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Abstract

High-frequency market making is a algorithmic trading strategy in which an agent provides
liquidity at the same time as quoting a bid price and an ask price on a security. The strategy
reap profits in the form of the spread between the quoted price placed on the buy and sell
prices. Due to complexity in inventory risk, counterparties to trades and information
asymmetry, the understanding of high-frequency market making algorithms is relatively
unexplored by academics across disciplines. In this paper, we develop realistic simulations
of limit order markets and use them to design a high-frequency market making agent using
Deep Recurrent Q-Networks. Our approach outperforms a prominent benchmark strategy
from literature, which uses temporal-difference reinforcement learning to design market
making agents. Using the simulation framework, we analyse how the maker-take fee, a
feature of market design, affects market quality and the agent’s profitability. The agents
successfully reproduce stylised facts in historical trade data from each simulation.

Keywords: High-Frequency Trading; Deep Reinforcement Learning; Agent-Based Models.

1. Introduction

The electronification of securities trading has transformed traditional human-driven mar-
kets into predominantly automated ones, in which high-frequency trading (HFT, or high-
frequency traders) typically exceeds 80% of total volume traded in US listed equities (Mc-
Groarty et al., 2019; Menkveld, 2013). HFT is a form of automated trading in which security
positions are turned over very quickly by leveraging advanced technology and associated
extremely low latency rates Menkveld (2016). High-frequency market making is an HFT-
based strategy that contributes to market liquidity by matching buyer and seller orders.
The profit is earned from the spread between the quoted price placed on the buy and sell
prices. Given the ever-growing minuscule limit order book (LOB) data, complexity in inven-
tory risk, counterparties to trades and information asymmetry, the current understanding
of high-frequency market making algorithms is relatively shallow Avellaneda and Stoikov
(2008); Abernethy and Kale (2013); Spooner et al. (2018). This paper uses a variant of
Deep Recurrent Q-Networks (DRQN) to design high-frequency market making agents that
interact with a realistic limit order book simulation framework.

1.1. Related Literature

A number of high-frequency or classical market making strategies have been proposed
across disciplines, including finance Avellaneda and Stoikov (2008); Chakraborty and Kearns
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(2011), econophyics McGroarty et al. (2019) and machine learning Brahma et al. (2012);
Abernethy and Kale (2013); Spooner et al. (2018). Earlier work in the field of finance
considers market making as a problem of stochastic optimal control, in which order book
dynamics are designed using control algorithms after developing the arrival and execution
model (Avellaneda and Stoikov, 2008; Cartea et al., 2014) to understand the price impact,
adverse selection, risk measures and inventory constraints.

Another prominent approach consists of agent based models (ABM, or agent-based
modelling), ranging from zero intelligence to intelligent variants. These are used to study
market making, but are typically evaluated in simulated markets without using real market
data. This gives the modeller the flexibility to churn out potentially emergent phenomena
as a result of interaction between agents. The evolution of technology- based disruptions in
HFT mean that the existing learning models and empirical models are deficient and may no
longer be appropriate. Reinforcement learning has been applied for market making (Spooner
et al., 2018), algorithmic trading (Wei et al., 2019), optimal execution (Nevmyvaka et al.,
2006) and foreign exchange trading (Dempster and Leemans, 2006). However, defining
hand-crafting features in reinforcement learning for agents to learn while interacting within
a dynamic environment is a major stumbling block. Also, reinforcement learning could be
slow to learn in large state spaces, and the methods are not generalisable (e.g. across the
state space).

Deep learning eliminates the need for manual feature design, and therefore the need to
find compact representations in high-dimensional data. It also helps to generalise across
states, thereby improving sample efficiency for large state-space reinforcement learning prob-
lems. Augmenting deep learning with reinforcement learning, i.e. deep reinforcement learn-
ing (DRL), enables reinforcement learning to scale up to problems with high-dimensional
state and action spaces. The outstanding success stories of DeepMind, with its ability to
achieve superhuman-level performance in Atari 2600 video games proves the effectiveness of
DRL. However, only a few examples have addressed optimal execution (Ning et al., 2021),
market making (Elwin, 2019) and high-frequency trading (Wei et al., 2019), rather than
games.

The success of these single DRLs can be attributed to the use of experience replay
memories, which enable Deep Q-Networks (DQNs) to be trained efficiently through sam-
pling stored state transitions. However, despite the ever-increasing performance on popular
benchmarks such as Atari 2600 games, DQNs struggle to generalise when evaluated in dif-
ferent environments. They do not perform well in partially observable domains (Hausknecht
and Stone, 2015), they overestimate action values under certain conditions (Hasselt et al.,
2016) and are not efficient when it comes to prioritising experience replay (Schaul et al.,
2016). The proposed Deep Recurrent Q-Networks (DRQN) (Hausknecht and Stone, 2015)
using recurrent neural networks – in particular, LSTM (Long Short-Term Memory) – solve
the above problem by replacing the first post-convolutional fully connected layer with an
LSTM layer in a DQN setting. The incorporation of this layer means that DRQN has
sufficient memory capacity to work with only one input, rather than a stacked input of con-
secutive frames. Double DQN (Hasselt et al., 2016) obliterates the overestimation problem
in DQN, resulting in more stable and reliable learning. By prioritizing experience, Schaul
et al. (2016) achieved a new state-of-the-art in human-level performance across benchmark
Atari games. We incorporate this innovation in DRL to design a high-frequency market
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making agent, investigate the interaction of the agents with others agents in the market,
and study how this interaction affects market quality under different market designs.

1.2. Contributions

This paper’s main contribution is the development of a realistic simulation of limit order
markets, which is then used to design a high-frequency market making agent that employs
DRQN. We modify the classical DQRN architecture and incorporate double Q-learning and
prioritised experience to take account of volatile, illiquid and stagnant markets. Our ap-
proach outperforms a prominent benchmark strategy from literature, which uses temporal-
difference reinforcement learning to design market maker agents. We enumerate our con-
tributions as follows. We designed realistic simulations framework for limit order markets
using a matching engine, communication interface and the Financial Information exchange
(FIX) protocol. The simulation framework takes account of the agent’s latency and the
build-up of maker-taker fees , as defined in NYSE. We extended the agent strategy to take
account of order size, adverse selection and cancellations. We proposed a reward function
that takes account of transaction costs and maker-taker fees . We modified DRQN archi-
tecture with double Q-learning and prioritised experience to design high-frequency market
making agents. We investigated the performance of DQN, DRQN and RL market making
agents on our simulation framework. We analysed the effect of maker-taker fees on mar-
ket quality using our simulation framework. We validated the simulation framework by
reproducing stylised facts in historical trade data from each simulation.

2. DRL Simulation Framework

In this section, we describe the environment (simulation framework), agents (trading strate-
gies), actions (buy, sell or cancels orders), states (market features), and rewards (profit and
loss) to set the stage for reinforcement learning formulation for high-frequency market mak-
ing. The agents interact with the equity market on limit order book events from 09:00 to
16:00, subject to inventory constraints. The occurrence of an event is due to a perceptible
reconstruction in the state of the order book. As such, the agent’s actions are inhomoge-
neous in time. Trading outside of regular hours was not allowed in our framework, but is
performed through electronic communication networks known as dark pools, which match
potential buyers and sellers without using a traditional stock exchange (Forde and Putniņš,
2015).

2.1. Environment: Simulation Framework

We have designed a simulation framework over realistic market design, market engine, com-
munication interface, and the FIX protocol. This framework is unconstrained by historical
data, represents realistic exchange and makes no assumptions about the market. From a
high-level perspective, the simulation framework comprises three entities, agents a market
and interaction mechanisms, as shown in Figure 1. Markets act as communication nodes
that listen for agents to make connections and process incoming orders, which are aggre-
gated in order books, and create trades according to a matching engine designed for each
instrument, etc. Matching engines consists of high-capacity, low- latency order-matching
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servers that provide the transactional probity for an electronic trading venue using various
algorithms to facilitate the matching of buyers and sellers. The most common of these is
price/time priority or First In First Out (FIFO). FIFO ensures that all orders at the same
price level are filled according to time priority.

Agents Market
Market Data

Orders

Figure 1: High-level simulation framework.

2.2. Agents: Trading Strategies

In our simulation framework, we populate the market with two types of agents: high-
frequency market makers and high-frequency market takers. The high-frequency market
makers provide liquidity by submitting multiple limit orders on both sides of the order
book in order to capture profits from the bid-ask spread. In return for subsidising the
provision of the liquidity, the high-frequency market makers typically receive a small rebate
from the exchange upon execution of their orders. Conversely, the high-frequency market
takers remove liquidity by placing market orders in the market, which is reinforced by the
continuous availability of a tight bid-ask spread created by the high-frequency market mak-
ers. The exchanges charge the high-frequency market takers a nominal fee for their executed
orders. The relationship between high-frequency market makers and high-frequency market
takers is considered symbiotic, as neither can thrive without the other. The agents interact
with the market via order type, price and quantity according to their internal logic. The
submitted orders in the limit order book are matched using price-time priority algorithms
from the matching engine. The latency manager in the simulation framework manages
the whole history with suitable timestamps for orders to help the agents maintain a tight
inventory. The two agents’ trading strategies are discussed below.

2.2.1. High-Frequency Maker’s Strategy

In this paper, we implement a realistic high-frequency market making strategy that takes
account of the order size, which was absent from previous literature (Spooner et al., 2018).
It is roughly based on the liquidity providing strategy described in a prominent research
study by Karvik et al. (2018).

At each event time t, the total quantity of liquidity Qt high-frequency market maker
willing to provide a fixed proportion of their available capital Ct is defined as Qt = ωCt.
The high-frequency market maker’s available capital, Ct, comprises of starting capital plus
the profits accumulated from buy and sell trades up to time t, and the profit or loss from
the remaining inventory holdings:



Deep Reinforcement Learning for High-Frequency Market Making

Ct = C0

+min

 ∑
m,t−1

dbi −
∑
m,t−1

dai

(∑m,t−1 d
a
i p
a
i∑

m,t−1 d
a
i

−
∑

m,t−1 d
b
ip
b
i∑

m,t−1 d
b
i

)

+

max

 ∑
m,t−1

dbi −
∑
m,t−1

dai

−min

 ∑
m,t−1

dbi −
∑
m,t−1

dai


 p̄t−1

(1)

where, mt is the history of all trades in time t, dt is liquidity demand in time t, pa,bt is
bid/ask price of a asset at time t and p̄t is observed market mid-price at time t.

The limit order size that high-frequency market maker is willing to buy or sell is defined
as:
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where, It, Ī are inventory at time t and maximum inventory respectively; Υ for accounts
for adverse selection and tc is price change period. The total quantity of liquidity Qt high-
frequency market maker wishes to supply is equitably divided into buy and sell orders.
These are then further subdivided into N distinct limit orders on each side of the order
book. The splitting is done to adjust inventory at an optimum level. The risk of adverse
selection is accounted for using the last term with Υ as a parameter. For detail discussion
on the variables defined above is carried on in the research article (Karvik et al., 2018).

At each event time, t, high-frequency market maker update parameters, Θa
t and Θb

t ,
which is required for deriving relative prices, Da,bt . The high-frequency market makers
encounters adverse selection risk when posting limit orders at fixed distance from mid price
p̄t. The volatility of mid prices in the previous five periods is chosen as proxy for the risk,
with Λ governing the sensitivity of the bid-ask spread to volatility. The bid-ask spread is set
as linear function of above volatility, subject to minimum constant, ξ. After setting bid/ask,
further orders are placed either side of book above/below former price, using parameter τ .
The equations below define the pricing strategy for the high-frequency market maker’s limit
order:

pa,b,it = p̄t + Da,bt ±min
(
Λσ(t−1:t−5), ξ

)
± i · (10−τ ), Da,bt = Θa,b

t · St (3)

where spread, St, is a moving average of the market half-spread (Spooner et al., 2018).
At each event time t, the high-frequency market making agents can clear their outstand-

ing orders in the limit order book using two criteria. The first corresponds to clearing the
inventory using a market order if it has not been executed at the end of trading. The second
criterion takes account of the current market condition to remove the order from the limit
order book. In particular, we define the probability of cancellation as Ψt = 1− exp−ψ·volp ,
where ψ is sensitivity parameter and volp is the perceived volatility (Bartolozzi, 2010). The
high-frequency market maker follows simple heuristics to cancel orders in the limit order
book. First, the range of ∓20 from the most recent transaction price is identified. Then,
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the existing order is investigated for being outside of the price range. If there are orders
outside the range, then the Ψt percent of the order will be cancelled, while the rest remains
in the order book.

2.2.2. High-Frequency Taker’s Strategy

As discussed above, the high-frequency market takers wishes to fill their trade immediately
by agreeing with the currently listed prices on the order book. When trading large assets
over the course of the day, the high-frequency market taker tends to minimize price impact
and trading cost. In our simulation framework, high-frequency market taker follow a mo-
mentum strategy. This is the digital equivalent of classical day traders, who earn profits
from market movements by aggressively taking liquidity. In this simple momentum trading
strategy, the trend is captured using a price change rate, defined as:

∆pt =
p(t) − p(t−tc)

p(t−tc)
(4)

where pt is the price of the asset at time t and tc is the price change period.
The size of the market order is proportional to the strength of the price rate change,

subject to inventory constraints. In other words, the size of the market order will be:

dMK,t = (δ) · (∆pt) ·

(
1−

(
IMT,t−1

ĪMT

)h)
(5)

where δ is sensitivity of order size to price movement parameter, IMT,t is high-frequency
market taker’s inventory at time t, Ī is maximum inventory and h controls the order size
as as IMT,t approaches to Ī.

2.3. State Representation

The state representation comprises the agent-state and market-state, which contain infor-
mation about agent’s position as well as market features. The agent-state is defined by the
following variables. Inventory at time t, It, which takes account of the amount of assets
bought or sold by the high-frequency market making agent. The active quoting distances,
normalized by spread, St. The high-frequency market maker’s update parameters, Θa

t and
Θb
t , which is required for deriving relative prices, Da,bt . The past price history, nh, which is

used to recognise the market trend or risk. The cancellations probability, Ψt, which is used
to clear outstanding orders in the LOB.

The complexity of the market is represented by the market-state, which contains the
partial observable state of the limit order book during each event period, as well as any prior
information from previous periods. In this paper, we include the following market features,
as described in benchmark paper (Spooner et al., 2018) and other. Bid-Ask spread, Mid-
price move, Queue imbalance (Cartea et al., 2014), Volume imbalance (Weber and Rosenow,
2005), Orderbook depth (Weber and Rosenow, 2005), Signed volume, Perceived volatility
(Bartolozzi, 2010) and Relative strength index.
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2.4. Action Space

In our high-frequency market making setting, there are four possible actions between which
the agent must decide: ”buy”, ”hold”, ”sell” and ”cancel”. The agent can buy/sell fixed

multiples of integer values at particular price pa,bt at time t. The cancellation also can be
done in only integer values. At the end of trading, the high-frequency market maker uses a
market order to clear their inventory of anything that has not been executed or cancelled.

2.5. Reward Functions

In this paper, the reward function is traditional profit and loss (PnL), which keeps track of
money gained or lost. The agents try to maximise the profits accumulated during a trading
day, subject to inventory. To incorporate realism, as per the existing market design, the
maker-taker fee model is also included. The maker-taker fee model is a pricing structure in
which an exchange customarily pays its members a per- share rebate to supply (i.e. ”make”)
liquidity, and charges them a fee to remove (i.e. ”take”) liquidity. For example, agents may
be charged 0.0030 per share for taking liquidity from the market (i.e. 3 dollars per 1,000
shares) and receive a rebate of 0.0020 per share for posting liquidity (i.e. 2 dollars per 1,000
shares).

At a given event time t, lets us assume that high-frequency market making agents post
buy/sell limit order of size qa,bt , he/she receives execution confirmation at time t + ∆t.
The ∆t is vaguely referred as latency provided by the simulation framework, as there is
always time a lag between a request made and actual transaction done. The much ignored
transaction costs in academic literature is incorporated using an exponential penalty on the
number of shares executed and maker-taker fee as defined in NYSE. Notably, we define the
PnL function as:

RPnL(t) =
∑
mt

(
qat p

a
t − qbtpbt

)
− α

(
exp

q
a,b
t
∆t

)
± β

(
F(maker/takerfee)

)
(6)

3. Architecture and Algorithms

In this section, we introduce the modified DRQN architecture and algorithms to train the
same, and briefly specify the agent’s exploration/exploitation policy, which is aimed at
maximising rewards.

3.1. DRQN Architecture

We minimally modify the existing DRQN architecture (Hausknecht and Stone, 2015) by
replacing the fully connected network layers with LSTM layers, as shown in Figure 2. In
this way, the architecture is adapted to handle partial observability and long-term order
book data dependency, which is a common problem in market making. Next, we discuss an
important module of the DRQN architecture to provide an overview of the process.
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3.1.1. Basic Network

The states as input is fed to a convolutional neural network with three convolutional layers.
The first layer contained 32 filter with a size of 8 × 8 and 4 stride. The second layers
convolves the first layer output with 64 filter of a size of 4 × 4 and 2 stride and the last
layers convolves the second layer output with 64 filter of size 3×3 and 1 stride, respectively.
To prevent vanishing gradients, we use a rectifier nonlinearity activation function (ReLU)
activation function at each convolutional layers. The output of the convolutional neural
network is then passed into fully connected LSTM layers, followed by a nonlinear rectifier
too. The LSTM layers by combining current observation ot and history information ht−1

gives output O(ot, ht−1). This is then used to approximate the Q-value Q(ot, ht−1, at). In
the next time step, the history information was updated using ht = LSTM(ot, ht−1) and
passed through the hidden state to the network. After that, the output of LSTM layers
is transformed to Q-value (Q(s, a)t) tensor for each possible action at next position, using
fully-connected linear layer.

Q(s, a)t−1 Q(s, a)t Q(s, a)t+1

LSTM LSTM LSTM

LSTM LSTM LSTM
ht−1 ht

h
′
t−1 h

′
t

CNN CNN CNN

vt−1 vt vt+1

st−1 st st+1

Figure 2: The Deep Recurrent Q-Network.

3.1.2. Target Network

At every step of training, the same network Q(s, a|θ) is used to calculate next state’s target
Q-values and updates the current state’s Q-values. Consequently, the value of Q(s

′
, a

′ |θ)
changes while changing θ. Thus, the network might suffer from oscillations in the gradient
updates, which could even obstruct learning entirely. To prevent this instability, the target
network ( Q(s, a|θT )) is used together with main network Q(s, a|θM ). In this case the target
network is fixed while updating main network. The parameters used to calculate the target
value are frozen for a set number of iterations and then replaced by θM only after several
periods of trading (Dijk, 2017; Ning et al., 2021).

3.1.3. Prioritised Experience Replay

The experience replay proposed by Dijk (2017) straightforwardly replays the originally expe-
rienced transitions without weighting them in terms of significance, which might compromise
the efficiency of the algorithms.In the paper (Schaul et al., 2016), the authors discuss two
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different ways of sampling from the replay buffer: rank-based prioritisation and proportional
prioritisation. We use the former, which we consider more robust in terms of outliers. In
addition, the heavy-tail property of rank-based prioritisation guarantees sample diversity,
which is important for agents learning efficiently while trading in volatile markets. For a
detailed discussion of the resulting algorithm design, performance, comparison, robustness
and scalability, please refer to the original paper by Schaul et al. (2016).

3.2. Algorithm

The detailed procedure to train DRQN agents is summarized in Algorithm 1. We start
by initializing the experience reply D of size ND and batchsize NB. As the Q-learning
algorithm is known to overestimate action values, we also initialize action-value function
parameter θM and target network θT with random weights to perform double Q-learning.
Then, throughout the inner loop of each episode, the observed state st is passed to DRQN
network giving to Q-value (Q(s, a)t) tensor for each possible action at at next position.
The action is selected using ϵ-greedy exploration policy, executed and reward rt is received
before stepping up to next state st+1. Following, the transition is stored in experience
reply D. At the end, we sample a minibatch of NB transition from D according to rank-
based prioritization (Schaul et al., 2016), and update new network parameter using gradient
descent. As can be seen in the Algorithm 1, the actions by DRQN are the same as in DQN,
expect for the fact that information about the hidden state is also incorporated into the
agent’s observation space. For mathematical convenience, we have not used the hidden
state notation in the algorithms. At the beginning of the episode, the hidden state is set to
zero. The policy output is dependent on the hidden state (as described in Figure 2), as is
the Q-function. The stacked LSTM layer maps the corresponding state, action and hidden
sequence to new Q-values, as discussed in the algorithm.

To initialise the hidden state for sampling transitions while updating the DRQN net-
work, we modify and use the method proposed by Kapturowski et al. (2019). We store
the hidden recurrent states in experience replay and use it to initialise them periodically.
The mini- batch is then sampled using rank-based prioritisation, as discussed in connection
with Algorithm 1. The seminal DRQN paper by Hausknecht and Stone (2015) suggests
two strategies: zero-initialising of the hidden state at the beginning of the sampled transi-
tion; and initialisation of whole transition. However, for both approaches, this ”creates a
number of practical, computational, and algorithmic issues due to varying and potentially
environment-dependent sequence length, and higher variance of network updates because
of the highly correlated nature of states in a trajectory when compared to training on
randomly sampled batches of experience tuples” (Kapturowski et al., 2019).

In reinforcement learning, the agents inevitably confront a trade-off between exploration
and exploitation (Ning et al., 2021). Exploration allows the agents to venture unsampled
state space in search of larger reward. They can then employ all possible actions to improve
Q-value estimates, thereby improving the action policy. By exploiting previously acquired
knowledge, the agents exploit already learned Q-values to select the action with the great-
est Q-value in the given state. We also implement an effective trade-off method: ϵ-greedy
method. The ϵ-greedy exploration policy selects the action with the current greatest esti-
mated Q-value with probability 1 − ϵ (exploitation) and randomly selects one action with
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Algorithm 1 Deep Recurrent Q-Learning for High-Frequency Market Making

Initialize experience replay D of size ND Initialize batch-size NB Initialize action-value
function parameter θM with random weights θ Initialize target network with weights θT = θ
Initialize ϵ, γ,N, ν
for trading episode = 1 to N do

for 1 to T do
Observes current state st Selects an action at with probability ϵ Otherwise randomly
selects action at = argmaxaQ(st, a; θ) with probability 1 − ϵ Execute the selected
action at, get the reward rt and next state st+1 Store transition (st, at, rt, γt, st+1)
in experience replay D for j ← 1 to J do

Sample a minibatch of NB transition
(
sj , aj , rj , sj+1

)
from D according to rank-

based prioritization (Schaul et al., 2016) if tj = T then

yj(θT ) = rj

else

yj(θT ) = r(j) + γ Q
(
sj , a

∗
j

∣∣∣ θT)
end
where,

a∗j = argmax
a

Q
(
sj−1, aj−1

∣∣ θM)
end
Obtain new network parameters θM by minimizing

L(θ; θT ) =
J∑
j=1

[
yj(θT )−Q

(
sj , aj

∣∣ θ)]2
Using gradient descent to obtain θM = argminθ L(θ; θT )

end
Update target network θM = θT after every ν iteration

end

probability ϵ (exploration) at each event time step. The value of ϵ decreases as training
epochs progress, network estimate of Q is more accurate with training, and agents tend to
exploit more often. We define decrease in ϵ by ϵ = max

(
0.01, 1− n

N

)
. Here, n is the current

training epoch and N is the total number of training epochs.

4. Experiments and Results

In this section, we first introduce the experimental setup, then define evaluation metrics
in order to assess the performance of the market making strategy. We validate the model
by reproducing known stylised facts from the simulated data, so that the dynamics of the
simulated LOB’s attributes match those observed empirically.
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4.1. Experiments

We run the model for 1,000 iterations to find relevant hyper-parameter using random
search. After that, we train the models for around ten million time steps, in intervals
of 10,000, which is equivalent to 500 trading days of collecting data, monitoring and vi-
sualising the agent’s learning. The environment is tested against the benchmark to de-
termine the agent’s learning pattern. In testing the network architecture, we use the pa-
rameters/hyperparameters described in Table 1. We have trained the deep reinforcement
learning agent’s policies using three different random seeds for each simulation. When per-
forming the simulation, each high-frequency market making agent using different network
architecture is trained against various high-frequency market taker agents until the point
of convergence, then the final policy is used to report profit and loss.

Table 1: Selected Parameters.

Parameter/Hyperparameter Value

Training episodes 500 days
Training sample size 400 days
Testing sample size 100 days

High-Frequency Market Makers initial capital 10000
High-Frequency Market Takers initial capital 10000
Min inventory (min Inv) -20000
Max inventory (max Inv) 20000

Adverse selection (Υ) 0.1
Adverse selection by volatility (ξ) 0.05
Cancellation sensitivity (ψ) 0.01
Exponential penalty (α) 0.01

Experience replay (D) 106

Batchsize (D) 32
Target network update frequency (ν) 1000
DO nothing action (no-op max) 64
Optimizer learning rate (Adam) 10−4

4.2. Performance Metrics

In our evaluation of the agents’ performance, we use profit and loss with exponential trans-
action costs and maker-taker fees (PnL), computed for each hour. The trading strategy’s
efficiency in capturing the spread is evaluated by normalised daily PnL (NPnL) (Spooner
et al., 2018). We also use the mean absolute position (MAP) to capture the important
characteristics of market makers when agents avoid large inventories (Spooner et al., 2018).
We report the NPnL and MAP with the standard deviation and mean, respectively. We
use the spread-based benchmark strategy proposed by Spooner et al. (2018), which em-
ploys temporal-difference reinforcement learning to design market making agents. Here,
the agents interacted with a data-driven simulation of a limit order book, at a depth of five
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levels. The authors experimented with different kinds of agents to ensure that they chose
the best consolidated agent. Their agents use an asymmetrically dampened reward function
with a linear combination of tile codings, trained using SARSA. We adapted these agents to
work with our simulation framework. As Table 2 shows, the agents’ performance is below
par. One possible reason for this is the complexity of the environment. While interacting
with the benchmark’s simulator, it is possible that an agent’s trading strategies might follow
historical trends and be executed at current market conditions, thus delineating them from
market impact. However, our simulation framework is built over realistic market design and
a matching engine that incorporates a dynamic transition fee, maker-taker fees, etc. As the
DQN network is the foundation of deep reinforcement learning, we use the classic architec-
ture. The network is trained with a Q-learning algorithm, stochastic gradient descent to
update the weights and experience reply to alleviate the problems of correlated data and
non-stationary distributions. Table 2 describes the performance of the DQN network.

Table 2: Normalised PnL (PnL) and mean absolute positions (MAP) for various agent
architectures

Architecture
NPnL [105] MAP[unit]

Mean Std.Dev. Mean Std.Dev.

DRQN 1.4 ±21.46 12 ±16

DQN 0.2 ±5.11 5 ±7

RL -1.2 ±87.65 41 ±72

4.3. Results and Analysis

The agents’ performance is compared in Figure 3. Despite the handcrafted strategy, in which
actions with various quantities are taken at different states, the RL agent performs badly,
and is less stable than the DRQN and DQN agents. It is notable that the trading strategy
followed by the RL agents doesn’t take account of order size, cancellations, adverse selection,
transaction costs and volatility, which the current simulator introduces into the interaction.
In addition, the order matching is subject to market takers, who trade on market trends,
as described in agent’s trading strategies. The DQN’s performance is stable, but fails to
outperform the DRQN. This may be due to a lack of efficiency in state representation,
overestimated action values, partial observability and pritorised experience, which DRQN
incorporates. In addition, the agents designed on the basis of temporal-difference RL and
DQN architecture have a restricted ability to take account of past observations in partially
observable environments, and use these to implement efficient market making strategies.
This is also reflected in Figure 3 and Table 2. The agents based on modified DRQN
architecture use stacked LSTM layers that store temporal trading information and can
learn sequences as they evolve over time. To better understand the performance, we need
action selection that takes account of limit order book dynamics, which we plan to do next.
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Figure 3: Agents’ performance while training, testing and bid-ask distribution on a random
day (left to right)

4.4. Impact of Maker-Taker Fees

The introduction of maker-taker fee structures in the equities market gives rise to a complex
topology among high-frequency market making strategies and how they interact with other
strategies. It is not clear whether the high-frequency market making based on the maker-
taker fee model may be detrimental or beneficial to market quality. We would like to test
the simulation framework’s potential as a tool for improving our understanding of market
design issues related to electronic exchanges. We investigate the effect of maker-taker fees on
the agent’s profitability and market quality with a deep agent-based model of the financial
market. We use traditional bid-ask spread as an indicator of the market’s liquidity and
intraday realised volatility as a volatility measure – i.e. as a proxy for market quality.
We increase the base rebate of providing liquidity (0.002) and taking liquidity (0.003) by
0.002 five times, to study the effect of maker-taker fees on market quality. The simulations
were performed for each rebate value to report average profitability, daily realised volatility,
and bid-ask spread over 500 simulation days. Figure 4 depicts market quality and agents’
profitability for different rebate values.
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Figure 4: Market quality as maker-taker fees increase. Volatility, Liquidity and Agents’
Profitability (left to right)

When the maker-taker rebate increases, the high-frequency market makers place an
order at a tighter spread to make a profit from bid-ask spread and rebate, subject to the
order execution. The tighter spread guarantees the order execution against taker strategies,
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which in turn decreases the volatility (as shown in Figure 4, first) and decreases the bid-
ask spread, thereby increasing the liquidity (as shown in Figure 4, second). The plunge in
volatility, combined with the surge in liquidity, increases the high frequency market maker’s
profitability. Figure 4, third, substantiate the earlier claim. The high-frequency market
makers add a stream of limit sell orders in front of the upward market trend to accumulate
rebate plus profit as their orders get executed, which increases profitability. As shown in
Figure 4, third, the RL agents bring their profit and loss close to zero taking advantage of
the maker-taker pricing model.

4.5. Validation

In agent-based models of financial markets, it is standard practice to measure the validity
of the model by investigating whether the order- book data have particular characteristics,
known as ”stylised facts” (Abergel et al., 2016). We present some of the stylized facts
reproduced from historical order book data, as shown in Figure 5. To reproduce stylised
facts, we first calculate the returns, which are given by r(t) = log(pt) − log(pt−1). The
distribution of returns often comes with heavy tails (HT), as depicted in Figure 5, first.
The normalised return distribution has a fatter tail than the green Gaussian distribution.
Furthermore, the cumulative distributions function (Cont, 2001; Abergel et al., 2016), shown
in green (positive tail) and yellow (negative tails) in Figure 5, second, exhibits power law
(PL). The violet line represents the asymptotic power-law function with tail exponent 4.
The absence of the autocorrelation (AAC) of price changes can be seen in Figure 5, third.
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Figure 5: Stylised facts of simulated security returns. HT, PL and AAC (left to right)

5. Conclusions

In this paper, we have designed a market making agent using a deep recurrent Q-network
that outperforms a prominent benchmark strategy based on temporal-difference reinforce-
ment learning. The market making agents interacted with a highly realistic simulation of the
limit order book, which has not previously been a subject of academic research. The suit-
able modification of DRQN’s exciting network architecture (Hausknecht and Stone, 2015)
and training procedure allowed our agents to achieve a predominant performance. We also
investigated how the market maker’s profitability increases with an increase in maker-taker
fees, which in turn improves market quality. This paves the way for future research, e.g.:
Refining the simulation framework to include latency in the agent’s strategy. Extending to
a portfolio with suitable hedging strategies rather than a single asset. Extending it to a
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multi-agent setting in which all agents learn, compete and trade simultaneously. Incorporat-
ing order book data with deep reinforcement learning. Investigating how maker-taker fees
affects market quality, the agents’ interaction, and exchange competition in a fragmented
market .
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