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In this Supplementary Material, we present technical proofs of Theorem 4 in Section
S.1, and further details of simulation studies in Section S.2.

S.1. Proof of Theorem 4

Proof Under Assumptions 1, 2 and 3, we have
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where the first equality follows from A ∈ {−1, 1}, the second from the law of total prob-
ability, the third from Y =

∑
a 1(A = a)Y (a) and the fourth from Y = mS(X,ZS) +

AδS(X,ZS) + εS .
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Thus it suffices to show that for each data source S = s, if either of the two conditions
in Theorem 4 holds, then
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In the following, we consider the cases in which each of the two conditions holds.

(i) If p̃a|s(X,Zs) = pa|s(X,Zs), we have
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Then Equation (3) in Theorem 4 follows because
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(ii) If m̃s(X,Zs) = ms(X,Zs), we have
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and the fact that p̃a|s(X,Zs) satisfies the partial balance property with respect to δ(X,Zs),
Equation (3) in Theorem 4 follows and we complete the proof.



Robust Direct Learning for Causal Data Fusion

S.2. Further Details of Experiments
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Figure 1: Illustration diagram of our proposed two-step algorithm WMDL, where the nui-
sance functions include the main effect functions, treatment propensity scores
and information-aware weighting functions. The estimate of CATE is obtained
by regressing the pseudo-outcomes on the covariates using weighted least squares.
See Algorithm 1 in the main text.

The main effect functions ms are specified as follows.

• Scenario I:

m1(X) = 1 +X11(X2 > 0.5) + 5X3X4,

m2(X) = −X41(X4 > 0.5) + 5X1X2 −X3,

m3(X) = 1(X3 > 0.5)1(X2 > 0.5)− 21(X1 < 0.5),

m4(X) = 2X2
1 + 2X2

2 + 2X2
3 + 2X2

4 ,

m5(X) = 3X1X2 + 3X3X4 + 3X2X3,

and mj+5(X) = −mj(X) for j = 1, 2, · · · , 5.

• Scenario II: For s = 1, . . . ,K,

ms(X,Zs) = ms(X) + 3Zs1(S1) + 2Zs1(s ≤ 5)1(X4 < 0.5) + Zs1(s > 5)1(X4 > 0.5).

To further support our method, we conduct more simulated experiments and present nu-
merical results online, see the website https://github.com/xinyuli-stat/CausalDataFusion.
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