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Abstract

In the era of big data, the explosive growth of multi-source heterogeneous data offers
many exciting challenges and opportunities for improving the inference of conditional aver-
age treatment effects. In this paper, we investigate homogeneous and heterogeneous causal
data fusion problems under a general setting that allows for the presence of source-specific
covariates. We provide a direct learning framework for integrating multi-source data that
separates the treatment effect from other nuisance functions, and achieves double robust-
ness against certain misspecification. To improve estimation precision and stability, we
propose a causal information-aware weighting function motivated by theoretical insights
from the semiparametric efficiency theory; it assigns larger weights to samples containing
more causal information with high interpretability. We introduce a two-step algorithm, the
weighted multi-source direct learner, based on constructing a pseudo-outcome and regress-
ing it on covariates under a weighted least square criterion; it offers us a powerful tool for
causal data fusion, enjoying the advantages of easy implementation, double robustness and
model flexibility. In simulation studies, we demonstrate the effectiveness of our proposed
methods in both homogeneous and heterogeneous causal data fusion scenarios.

Keywords: data fusion; direct learning; double robustness; heterogeneous treatment effect

1. Introduction

To understand the causal mechanism, a classic parameter of interest is the conditional av-
erage treatment effects (CATE), also known as heterogeneous treatment effect (Abrevaya
et al., 2015; Athey and Imbens, 2016; Künzel et al., 2019), defined by the difference in out-
come means between the two treatment groups conditional on a set of background attributes.
Learning CATE is one of the fundamental problems in experimental sciences, observational
studies, and electric commerce, such as the average effectiveness of medical treatment on
patients (Obermeyer and Emanuel, 2016) and benefits of advertising on consumers (Bottou
et al., 2013). A vast number of methods have been proposed to estimate the CATE based
on flexible machine learning methods, including tree-based methods (Athey and Imbens,
2016; Tang et al., 2022), random forests (Wager and Athey, 2018), boosting (Powers et al.,
2018; Nie and Wager, 2021), neural networks (Johansson et al., 2016; Louizos et al., 2017;
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Shi et al., 2019), and meta-learners with any supervised learning method (Künzel et al.,
2019; Nie and Wager, 2021).

As pointed out by Kallus and Oprescu (2022), learning the conditional outcome means
on two treatment arms separately and taking the difference to obtain the CATE may suffer
from error accumulation, especially when the CATE function has a simpler and sparser
form. This inspires us to learn the CATE function directly by modeling it as a whole. Qi
and Liu (2018); Qi et al. (2020) proposed a one-step method (D-learning) to directly learn
the optimal individual treatment rule which is closely related to the CATE. Meng and Qiao
(2020) further generalized D-learning by replacing the outcome with the residual of some
main effect function to achieve double robustness. The double robustness property is well
studied in causal inference, meaning that the estimation is consistent if either the propensity
score or the conditional outcome mean model is correct but not necessarily both, see Bang
and Robins (2005); Zhang et al. (2012).

Although various methods have been proposed for estimating the CATE on a single
dataset, the practical performance might be poor due to the limited sample size. A natural
idea is to combine other similar datasets and improve the precision of the estimating proce-
dures. Integrating and leveraging data from multiple sources have received wide attention in
recent years. This problem is typically known as causal data fusion. Some notable advances
focus on the average treatment effect (ATE) (Fan et al., 2014; Bareinboim and Pearl, 2016;
Colnet et al., 2020; Li et al., 2021), causal discovery (Claassen and Heskes, 2010; Zhang
et al., 2017) across multiple data sources. Recently, a tree-based approach for estimating
the CATE is proposed when the individual-level data cannot be pooled (Tan et al., 2021).

To improve efficiency, we propose a novel approach for estimating the CATE on hetero-
geneous data sources by generalizing the approach from Meng and Qiao (2020). We have
the following four concrete contributions: (i) We formulate and investigate the homogeneous
and heterogeneous causal data fusions under general settings that allow for the presence
of source-specific covariates. (ii) We present a multi-source direct learning framework, and
propose a direct, model-flexible and doubly robust algorithm for causal data fusion. (iii) We
propose a causal information-aware weighting function based on semiparametric efficiency
theory to improve efficiency. (iv) We demonstrate the performance of the proposed methods
and show the improvement compared with other methods.

2. Preliminaries and notations

2.1. Heterogeneous Treatment Effect

As is customary, we use capital letters for random variables and lowercase letters for re-
alized values; in particular, let Y denote the outcome of interest, A ∈ {1,−1} denote a
binary treatment indicator, X ∈ X denote a vector of features, and Y (a) denote the po-
tential outcome that would be observed when the treatment A had been set to a ∈ {1,−1}
(Rubin, 1974; Imbens and Rubin, 2015). We maintain the classic stable unit treatment
value assumption (SUTVA) that no interference between units and no hidden variations of
treatments occur, and assume that the observed outcome is a realization of the potential
outcome under the intervention actually received, i.e., Y =

∑
a 1(A = a)Y (a), where 1(·)

denotes the indicator function.
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The CATE is defined as the mean difference in potential outcomes between the treated
and control groups for individuals with feature X, that is, τ(X) = µ1(X)− µ−1(X), where
µa(X) = E[Y (a) | X] for a ∈ {1,−1}; it captures the heterogeneity of average treatment
effect across subpopulations defined by the values of the features.

We consider the following general model for potential outcomes, Y (a) = µa(X) + ε̃a,
where ε̃a is a random error satisfying E(ε̃a | X) = 0 and var(ε̃a) < ∞ for a ∈ {1,−1}. Then
because Y =

∑
a 1(A = a)Y (a), the observed outcome can be naturally modeled by

Y =
µ1(X) + µ−1(X)

2
+A

µ1(X)− µ−1(X)

2
+ ε

≜ m(X) +Aδ(X) + ε, (1)

where E(ε | X,A) = 0, var(ε) < ∞. Hereafter we refer to m(X) as the main effect function
and δ(X) as the treatment effect function. Note that τ(X) = 2δ(X), and thus estimating
the CATE is equivalent to estimating the treatment effect function δ(X).

2.2. Multiple Heterogeneous Data Sources

Suppose that data are available from K mutually independent data sources; in each of
them, an individual either receives the experimental or the control intervention. When
data across different sources are samples from the same global population, we refer to the
data sources as homogeneous, and otherwise as heterogeneous; here we consider the latter,
a more challenging case that allows for differences in the distribution of baseline features
across sources. We introduce S as the source indicator which takes values in S = {1, · · · ,K},
and denote the dataset observed from the s-th data source as Os.

We consider the problem where observed covariates differ across multiple datasets; such
scenarios are common in practice (e.g., Jia et al., 2006; Li et al., 2022). In particular, we
denote the covariates of interest that are shared by all datasets as X, and the covariates
of the s-th dataset other than X as Zs. For each data source s, the observed dataset
Os = {(Yi, Ai, Xi, Zs,i), i = 1, · · · , ns}, in which the samples are independent and identically
distributed according to f(Y,A,X,Zs | S = s), where f(·) denotes the density function.
If Zs = ∅ for each s ∈ S, then it degenerates to the classic setting where all covariates
are observed across data sources (Colnet et al., 2020). In the following, if not otherwise
specified, we denote E(·) the expectation with respect to the joint distribution of observed

data
∏K

s=1 [f(Y,A,X,Zs, S = s)]1(S=s), and Ê(·) the empirical expectation.
We are interested in drawing inference about the causal effects conditional on the com-

monly shared covariates X, and the causal quantity of interest is the CATE function
τs(X) = E{Y (1) − Y (−1) | X,S = s} = E[E{Y (1) − Y (−1) | X,Zs, S = s} | X,S = s] of
each data source. To identify the CATE, we impose the following regularity assumptions
(Imbens and Rubin, 2015).

Assumption 1 (Ignorability) Y (a) ⊥ A | X,Zs, S = s for each s.

Assumption 2 (Positivity) There exist a constant c > 0 such that P (A = a | X,Zs, S =
s) > c almost surely for each a and s.
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Assumption 1 excludes the unmeasured confounders between A and Y (a) within each
data source, which is plausible as in many cases the assignment of interventions within each
data source can be characterized by observed features. Assumption 2 requires that popula-
tions of the treated and control group have some overlap. Within each data source, under
Assumptions 1–2, the CATE function τs(X) is identified, and a straightforward estimating
method is to utilize data from the s-th source solely. However, it is appealing to integrate
all data from different sources to enhance efficiency, especially when the sample size of each
source is relatively small.

3. Direct Learning for Causal Data Fusion

3.1. Causal Data Fusion

We define the main and the treatment effect function of the source s as

ms(X,Zs) =
µ1s(X,Zs) + µ−1s(X,Zs)

2
and δs(X,Zs) =

µ1s(X,Zs)− µ−1s(X,Zs)

2
,

respectively, where µas(X,Zs) = E{Y (a) | X,Zs, S = s}. Following the same derivation
as for Equation (1), in the scenario of multiple data sources, one can naturally model the
observed outcome by

Y = mS(X,ZS) +AδS(X,ZS) + εS , (2)

where E(εs | X,Zs, A, S = s) = 0 and var(εs) < ∞ for s = 1, · · · ,K. When there is no
confusion, we let δs(X) = E{δs(X,Zs) | X,S = s} and also refer to it as the treatment
effect function. By definition it follows that δs(X) = τs(X)/2, hence estimating the CATE
τs(X) is equivalent to estimating the treatment effect function δs(X).

Without loss of generality, we set the first data source as the target one, i.e., its samples
are drawn from the population over which we are interested in inferring causal effects. For
example, the first dataset O1 is collected from a randomized controlled trial (RCT) among
the overall population of scientific interest, whereas the second dataset O2 is obtained from
an observational study over a specific sub-population.

We classify causal data fusion tasks under multiple heterogeneous data sources into two
categories:

• homogeneous causal data fusion, where the conditional average treatment effect across
different data sources are homogeneous, see Assumption 3 described below;

• heterogeneous causal data fusion, where at least one of the data sources has a different
conditional mean treatment effect than the others, and we will discuss it later.

Assumption 3 (Homogeneity of CATE) δ1(X) = · · · = δK(X) ≜ δ(X) almost surely.

Assumption 3 reveals that for units with the same value of covariates X, the expected
treatment effect remains the same regardless of the data source. It is plausible in many real
cases, and weaker than the mean exchangeability or distribution exchangeability assump-
tions commonly adopted in causal inference literature when dealing with data fusion (e.g.,
Rudolph and van der Laan, 2017; Buchanan et al., 2018; Dahabreh et al., 2020; Li et al.,
2021).



Robust Direct Learning for Causal Data Fusion

3.2. Direct Learning for Homogeneous Causal Data Fusion

We propose a direct learning approach to estimate the treatment effect function δ(X) with-
out modeling each δ(X,Zs). Unlike traditional methods that model CATE through model-
ing both µ1s and µ−1s, the direct learner separates ms and δ in the estimation procedure,
allowing the use of a flexible model for the quantity of interest CATE; for example, one
can characterize CATE with a tree model with better interpretation, but fit the nuisance
functions with a more complex and powerful model. Further, we also show the robustness
of the direct learner against the failure of nuisance estimators.

In addition to main effect functions, the direct learners may also need to model a few
other nuisance functions. We denote the treatment propensity scores P (A = a | X,Zs, S =
s) by pa|s(X,Zs), and selection propensity scores P (S = s | X) by πs(X). For simplicity,
when there causes no confusion, we may omit the random variables, e.g., pa|s for pa|s(X,Zs).
Note that the notations PA|s =

∑
a I(A = a)Pa|s and PA|S =

∑
s

∑
a I(S = s,A = a)Pa|s.

We refer to working propensity score models, say p̃a|s(X,Zs), as satisfying the partial
balance property with respect to δs(x, zs), if

E{eA(X,Zs)δ(X,Zs) | X,S = s} = E{δ(X,Zs) | X,S = s},

where eA(X,Zs) = p̃−1
A|s(X,Zs)/E{p̃−1

A|s(X,Zs) | X,S = s}, a standardized inverse probabil-
ity weighting term. We call this property partial balance because it characterizes the ability
of the working propensity scores to adjust for the imbalance of Zs between the treated and
control groups given X along the direction of δ(X,Zs). It is weaker than requiring the
correctness of working propensity scores, because that calls for the ability to fully adjust for
the imbalance of all covariates including both X and Zs. In order to train propensity score
models that satisfy such partial balance property, one can first obtain an initial δ̂(X,Zs)
using T-learner (Künzel et al., 2019) and then add the term Ê[g(X){P−1

A|s − 1}δ̂ | S = s]2

to the loss function, where g(X) is a vector of user-specified functions. The partial bal-
ance property is naturally satisfied in many cases, for example, (a) the working propensity
scores are correct, i.e., p̃a|s(X,Zs) = pa|s(X,Zs); (b) there are no source-specific covariates,
i.e., Zs = ∅; (c) only the covariates X lead to the heterogeneity of causal effects, i.e.,
δ(X,Zs) = δ(X). Case (c) holds especially when many variables predict potential outcomes
but only a few has a strong modulate effect (Kallus and Oprescu, 2022).

The following result establishes the double robustness property of the direct learning
approach for homogeneous causal data fusion, which is a generalization of the result in
Meng and Qiao (2020). It offers us two chances to obtain a correct estimate of the CATE,
thus more robust than methods that only rely on a single nuisance model.

Theorem 4 Suppose that Assumptions 1–3 hold and {ws(X)}Ks=1 are arbitrary positive
integrable functions. Then

δ ∈ argmin
l∈{X→R}

E

[
wS(X)

p̃A|S(X,ZS)

{
Y − m̃S(X,ZS)

A
− l(X)

}2
]
, (3)

if for each data source s, either one of the following conditions holds:
1. the working propensity scores p̃a|s(X,Zs) = pa|s(X,Zs), or
2. the working main effect functions m̃s(X,Zs) = ms(X,Zs), and the working propensity

scores p̃a|s(X,Zs) satisfies the partial balance property with respect to δ(X,Zs).
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Theorem 4 suggests that we can consistently estimate δ(X) through the empirical version
of Equation (3) if the limiting functions of working nuisance models satisfy either one of
the above conditions. This method avoids modeling the treatment effect function δ(X,Zs)
on each dataset. Instead, we integrate all the datasets to solve directly for the objective
treatment effect function of X. At the same time, it allows us to separate the treatment
effect from other variation independent nuisance functions, and achieve double robustness
against misspecification of them.

Remark 5 In many cases, such as RCTs, the propensity scores are known and often the
treatment assignment mechanism only depends on the commonly shared covariates X. With
such prior knowledge, we simply need to fit propensity scores on X, and under the same
condition as Theorem 4,

δ ∈ argmin
l∈{X→R}

E

[
wS(X)

p̃A|S(X)
{Y − m̃S(X,ZS)−Al(X)}2

]
,

if for each s, either p̃a|s(X) = pa|s(X) or m̃s(X,Zs) = ms(X,Zs) holds.

3.3. Causal Information-aware Weighting Function

As shown in Theorem 4, the weight function ws(X) plays an important role in the direct
learning; the choice of ws(X) affects the efficiency of estimators, but not the consistency.
Users may choose a constant weight, but ideal weights should be interpretable as well as
beneficial for improving estimation precision and stability. Towards this end, we propose
a weighting function motivated by the semiparametric efficiency bound (also referred to
as semiparametric Cramér-Rao bound, see Newey, 1990; Bickel et al., 1993; Tsiatis, 2006;
Kennedy, 2016), which characterizes the amount of information contained in the observed
data for inferring target parameters.

To illustrate, suppose all datasets share the same covariates and consider the case where
covariates are discrete-valued for simplicity. At a fixed X = x, in the statistical model
Fs,x = {f(Y,A,X = x | S = s) : Assumptions 1–2 holds with no other restrictions}, the
amount of information for estimating CATE carried in each observation of the s-th dataset
can be measured by the semiparametric efficiency bound of τs(x) . We refer to the bound
that corresponds to s and x as Bs,x; the asymptotic variance of any regular and asymptotic
linear estimator of τs(x) based solely on Os can be no smaller than this bound. Then the
relative information between Os1 and Os2 with respect to x is

Bs1,x/Bs2,x =

{
V1|s2(x)

p1|s2(x)
+

V−1|s2(x)

p−1|s2(x)

}−1{V1|s1(x)

p1|s1(x)
+

V−1|s1(x)

p−1|s1(x)

}
,

where s1, s2 ∈ S, Va|s(X) = var(Ya | X,S = s) = var(Y | X,A = a, S = s) and pa|s(X) =
P (A = a | X,S = s) for a ∈ {1,−1}.

In light of this, we propose an information-aware weighting function as

ws(X) ∝ P (S = s)

P (S = 1)

π1(X)

πs(X)

{
V1|s(X)

p1|s(X)
+

V−1|s(X)

p−1|s(X)

}−1

(4)

=
f(X | S = 1)

f(X | S = s)

{
V1|s(X)

p1|s(X)
+

V−1|s(X)

p−1|s(X)

}−1

.
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Figure 1: Illustration of the weighting function. Suppose that Va|s(x) is a constant, and
f(X | S = s) is shown in (a) and (b). The blue and yellow areas indicate the
proportions of the treated and control units at each value of X, respectively. (c),
(d) and (e) show the variation of Is(X), Rs(X) and ws(X) = Is(X)Rs(X) with
X. The solid and dashed lines stand for the first and second sources, respectively.
Here Is(X) characterizes the imbalance of treatment, while Rs(X) characterizes
the imbalance of populations between two sources. When X is close to one,
R2(X) > R1(X) which enables the second source population to match the first
one, and I2(X) > I1(X) because the first source suffers from a severe treatment
imbalance; in this case, the weighting function ws(X) assigns more weight to the
samples from the second source.

Our proposed weighting function ws(X) can be decomposed into the product of two
components: the transfer term Rs(X) = f(X | S = 1)/f(X | S = s) and the information
term denoted by Is(X). The transfer term characterizes the imbalance of populations
between the s-th source and the target one. The information term characterizes the amount
of causal information satisfying that Is1(x)/Is2(x) = Bs2,x/Bs1,x, therefore assigns larger
weights to the samples containing more causal information. To match with intuition, for
observations with covariates X = x in the s-th dataset, their weights are determined by:

• Density ratio corresponding to f(x | S = 1)/f(x | S = s). This term enables us to
pay more attention to the subpopulations that account for a larger share of the target
population. Individuals that do not belong to the target population are discarded
because their weights become zero. Within the target dataset S = 1, each observation
is equally treated on this term.
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• Degree of imbalance in treatment assignment corresponding to p1|s(x). The weighting
function prefers to reward a more balanced treatment assignment mechanism. To
illustrate, suppose that Va|s(x) = 1 and then the term [1/p1|s(x) + 1/{1− p1|s(x)}]−1

degenerates to p1|s(x){1− p1|s(x)}, which is maximized at p1|s(x) = 0.5.

• Noise corresponding to V1|s(x) and V−1|s(x). The noise of potential outcomes varies
across subpopulations and datasets, and our weighting function assigns larger weights
to those with less noise in a subtle way that cooperates with the information of
treatment assignment.

Remark 6 When K = 1 and Z1 = ∅, the setting degenerates to the classic problem of
estimating CATE on a single dataset. In this case, our proposed direct learning method can
be regarded as a weighted version of Meng and Qiao (2020), utilizing a weighting function
w(X) ∝ [V1(X)/p1(X) + V−1(X)/{1 − p1(X)}]−1. In the numerical experiments reported
below, we show that the use of our proposed weight can significantly improve the performance
of direct learning.

3.4. Algorithm

We propose a two-step procedure called Weighted Multi-source Direct Learner (WMDL) for
estimating treatment effect functions from heterogeneous multi-source data, which is sum-
marized in Algorithm 1. As a first step, we construct a pseudo-outcome and a weight value
for each data point by plugging in the estimators of nuisance functions. The nuisances are
variation independent to CATE, including the main effect functions ms(X,Zs), treatment
propensity scores pa|s(X,Zs) and weighting functions ws(X). By Equation (4), estimating
weighting function is equivalent to estimating selection propensity scores πs(X), conditional
treatment propensity scores pa|s(X) and conditional outcome variances Va|s(X). Alterna-
tively, one can also choose to model the conditional density ratios instead of the selection
propensity scores. The working models used to construct weighting functions only affect
the efficiency, but not the consistency. To obtain nuisance estimators, we split each dataset
into G even folds, and estimates are fit on data excluding the fold where the data point lies.
The data splitting technique is commonly used when learning nuisance estimators (Kallus
and Oprescu, 2022).

Algorithm 1 Weighted Multi-source Direct Learner

Input: Datasets Os, s = 1, · · · ,K, nuisance function learners, regression learner
Output: δ̂(X)
for s = 1, · · · ,K do

Use dataset Os to construct nuisance estimators m̂s, p̂a|s and ŵs

Pseudo-outcome Ỹi = Ai{Yi − m̂s(Xi, Zs,i)} and W̃i = ŵs(Xi)/p̂Ai|s(Xi, Zs,i)

Set Ps = {Ỹi, W̃i, Xi}i∈Os

end
Set P = P1 ∪ · · · ∪ PK

Fit regression learner on P to obtain δ̂(X) = argminl
∑

i∈P

[
W̃i

{
Ỹi − l(Xi)

}2
]
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Then given a regression learner, for example, random forest, we regress the pseudo-
outcomes on the covariates X by solving a weighted least square problem. The regression
learner is specified independently of those nuisance function learners, which affords us sig-
nificant generality. The algorithm offers us a powerful tool for causal data fusion, enjoying
the advantages of easy implementation, double robustness, and model flexibility.

3.5. Direct Learning for Heterogeneous Causal Data Fusion

In this part, we turn to investigate heterogeneous causal data fusion, where Assumption 3
does not hold anymore. We set the first data source S = 1 as the target one, and hence the
causal quantity of interest is δ1(X). We rewrite δS(X) as δ(X,S), then analogous to the
Theorem 4, under Assumptions 1 and 2 one can obtain the function δ(X,S) by solving

argmin
l∈{X×S→R}

E

[
wS(X)

pA|S(X,ZS)

{
Y −mS(X,ZS)

A
− l(X,S)

}2
]
.

The inclusion of variable S assists us in both distinguishing the heterogeneity of causal
effects between different datasets and capturing the commonly shared structures. There-
fore, for heterogeneous causal data fusion, we can still apply the proposed WMDL to es-
timate CATE in a direct, model-flexible, and robust way. To be specific, the nuisance
estimators remains the same as the homogeneous causal data fusion setting, and the es-
timation procedure for CATE is similar to Algorithm 1, except that we turn to solve
δ̂(X,S) = argminl

∑
i∈P [W̃i{Ỹi−l(Xi, Si)}2] in the last step. We take δ̂(x, 1) as the resulted

estimator of the treatment effect function δ1(x); it enjoys the property of double robustness
against misspecification of nuisance models corresponding to O1. In the numerical exper-
iments, we demonstrate that WMDL can effectively integrate information from multiple
data sources, resulting in more accurate estimates than a single data source.

4. Experiments

4.1. Settings

In this part, we conduct a broad simulation comparing the weighted multi-source direct
learner with other popular methods under both homogeneous and heterogeneous causal
data fusions. We set the number of data sources K = 10, and draw the same number of
independent observations for each data source from the following data generating process:

X ∼ Unif
(
[−1, 1]4

)
for S = 1, X ∼ N[−1,1]4(µS , I) for S = 2, . . . ,K,

where µs ∼ N(0, σ2I) with σ = 0.3, N[−1,1]4 stands for the four-dimensional truncated
normal distribution and I denotes the identity matrix. For each causal data fusion, we
consider two scenarios: the Scenario I in which there are no source-specific covariates with
Zs = ∅, and the Scenario II in which each data source has a source-specific covariate
Zs ∼ N[−1,1](0, 1) for s = 1, . . . ,K.

Under both homogeneous and heterogeneous causal data fusions, we generate the treat-
ment A in each dataset by Bernoulli

(
expit{(X,Zs)

Tβ}
)
, where expit(·) = exp(·)/{1 +

exp(·)}, and the parameter β is randomly generated by the normal distribution N(0, I).
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Then we generate the outcome Y by Equation (2); the main effect function ms’s detailed
form is provided in the supplementary material, the random noise εs ∼ N(0, σ2

s) with
σs = 0.1, and the treatment effect functions

δ(X) =(X1 +X2 +X3) · 1(X1 < 0.5) +X4,

δs(X) =X1 · 1(X1 < 0.5)1(S1) +X2 · 1(X2 < 0.5)1(s ≤ 7)

+X3 · 1(X3 < 0.5) +X4 · 1(S1) + 2 · 1(X1 < 0)1(S2),

for homogeneous and heterogeneous causal data fusions, respectively, where S1 = {s :
s mod 2 = 1} and S2 = {s : s mod 2 = 0}.

We demonstrate the numerical performance by comparing it with the following widely-
used methods. The meta-learner methods decompose the CATE into several regression and
classification problems solved by any supervised learning method, such as T-learner (TL),
S-learner (SL), and X-learner (XL), see Künzel et al. (2019) for details. Causal forest (CF)
is another popular approach for estimating the CATE based on random forest (Wager and
Athey, 2018). For each method, we take the following two strategies to integrate datasets as
the benchmark: (i) directly combine all the data and then apply the method to learn CATE,
and (ii) include the source indicator as an additional predictor. We add “−s” at the end of
the abbreviation (e.g., XL-s) to indicate the inclusion of S. To assess the role of proposed
weighting function wS(X), we also take the multi-source direct learner using wS(X) = 1
in Algorithm 1 as a benchmark, referred to as MDL. Furthermore, to reveal the benefits
of integrating multiple sources, we apply direct learners only on the target dataset, then
MDL/WMDL degenerates to the robust direct learning (DL) by Meng and Qiao (2020) and
the weighted robust direct learning (WDL). For the direct learners (WMDL, MDL, WDL
and DL) and meta-learners (TL, SL, XL), we all use XGBoost for building the CATE and
conditional mean models. We set hyperparameters for XGBoost as follows: the learning
rate is 0.01, the maximum depth of a tree is 6 and the max number of boosting iterations is
20000. We evaluate by replicating 100 times, each time on an independent test dataset of
sample size 1000 generated from the target source. We use the mean square error (MSE),
an empirical version of the L2 distance,

MSE = n−1
n∑

i=1

{
δ̂1(Xi)− δ1(Xi)

}2
,

as the performance metric.

4.2. Results

We summarize the average of mean squared error and the corresponding standard deviation
of the above experiments in Table 1.

From Table 1, we reach the following conclusions:

• Compared with the benchmarks, the proposed WMDL results in the smallest mean
squared error on average in all scenarios, demonstrating its advantages in terms of
precision under both homogeneous and heterogeneous causal data fusions. Also, MDL
and WMDL typically have a smaller standard deviation than other methods, which
implies that multi-source direct learning may lead to a more stable performance.
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Table 1: Mean and standard deviation of MSE under sample sizes 3000 and 5000

Homogeneous Heterogeneous

I II I II

3000 5000 3000 5000 3000 5000 3000 5000

WMDL 0.084 0.045 0.106 0.064 0.163 0.102 0.289 0.192
(0.008) (0.003) (0.009) (0.006) (0.035) (0.014) (0.066) (0.030)

MDL 0.104 0.061 0.143 0.089 0.198 0.121 0.380 0.251
(0.009) (0.005) (0.013) (0.009) (0.037) (0.016) (0.084) (0.045)

WDL 0.227 0.148 0.458 0.303 0.226 0.143 0.451 0.303
(0.060) (0.026) (0.096) (0.051) (0.053) (0.020) (0.089) (0.049)

DL 0.275 0.175 0.532 0.346 0.275 0.166 0.532 0.350
(0.064) (0.030) (0.112) (0.057) (0.058) (0.023) (0.094) (0.059)

CF 0.171 0.159 0.198 0.155 0.959 0.948 0.819 0.780
(0.011) (0.009) (0.014) (0.010) (0.038) (0.039) (0.043) (0.038)

XL 0.394 0.356 0.478 0.359 1.225 1.141 1.136 0.988
(0.024) (0.029) (0.039) (0.026) (0.049) (0.056) (0.077) (0.054)

TL 0.591 0.500 0.781 0.593 1.448 1.331 1.488 1.264
(0.039) (0.037) (0.060) (0.039) (0.071) (0.066) (0.093) (0.067)

SL 0.267 0.226 0.248 0.202 1.058 1.005 0.893 0.831
(0.028) (0.023) (0.023) (0.020) (0.044) (0.047) (0.055) (0.042)

CF-s 0.137 0.105 0.160 0.129 0.637 0.474 0.625 0.425
(0.009) (0.006) (0.010) (0.009) (0.067) (0.047) (0.102) (0.042)

XL-s 0.119 0.080 0.708 0.649 0.213 0.131 0.858 0.612
(0.028) (0.016) (0.215) (0.168) (0.038) (0.020) (0.280) (0.191)

TL-s 0.285 0.215 1.237 1.066 0.350 0.231 1.372 1.049
(0.074) (0.047) (0.284) (0.209) (0.071) (0.042) (0.343) (0.195)

SL-s 0.158 0.155 0.438 0.464 0.420 0.355 0.560 0.503
(0.019) (0.016) (0.194) (0.155) (0.062) (0.047) (0.170) (0.134)

• By comparing WMDL/WDL to MDL/DL, as expected, the use of our proposed
information-aware weighting function significantly improves both the accuracy and
stability of the CATE estimates, regardless of whether multiple sources or a single
source is analyzed.

• The multi-source approach (MDL/WMDL) outperforms the single-source approach
(DL/WDL) substantially, where the MSE decreases considerably in homogeneous
cases and reduces to a certain degree in heterogeneous cases. This indicates that our
proposed method can effectively integrate causal information from multiple sources,
and may lead to efficiency gains even when the CATE differs across data sources.

• The inclusion of the source indicator as a covariate in CF, TL, SL and XL can generally
promote the performance in the Scenario I, but may lead to larger MSEs in the
Scenario II. In contrast, the WMDL behaves well across scenarios. It suggests that
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our method can provide a simple but powerful way to make effective use of source-
specific covariates, which only requires these covariates when modeling the nuisance
functions but not the CATE.

Figure 2 presents the MSE of MDL and WMDL with increasing sample size. The
WMDL outperforms the MDL under both homogeneous and heterogeneous settings, which
highlights the effectiveness of our proposed causal information-aware function. The box
plots in Figure 2 also show the variability of MD-learning can be reduced with the weighting
function. These numerical results show the potential application of efficiency theory in
Section 3.3 to CATE problems.
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Figure 2: Boxplots of mean square error for multi-source direct learning with and without
the causal information-aware weighting function.

5. Discussion

We provide a simple yet powerful algorithm, the WMDL, for causal data fusion. In this
paper, the target dataset contains the outcome data under different treatments. However,
in some cases, only the covariates of the target population are available (Dahabreh et al.,
2020). Therefore transferring the causal inference from other sources to the target pop-
ulation is also of interest. We highlight that our proposed WMDL can also be applied
to causal transfer learning, see details in Appendix A. Our approach is double-weighted,
with treatment propensity scores adjusting for bias and enhancing robustness, and causal
information-aware weighting functions improving efficiency. In the future, we may consider
adding the uncertainty of models to weighting functions to achieve more stable performance.
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Appendix A. Discussions on Causal Transfer Learning

Suppose we have individual-level data under different treatments from multiple sources
as well as covariate data from a target population. We aim to synthesize findings across
multiple observational datasets and transport causal inferences to the target population.
Such scenarios are common in real applications, see Dahabreh et al. (2020). In this section,
we provide a detailed discussion on how to apply our proposed framework to transfer causal
inference.
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To formalize the problem, we keep the notation consistent with the main text and let the
source indicator S = 0 to indicate the target population. Individual-level data under dif-
ferent treatments are collected in K mutually independent trial datasets, but for the target
population, only covariate information is available. We summarize the observed datasets as
O0 = {Xi, i = 1, · · · , n0} and Os = {(Yi, Ai, Xi, Zs,i), i = 1, · · · , ns} for s = 1, · · · ,K. Then

the joint distribution of observed data is f(X,S = 0)1(S=0)
∏K

s=1 [f(Y,A,X,Zs, S = s)]1(S=s).
Our parameter of interest is the CATE function on the target population τ0(X) = E{Y (1)−
Y (−1)|X,S = 0}. To identify τ0(X), we impose the following assumptions.

Assumption A.1 (Ignorability) Y (a) ⊥ A | X,Zs, S = s for each s ∈ {1, · · · ,K}.

Assumption A.2 (Treatment Positivity) P (A = a | X = x, Zs, S = s) > 0 for all x
such that f(X = x | S = s)f(X = x | S = 0) > 0, where a ∈ {1,−1} and s ∈ {1, · · · ,K}.

Assumption A.3 (Population Positivity)
∑K

s=1 f(X = x | S = s) > 0 for all x such
that f(X = x | S = 0) > 0.

Assumption A.4 (Homogeneity of CATE) δ0(X) = · · · = δK(X) almost surely.

Notably, in addition to the assumptions required in homogeneous causal data fusion, we
impose the population positivity assumption, which implies that similar individuals exist in
at least one trial dataset for those in the target population. Under Assumptions A.1–A.4,
the CATE function τ0(X) is identified.

The estimation procedures are the same as in Algorithm 1 of the main text, except that
the information-aware weighting function

ws(X) ∝ P (S = s)

P (S = 0)

π0(X)

πs(X)

{
V1|s(X)

p1|s(X)
+

V−1|s(X)

p−1|s(X)

}−1

(A.1)

=
f(X | S = 0)

f(X | S = s)

{
V1|s(X)

p1|s(X)
+

V−1|s(X)

p−1|s(X)

}−1

. (A.2)

The density ratio f(X | S = 0)/f(X | S = s) enables us to pay more attention to the sub-
populations that account for a larger share of the target population. We assign a weight of
zero to individuals not belonging to the target population, i.e., those with covariate x such
that f(X = x | S = 0) = 0. Analogous to the causal data fusion, the specification of ws(X)
only relates to the efficiency, but not the consistency. One can either model propensity
scores and then estimate ws(X) via Equation (A.1), or model densities and then estimate
ws(X) via Equation (A.2). Under Assumptions A.1–A.4, the obtained δ̂(X) shares the same
properties as those described in the main text.
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