figure 4: Average test error vs. No. of evaluated architectures. Black dash lines refer to
global optima.

4.4. Comparative Studies of EENAS vs. State-of-the-art NAS Methods

Now that we are to compare the performance of EENAS with State-of-the-art NAS Meth-
ods, including some traditional methods (RS (Bergstra and Bengio, 2012), RL (Zoph and
Le, 2017), REA (Real et al., 2019), NAS-BOWL (Ru et al., 2021)), weight-sharing methods
(ENAS (Pham et al., 2018), DARTS-PT (Wang et al., 2021)), predictor-based methods
(BRP (Dudziak et al., 2020) , WeakNAS (Wu et al., 2021)), and proxy-based methods
(G-EA (Lopes et al., 2021), ProxyBO (Shen et al., 2021)). All baselines are implemented
according to their original papers.

Table 2 shows the average test accuracy (with mean± std) of optimal architecture iden-
tified by EENAS against state-of-the-art NAS methods in 50 repeated trials. The second
column shows the validated number of architectures, while the last row delivers the average
test accuracy of optimal architecture reported by the benchmarks. Compared with other
baselines, EENAS delivers lowest average test accuracy with smallest standard deviation.
That is, EENAS could get the best architecture on the benchmarks in average, with the
same number of validated architectures. Specially, EENAS can successfully identify the
optimal architecture on NAS-Bench-201 CIFAR-100 in every trial.

Figure 4 demonstrates the change of average test error in the process of architecture
search. We can see that with the increase of evaluated architectures (iterations), the average

EENAS

10 20 30 40 50
GPU Hours

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Av
er

ag
e

Te
st

 E
rro

r

(a) NAS-Bench-101 CIFAR-10

10 20 30 40 50
GPU Hours

8.4

8.6

8.8

9.0

9.2

9.4

9.6

Av
er

ag
e

Te
st

 E
rro

r

(b) NAS-Bench-201 CIFAR-10(VALID)

20 40 60 80 100
GPU Hours

26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0

Av
er

ag
e

Te
st

 E
rro

r

(c) NAS-Bench-201 CIFAR-100

50 100 150 200 250 300
GPU Hours

53

54

55

56

57

Av
er

ag
e

Te
st

 E
rro

r

(d) NAS-Bench-201 ImageNet16-120

WeakNAS
Reinforcement

EENAS
ProxyBo

BRP
Random Search

REA
G-EA

NASBOWL

Figure 5: Average test error vs. architecture search time. Black dash lines refer to global
optima.

test error delivered by architecture identified by EENAS drops fastest among all baselines.
That is, EENAS could identify better architectures with more efficient search time, because
architecture evaluation takes the most expensive training cost in search time.

As different baselines have different process time for each search iteration, we have done
further experiments to study the change of average test error with the increase of search
time. As shown in Figure 5, EENAS outperforms other baselines by delivering better
architectures that drop the average test error fastest.

5. Conclusion

In this paper, we propose an efficient and effective NAS method for optimal architecture
search, by adapting SSB proxy to evolutionary algorithm. Extensive experiments show that
our method outperforms state-of-the-art NAS methods on NAS-Bench-101 search space and
NAS-Bench-201 search space (CIFAR-10, CIFAR-100 and ImageNet16-120). Compared
with other baselines, our method could identify better architectures with greatly reduced
search time.

Zheng Han Zhang ji*

References

Mohamed S Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas D Lane. Zero-
cost proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012.

Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang, Yuan Li, and Zhangyang
Wang. Fasterseg: Searching for faster real-time semantic segmentation. arXiv preprint
arXiv:1912.10917, 2019.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet
in four gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535,
2021.

Shaojin Ding, Tianlong Chen, Xinyu Gong, Weiwei Zha, and Zhangyang Wang. Autospeech:
Neural architecture search for speaker recognition. arXiv preprint arXiv:2005.03215,
2020.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:

//openreview.net/forum?id=HJxyZkBKDr.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and
Nicholas Lane. Brp-nas: Prediction-based nas using gcns. Advances in Neural Infor-
mation Processing Systems, 33:10480–10490, 2020.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyra-
mid architecture for object detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7036–7045, 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. In European
conference on computer vision, pages 544–560. Springer, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. Advances in neural information processing systems,
31, 2018.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P
Xing. Neural architecture search with bayesian optimisation and optimal transport. Ad-
vances in neural information processing systems, 31, 2018.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network
pruning based on connection sensitivity. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=B1VZqjAcYX

EENAS

Yuhong Li, Cong Hao, Pan Li, Jinjun Xiong, and Deming Chen. Generic neural architecture
search via regression. Advances in Neural Information Processing Systems, 34, 2021.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille,
and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic im-
age segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 82–92, 2019a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture
search. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019b. URL https://openreview.

net/forum?id=S1eYHoC5FX.

Vasco Lopes, Miguel Santos, Bruno Degardin, and Lúıs A. Alexandre. Guided evolution
for neural architecture search. CoRR, abs/2110.15232, 2021. URL https://arxiv.org/

abs/2110.15232.

Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and Ji Liu. Tnasp: A transformer-based nas
predictor with a self-evolution framework. Advances in Neural Information Processing
Systems, 34, 2021.

Joe Mellor, Jack Turner, Amos J. Storkey, and Elliot J. Crowley. Neural architecture search
without training. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 7588–7598. PMLR, 2021.
URL http://proceedings.mlr.press/v139/mellor21a.html.

Stephen J Montgomery-Smith. The distribution of rademacher sums. Proceedings of the
American Mathematical Society, 109(2):517–522, 1990.

Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Fast neural architecture
search of compact semantic segmentation models via auxiliary cells. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 9126–9135,
2019.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-
based neural architecture encoding scheme for predictor-based nas. In European Confer-
ence on Computer Vision, pages 189–204. Springer, 2020.

Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, and Junjie Yan. Efficient
neural architecture transformation search in channel-level for object detection. Advances
in Neural Information Processing Systems, 32, 2019.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient
neural architecture search via parameter sharing. In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 4092–4101. PMLR, 2018. URL
http://proceedings.mlr.press/v80/pham18a.html.

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://arxiv.org/abs/2110.15232
https://arxiv.org/abs/2110.15232
http://proceedings.mlr.press/v139/mellor21a.html
http://proceedings.mlr.press/v80/pham18a.html

Zheng Han Zhang ji*

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie
Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In
International Conference on Machine Learning, pages 2902–2911. PMLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for
image classifier architecture search. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 4780–4789. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33014780. URL
https://doi.org/10.1609/aaai.v33i01.33014780.

Bin Xin Ru, Xingchen Wan, Xiaowen Dong, and Michael A. Osborne. Interpretable neu-
ral architecture search via bayesian optimisation with weisfeiler-lehman kernels. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=

j9Rv7qdXjd.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu,
and Cui Bin. Proxybo: Accelerating neural architecture search via bayesian optimization
with zero-cost proxies. arXiv preprint arXiv:2110.10423, 2021.

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low.
Nasi: Label-and data-agnostic neural architecture search at initialization. arXiv preprint
arXiv:2109.00817, 2021.

Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Bryan Kian Hsiang Low. Unifying
and boosting gradient-based training-free neural architecture search. arXiv preprint
arXiv:2201.09785, 2022.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, M Sandler, A Howard, and
Mnasnet Le QV. platform-aware neural architecture search for mobile. 2019 ieee. In
CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2815–
2823, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning
neural networks without any data by iteratively conserving synaptic flow. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

46a4378f835dc8040c8057beb6a2da52-Abstract.html.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction
with dense networks and fisher pruning. CoRR, abs/1801.05787, 2018. URL http:

//arxiv.org/abs/1801.05787.

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training
by preserving gradient flow. In 8th International Conference on Learning Representations,

https://doi.org/10.1609/aaai.v33i01.33014780
https://openreview.net/forum?id=j9Rv7qdXjd
https://openreview.net/forum?id=j9Rv7qdXjd
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1801.05787

EENAS

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020a. URL
https://openreview.net/forum?id=SkgsACVKPH.

Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen, and Yanning
Zhang. Nas-fcos: Fast neural architecture search for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11943–
11951, 2020b.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh.
Rethinking architecture selection in differentiable nas. arXiv preprint arXiv:2108.04392,
2021.

Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. NPENAS: neural predictor guided
evolution for neural architecture search. CoRR, abs/2003.12857, 2020. URL https:

//arxiv.org/abs/2003.12857.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans.
Neural predictor for neural architecture search. In European Conference on Computer
Vision, pages 660–676. Springer, 2020.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with
neural architectures for neural architecture search. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 10293–10301, 2021.

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang
Wang, Zicheng Liu, Mei Chen, and Lu Yuan. Stronger nas with weaker predictors.
Advances in Neural Information Processing Systems, 34:28904–28918, 2021.

Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1379–1388, 2017.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. Knas:
green neural architecture search. In International Conference on Machine Learning, pages
11613–11625. PMLR, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank
Hutter. Nas-bench-101: Towards reproducible neural architecture search. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 7105–7114. PMLR,
2019. URL http://proceedings.mlr.press/v97/ying19a.html.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:

//openreview.net/forum?id=r1Ue8Hcxg.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In 2018 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,

https://openreview.net/forum?id=SkgsACVKPH
https://arxiv.org/abs/2003.12857
https://arxiv.org/abs/2003.12857
http://proceedings.mlr.press/v97/ying19a.html
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Zheng Han Zhang ji*

pages 8697–8710. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.
1109/CVPR.2018.00907. URL http://openaccess.thecvf.com/content_cvpr_2018/

html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html.

http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

	Introduction
	Related Work
	EENAS Algorithm
	EENAS Framework
	Estimation by SSB Proxy

	Experimental Results
	Benchmark
	Parameter Setting
	Performance Evaluation on SSB Proxy
	Comparative Studies of EENAS vs. State-of-the-art NAS Methods

	Conclusion

