Robust Direct Learning for Causal Data Fusion (Supplementary Material)

Xinyu Li ${ }^{1,2}$
Yilin Li ${ }^{1}$
Qing Cui ${ }^{2}$
Longfei $\mathbf{L i}^{2}$
Jun Zhou ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Peking University, Beijing, China
${ }^{2}$ Ant Group, Hangzhou, China

Editors: Emtiyaz Khan and Mehmet Gönen

In this Supplementary Material, we present technical proofs of Theorem 4 in Section S.1, and further details of simulation studies in Section S.2.

S.1. Proof of Theorem 4

Proof Under Assumptions 1, 2 and 3, we have

$$
\begin{aligned}
& E\left[\frac{w_{S}(X)}{\widetilde{p}_{A \mid S}\left(X, Z_{S}\right)}\left\{\frac{Y-\widetilde{m}_{S}\left(X, Z_{S}\right)}{A}-l(X)\right\}^{2}\right] \\
= & E\left[\frac{w_{S}(X)}{\widetilde{p}_{A \mid S}\left(X, Z_{S}\right)}\left\{Y-\widetilde{m}_{S}\left(X, Z_{S}\right)-A l(X)\right\}^{2}\right] \\
= & \sum_{s \in \mathcal{S}} E\left[\left.\frac{w_{s}(X)}{\widetilde{p}_{A \mid s}\left(X, Z_{s}\right)}\left\{Y-\widetilde{m}_{s}\left(X, Z_{s}\right)-A l(X)\right\}^{2} \right\rvert\, S=s\right] P(S=s) \\
= & \sum_{s \in \mathcal{S}} E\left[\left.w_{s}(X) \sum_{a \in\{-1,1\}} \frac{\mathbb{1}(A=a)}{\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)}\left\{Y(a)-\widetilde{m}_{s}\left(X, Z_{s}\right)-a l(X)\right\}^{2} \right\rvert\, S=s\right] P(S=s) \\
= & \sum_{s \in \mathcal{S}} E\left[\left.w_{s}(X) \sum_{a \in\{-1,1\}} \frac{p_{a \mid s}\left(X, Z_{s}\right)}{\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)}\left\{m_{s}+a \delta\left(X, Z_{s}\right)+\varepsilon_{s}-\widetilde{m}_{s}-a l(X)\right\}^{2} \right\rvert\, S=s\right] P(S=s),
\end{aligned}
$$

where the first equality follows from $A \in\{-1,1\}$, the second from the law of total probability, the third from $Y=\sum_{a} \mathbb{1}(A=a) Y(a)$ and the fourth from $Y=m_{S}\left(X, Z_{S}\right)+$ $A \delta_{S}\left(X, Z_{S}\right)+\varepsilon_{S}$.

Thus it suffices to show that for each data source $S=s$, if either of the two conditions in Theorem 4 holds, then

$$
\delta(X) \in \underset{l}{\arg \min } E\left[\left.w_{s}(X) \sum_{a \in\{-1,1\}} \frac{p_{a \mid s}\left(X, Z_{s}\right)}{\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)}\left\{m_{s}+a \delta\left(X, Z_{s}\right)+\varepsilon_{s}-\widetilde{m}_{s}-a l(X)\right\}^{2} \right\rvert\, S=s\right]
$$

In the following, we consider the cases in which each of the two conditions holds.
(i) If $\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)=p_{a \mid s}\left(X, Z_{s}\right)$, we have

$$
\begin{aligned}
& \underset{l}{\arg \min } E\left[\left.w_{s}(X) \sum_{a \in\{-1,1\}} \frac{p_{a \mid s}\left(X, Z_{s}\right)}{\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)}\left\{m_{s}+a \delta\left(X, Z_{s}\right)+\varepsilon_{s}-\widetilde{m}_{s}-a l(X)\right\}^{2} \right\rvert\, S=s\right] \\
= & \underset{l}{\arg \min } E\left[w_{s}(X) \sum_{a \in\{-1,1\}}\left\{m_{s}-\widetilde{m}_{s}+\varepsilon_{s}+a \delta\left(X, Z_{s}\right)-a l(X)\right\}^{2} \mid S=s\right] \\
= & \underset{l}{\arg \min } E\left[w_{s}(X)\left\{2 l^{2}(X)-4 l(X) \delta\left(X, Z_{s}\right)\right\} \mid S=s\right] .
\end{aligned}
$$

Then Equation (3) in Theorem 4 follows because

$$
\delta(X)=E\left\{\delta\left(X, Z_{s}\right) \mid X, S=s\right\} \in \underset{l}{\arg \min } E\left[l^{2}(X)-2 l(X) \delta\left(X, Z_{s}\right) \mid X, S=s\right]
$$

(ii) If $\widetilde{m}_{s}\left(X, Z_{s}\right)=m_{s}\left(X, Z_{s}\right)$, we have

$$
\begin{aligned}
& \underset{l}{\arg \min } E\left[\left.w_{s}(X) \sum_{a \in\{-1,1\}} \frac{p_{a \mid s}\left(X, Z_{s}\right)}{\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)}\left\{m_{s}+a \delta\left(X, Z_{s}\right)+\varepsilon_{s}-\widetilde{m}_{s}-a l(X)\right\}^{2} \right\rvert\, S=s\right] \\
= & \underset{l}{\arg \min } E\left[\left.w_{s}(X) \sum_{a \in\{-1,1\}} \frac{p_{a \mid s}\left(X, Z_{s}\right)}{\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)}\left\{a \delta\left(X, Z_{s}\right)+\varepsilon_{s}-a l(X)\right\}^{2} \right\rvert\, S=s\right], \\
= & \underset{l}{\arg \min } E\left[\left.w_{s}(X)\left\{2\left(\frac{p_{1 \mid s}}{\widetilde{p}_{1 \mid s}}+\frac{p_{-1 \mid s}}{\widetilde{p}_{-1 \mid s}}\right) l^{2}(X)-4\left(\frac{p_{1 \mid s}}{\widetilde{p}_{1 \mid s}}+\frac{p_{-1 \mid s}}{\widetilde{p}_{-1 \mid s}}\right) l(X) \delta\left(X, Z_{s}\right)\right\} \right\rvert\, S=s\right] .
\end{aligned}
$$

Since
$h(X) \in \arg \min _{l} E\left[\left.\left\{\left(\frac{p_{1 \mid s}}{\widetilde{p}_{1 \mid s}}+\frac{p_{-1 \mid s}}{\widetilde{p}_{-1 \mid s}}\right) l^{2}(X)-2\left(\frac{p_{1 \mid s}}{\widetilde{p}_{1 \mid s}}+\frac{p_{-1 \mid s}}{\widetilde{p}_{-1 \mid s}}\right) l(X) \delta\left(X, Z_{s}\right)\right\} \right\rvert\, X, S=s\right]$,
where

$$
\begin{aligned}
h(X) & =E\left\{\left.\left(\frac{p_{1 \mid s}}{\widetilde{p}_{1 \mid s}}+\frac{p_{-1 \mid s}}{\widetilde{p}_{-1 \mid s}}\right) \delta\left(X, Z_{s}\right) \right\rvert\, X, S=s\right\} / E\left\{\left.\left(\frac{p_{1 \mid s}}{\widetilde{p}_{1 \mid s}}+\frac{p_{-1 \mid s}}{\widetilde{p}_{-1 \mid s}}\right) \right\rvert\, X, S=s\right\} \\
& =E\left\{e_{A}\left(X, Z_{s}\right) \delta\left(X, Z_{s}\right) \mid X, S=s\right\}
\end{aligned}
$$

and the fact that $\widetilde{p}_{a \mid s}\left(X, Z_{s}\right)$ satisfies the partial balance property with respect to $\delta\left(X, Z_{s}\right)$, Equation (3) in Theorem 4 follows and we complete the proof.

S.2. Further Details of Experiments

Figure 1: Illustration diagram of our proposed two-step algorithm WMDL, where the nuisance functions include the main effect functions, treatment propensity scores and information-aware weighting functions. The estimate of CATE is obtained by regressing the pseudo-outcomes on the covariates using weighted least squares. See Algorithm 1 in the main text.

The main effect functions m_{s} are specified as follows.

- Scenario I:

$$
\begin{aligned}
& m_{1}(X)=1+X_{1} \mathbb{1}\left(X_{2}>0.5\right)+5 X_{3} X_{4}, \\
& m_{2}(X)=-X_{4} \mathbb{1}\left(X_{4}>0.5\right)+5 X_{1} X_{2}-X_{3}, \\
& m_{3}(X)=\mathbb{1}\left(X_{3}>0.5\right) \mathbb{1}\left(X_{2}>0.5\right)-2 \mathbb{1}\left(X_{1}<0.5\right), \\
& m_{4}(X)=2 X_{1}^{2}+2 X_{2}^{2}+2 X_{3}^{2}+2 X_{4}^{2}, \\
& m_{5}(X)=3 X_{1} X_{2}+3 X_{3} X_{4}+3 X_{2} X_{3},
\end{aligned}
$$

and $m_{j+5}(X)=-m_{j}(X)$ for $j=1,2, \cdots, 5$.

- Scenario II: For $s=1, \ldots, K$,

$$
m_{s}\left(X, Z_{s}\right)=m_{s}(X)+3 Z_{s} \mathbb{1}\left(\mathcal{S}_{1}\right)+2 Z_{s} \mathbb{1}(s \leq 5) \mathbb{1}\left(X_{4}<0.5\right)+Z_{s} \mathbb{1}(s>5) \mathbb{1}\left(X_{4}>0.5\right) .
$$

To further support our method, we conduct more simulated experiments and present numerical results online, see the website https://github.com/xinyuli-stat/CausalDataFusion.

