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Abstract

Deducing the contribution of each agent and assigning the corresponding reward to them
is a crucial problem in cooperative Multi-Agent Reinforcement Learning (MARL). Pre-
vious studies try to resolve the issue through designing an intrinsic reward function, but
the intrinsic reward is simply combined with the environment reward by summation in
these studies, which makes the performance of their MARL framework unsatisfactory. We
propose a novel method named Attention Individual Intrinsic Reward Mixing Network
(AIIR-MIX) in MARL, and the contributions of AIIR-MIX are listed as follows: (a) we
construct a novel intrinsic reward network based on the attention mechanism to make team-
work more effective. (b) we propose a Mixing network that is able to combine intrinsic
and extrinsic rewards non-linearly and dynamically in response to changing conditions of
the environment. We compare AIIR-MIX with many State-Of-The-Art (SOTA) MARL
methods on battle games in StarCraft II. And the results demonstrate that AIIR-MIX per-
forms admirably and can defeat the current advanced methods on average test win rate.
To validate the effectiveness of AIIR-MIX, we conduct additional ablation studies. The
results show that AIIR-MIX can dynamically assign each agent a real-time intrinsic reward
in accordance with their actual contribution.

Keywords: Multi-Agent Reinforcement Learning, Attention Mechanism, Mixing Network,
Intrinsic Reward.

1. Introduction

Deep Reinforcement Learning (DRL) is an crucial branch of machine learning. It utilizes
neural networks to approximate the optimal action decision or value function of the agent,
realizing the generalization of the representation ability. By reason of the powerful fitting
ability of deep learning, DRL can be employed as an effective way to tackle agent decision-
making problems in complicated environments, such as group decision-making Nguyen et al.
(2020), speech recognition Mousavi et al. (2016); Shen et al. (2019), autonomous driv-
ing Shen et al. (2019), natural language processing Young et al. (2018), and intelligent
control Carlucho et al. (2020).

A multi-agent environment, where multiple agents are present for interaction and learn-
ing, is an emerging hot topic in recent years. Unfortunately, single-agent reinforcement
learning is not very effective when used in a multi-agent environment, because the joint
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action space of the agent resulting from fully centralized learning is too large to learn the
optimal policy. Therefore, Multi-Agent Reinforcement Learning (MARL) is an extension
of deep reinforcement learning from single-agent to multi-agent, and has a list of methods
to solve this problem. Centralized Training and Decentralized Execution (CTDE) Foerster
et al. (2016); Wang* et al. (2020), an effective and widely applied method in this list. In this
paradigm, the central controller manages all the agents’ observations, actions, and rewards
during training. And the central controller and its value networks are not utilized during
execution. Due to the above features and superiority, CTDE has become a widely applied
paradigm in MARL, such as COMA Foerster et al. (2018), VDN Sunehag et al. (2017),
QMIX Rashid et al. (2018) and QTRAN Son et al. (2019). In our research, we will also
follow the CTDE paradigm in our proposed method.

In MARL, the reward function is extremely significant. However, it is difficult to go
about formalizing all situations as reward functions in some real-world tasks. For exploring
new environments in reinforcement learning, often only sparse rewards can be set. And
yet, in practical application scenarios, sparse rewards still face problems such as inefficient
samples and difficulty in exploration. This problem is more evident in MARL. Because of the
inherent challenges of MARL, such as unstable environment and dimensional catastrophe,
extending MARL to sparse reward settings will further increase the difficulty of policy
learning. A good method for solving the incentive issue in a multi-agent environment is to
assign extrinsic rewards and construct an intrinsic reward for each agent. In recent years,
many researchers have started to focus on these directions. LIIR Du et al. (2019) learns
an intrinsic reward function for each agent and continuously updates it to maximize the
expected accumulated team reward from the environment. GIIR Wu et al. (2021) solves
the lazy agent problem by using an intrinsic reward encoder to generate a separate intrinsic
reward for each agent. OpenAI Berner et al. (2019) uses artificially set intermediate rewards
to accelerate learning. FTW Jaderberg et al. (2019) learns the agent’s intrinsic reward
through two layers of optimization. However, both approaches overlook the following points:
(a) building dependencies (i.e., attention mechanisms) between agents can induce more
precise rewards; (b) integrating intrinsic and extrinsic rewards to facilitate policy learning
better.

In this paper, we propose Attention Individual Intrinsic Reward Mixing Network (AIIR-
MIX) method to fill this gap. AIIR-MIX includes the generation of precise intrinsic reward
network (AIIR) and a non-linear Mixing network (MIX) to combine the intrinsic and ex-
trinsic rewards. In terms of generating intrinsic reward, we propose an intrinsic reward
network based on the attention mechanism. We assume that each agent has a separate
intrinsic reward. The agents’ observations and actions are extremely similar when they
perform teamwork. Based on the above, the contribution of each agent in teamwork is
calculated from each agent’s observation and action using the attention mechanism, and a
more accurate intrinsic reward is generated for each agent. The intrinsic reward network
is updated to maximize the standard cumulative discounted extrinsic rewards from the en-
vironment. In terms of combining intrinsic and extrinsic rewards, we propose a Mixing
network that allows intrinsic and extrinsic rewards to be combined in a non-linear manner.
The extrinsic reward is fed to the hyper network to generate the weights of the Mixing
network. The Mixing network combines weights and intrinsic rewards to output global re-
wards for each agent. In addition, we apply an intrinsic reward function to the Actor-Critic
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algorithm, where each agent’s individual policy is updated under the direction of the corre-
sponding proxy critic. Benefitting from these improvements, AIIR-MIX generates a more
appropriate global reward and reduces artificial intervention in reward function design.

We evaluate the AIIR-MIX method on StarCraft II micromanagement benchmark
Samvelyan et al. (2019). The experimental results show that the AIIR-MIX performs better
than the mainstream algorithms such as LIIR and QMIX in both homogeneous and het-
erogeneous maps. We conduct ablation experiments and demonstrate that both AIIR and
MIX perform better than the baseline algorithm when they are used individually. Moreover,
we visualize the training process and show the dynamic change process of attention weights
and intrinsic reward as time advances in the complete trajectory. The results demonstrate
the effectiveness and importance of the intrinsic reward based on the attention mechanism.

2. Related Work

2.1. Sparse Reward

In many Reinforcement Learning (RL) tasks, the reward from the environment is sparse.
Therefore, it may take agents too many steps to reach the state with a positive reward.
This situation causes many problems such as low efficiency and exploration difficulty.

Researchers have proposed an intrinsic motivation approach to address the sparse re-
ward problem, in which an intrinsic reward function will be designed to generate intrinsic
rewards for agents to promote learning efficiency. Pathak et al. (2017) proposed using pre-
diction errors in pixel space as curiosity rewards to drive exploration in a self-supervised
manner. Strehl and Littman (2008) recorded counts of accessed state-action pairs in table
form and converted the counts into an intrinsic reward, which was additionally added to
the reward from environmental feedback. Song et al. (2018) extended generative adversarial
imitation learning to the multi-agent field, but the need for expert demonstrations lim-
ited its generality. Hao et al. (2019) combined generative adversarial imitation learning and
self-limitation learning and applied them to multi-agent systems to facilitate multi-agent co-
operation, but still did not fundamentally reduce the difficulty of training when the number
of agents was large.

In order to design an intrinsic reward function that can solve the sparse reward issue
more efficiently, the attention mechanism, a method of establishing dependencies between
agents, can be utilized by us to solve the sparse reward issue in MARL.

2.2. Attention mechanism

The attention mechanism, a method capable of automatically selecting significant informa-
tion, is widely utilized in computer vision, natural language processing, and reinforcement
learning. In recent years, the attention mechanism has been introduced into MARL to
facilitate the learning effectiveness of agents to some extent. For example, Multi-Actor-
Attention-Critic (MAAC) Iqbal and Sha (2019) applies an attention mechanism to model
centralized Critic networks. The Attention communication (ATOC) Jiang and Lu (2018)
model proposes a bi-directional LSTM communication channel with an attention layer,
whose attention mechanism allows each agent to focus on messages from other agents ac-
cording to their state-related importance.
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Inspired by these work, we propose an intrinsic reward generation network based on an
attention mechanism. Unlike existing methods, this paper utilizes an attention mechanism
in generating intrinsic rewards for each agent. It adaptively processes historical information
from other agents, focuses on each agent’s contribution in teamwork, and generates more
precise intrinsic rewards. At the same time, the intrinsic reward network is combined with
the Actor-Critic architecture to improve its performance.

3. Background

In generally, a fully cooperative multi-agent problem can be described as a decentralized
partially observable Markov decision process (Dec-POMDP) Oliehoek and Amato (2016)
consisting of a tuple G =< N , S, U, P, Z,O, r, γ, ρ0 >. N = {1, 2, · · · , n} denote the set
of n agents and i ∈ N . s ∈ S is the state of the environment which includes global
information for all agents. U is the set of actions. Z is the agent’s observation set, each agent
gets its own observation oi ∈ Z according to the observation function O(s, i) : S × N →
Z. At each timestep, each agent i ∈ N ≡ {1, · · · , n} chooses an action ui through the
parameterized policy network πi (oi) according to the current observation oi, forming a
joint action ui ∈ U ≡ Un and leading to next state s′ according to the transition function
P (s′|s, u) : S ×U × S → [0, 1]. π = {π1, π2, · · · , πn} denotes the joint policy consists of the
policy of each agent. In order to distinguish different rewards, we denote the team reward
from the environment as extrinsic reward rex. The intrinsic reward set that will be learned
as rint =

{
rini

}n

i=1
, where t is the index of the timestep. rex(s, ui) : S × U → R is the team

reward for each agent i from environment. ρ0 : S → R is the distribution of the initial state
s0. In a fully cooperative multi-agent problem, each agent receives the same rex to promote
cooperative behavior.

The learning objective of the cooperative multi-agent problem is that n agents learn a
policy network πi parameterized by θi to maximize the global cumulative discounted reward
set rtotalt . That is, when rtotalt is the largest, the optimal joint policy of all agents is obtained

π∗ = argmax
π

Es0,u0,...,sn,un

[∑T
t=0 γ

trext

]
, where γ ∈ [0, 1) is a discount factor and T is the

maximum number of steps.

3.1. Policy Gradient

The goal of reinforcement learning is to find an optimal behavior policy for the agent so as
to obtain the maximum reward. The main characteristic of the policy gradient method is
to model and optimize the policy directly. A policy is usually modeled as a function πθ(a|s)
parameterized by θ. For each training iteration, the parameter θ is changed in the direction
given by the gradient ▽θJ(θ) to find the optimal θ∗, the gradient related to the parameter
is expressed as:

▽θJ(θ) = Es∼dπθ ,u∼πθ
[Ψ(s, u)▽θ log πθ(u|s)] , (1)

where dπθ denotes a state transition following the policy, and Ψ(s, u) is the trajectory reward
related to agent states and actions. The policy gradient algorithm is extended to multi-
agent field, and each agent i ∈ {1, · · · , n} has a policy function πθi(ui|oi). The multi-agent
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policy gradient can be expressed as:

▽θJ(θ) = Eπθi
∼πθ

[
n∑

i=1

Ψ(s,u)▽θi log πθi(ui|oi)

]
, (2)

where ui denotes the action of agent i, oi denotes the observation of agent i, u and π denotes
the joint action and policy of all agents, respectively. There are two training methods for
calculating Ψ(s,u). One is to train the policy network through the REINFORCE Williams
(1992). The other is to introduce the policy gradient into the Actor-Critic framework, and
actors are trained through the gradient of Critic. In this paper, we choose the second
method in training. The advantage function, as a common way to measure the value of
an agent action, is usually designed as Aπ(s,u) = Qπ(s,u) − Vπ(s), where Qπ(s,u) is
r(s,u) + γVπ(s′) used to help calculate the advantage function.

3.2. QMIX

QMIX Rashid et al. (2018) applies a mixing network that takes the outputs of all agent
networks as input, mixes them monotonically, and adds global state information to the
training process to improve algorithm performance. In this method, the weights and biases
of the mixing network are generated by each hypernetwork based on the input state s.
The generated weights ensure that the weights are non-negative by means of an absolute
activation function. For each training iteration, the goal of QMIX is to minimize the loss
function:

L(θ) =
b∑

i=1

[
(ytoti −Qtot(τ ,u, s; θ))2

]
, (3)

where ytoti = r+γmaxu′Qtot(τ ,u
′, s′; θ̄i), θ̄i represent the parameters of the target networks,

b denotes the batch size of transitions sampled from the replay buffer, and τ denotes the
joint action-observation history. Inspired by this paradigm, we adopt a feed-forward neural
network as a mixing network, combining rini and rex into the global reward rtotali , thus
improving the algorithm performance.

3.3. Attention Mechanism

For attention mechanism, the input is some vectors V ≡ {v1,v2, · · · ,vn}. For each vector
vi in V, according to Equation 4, the output of attention mechanism is ṽi.

ṽi =

n∑
j=1

exp (σ (vi,vj))vj∑n
k=1 exp (σ (vi,vk))

, (4)

where σ (·, ·) denotes a similarity metric function. AIIR-MIX devises an attention informa-
tion processing mechanism to calculate the correlation of the historical information of the
agents, so that it has the ability to adaptively identify and process meaningful information,
and enhance team cooperation between agents.
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Figure 1: Architecture of the overall AIIR-MIX framework. At timestep t, the total Actor
obtains state information (e.g., health, location, shield, agent’s sight range, and
others) from the environment and generates actions. Then the rex is obtained
from the environment and the intrinsic reward set rint is generated by AIIR ac-
cording to state information and actions. And Mixing network obtains the global
reward set rtotalt by combining rint and rex through non-linear operations.

4. Method

In this Section, we introduce a new method called AIIR-MIX, which is based on the Actor-
Critic framework. The main contribution of AIIR-MIX is to generate set rint (w.r.t., the
timestep is t) and combine it with rex to generate set rtotalt nonlinearly. We first present the
overall AIIR-MIX framework in Fig. 1, and then we specifically show the relevant details
about AIIR-MIX in Fig. 2.

As shown in Fig. 1, the total AIIR-MIX framework consists of five parts: extrinsic Critic
network, total Critic network, total Actor network, AIIR, and Mixing network. AIIR and
Mixing network make up a module for generating rtotalt , which is the most important part
of AIIR-MIX. In particular, the total Actor network is made up of n Actor networks, each
Actor network with parameter θi generates the policy of its corresponding agent. And we
denote the current states si as the input and the agent’s policy πθi(ui|si) as the output
of each Actor network. Similarly, each Critic network in total Critic with parameter ωi

evaluates an agent’s policy, which can update the Actor network end-to-end. Specifically,
each Critic network updates the value function parameters ωi depending on Q(si, ui;ωi)
and each Actor network updates the policy parameters θi for πθi(ui|si) in the direction
suggested by its corresponding Critic network. Following the CTDE paradigm, the total
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Critic network is only utilized during training. Like Lowe et al. (2017); Foerster et al. (2018),
the total Critic network is updated by the Temporal-Difference error (TD-error) as well.
But we utilize rtotalt generated from Mixing network by combining rex and rint instead of rex

to calculate TD-error. To better facilitate teamwork among the agents, we designed AIIR
based on an attention mechanism to generate rint . Due to the powerful representational
abilities of AIIR-MIX, it can update the total Critic network and the total Actor network
better.

Based on the Bellman equation, the loss function of a Critic network can be defined as:

Ltotal (ωi) =
1

n

n∑
i=1

[
(ytotali −Q(si, ui;ωi))

2
]
, (5)

where i ∈ N ≡ {1, · · · , n} and ytotali = rtotali + γQ(s
′
i, u

′
i;ω

′
i). Of particular note is our

definition of rtotali is the global reward of agent i, which is an element in rtotalt . Each Actor
network is updated by the policy gradient:

▽θiJ (θi) = Eπθi

[
Aπθi

(ui|si)▽θi logπθi (ui|si)
]
, (6)

where Aπθi
(ui|si) is the advantage function based on Aπ(s,u) (have been introduced in

Section 3.1) and Aπθi
(ui|si) = rex (si, ui) + γV πθi (si)− V πθi (s′i). With a learning rate of

α for the Actor network, the update of the parameter θi can be defined as:

θi,t+1 ← θi,t + αAπθi
(ui|si)▽θi logπθi (ui|si) . (7)

By referring to Fig. 1, all agent share the extrinsic Critic network. The loss function of
this extrinsic Critic network with parameter η can be defined as:

Lex (η) = [yex −Q(s,u; η)]2 ,

where s ≡ {si}ni=1,u ≡ {ui}
n
i=1, y

ex = rex + γQ(s′,u′; η′).
(8)

Then, the generating procedure of rint and rtotalt is described in detail. To promote
cooperation amongst agents and meet the objective of maximizing the global reward for
rint , we design an intrinsic reward generation framework based on an attention mechanism.

As shown in Fig.2c, we first define a feature extractor, to process the state sti and the last
action uti of the agent i at timestep t, where the feature extractor is a sequence of consecutive
ReLU-FC-ReLU-FC. Then, vt

i appears both as an output of the feature extractor and as
an input to the attention mechanism, representing the local attention embedding of the
agent. With the help of the attention mechanism, we get the correlation of all agent pairs.
Commonly, the correlation of agent pairs is obtained by a distance metric function, and we
apply cosine similarity to calculate the correlation between the attention embeddings of the
agents in this paper:

At
i,j =

<vt
i ,v

t
j >

∥ vt
i ∥2 ·∥ v

t
j ∥2

(9)

In addition, we perform softmax function on the calculated correlations:

Ât
i,j = softmax

(
At

i,:

)
=

exp
(
At

i,j

)∑
k

exp
(
At

i,k

) . (10)
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Figure 2: (a) Mixing network structure. (b) The overall architecture for generating the
global reward rtotalt . (c) AIIR structure.

The global attention embeddings zit of agent i is obtained by weighting and summing
the attention embeddings of all agents according to the weighting coefficients:

zti = attn
(
Ât

i,:,v
t
i

)
=

∑
j

Ât
i,j · vt

i,j , (11)

where zti contains the degree of similarity in the states and actions of the agents, learns the
correlations between agents and promotes teamwork. After that, the local attention em-
bedding vt

i of agent i and the global attention embedding zti obtained through the attention
mechanism are simultaneously provided as inputs to the fully connected layer. Finally, rini
of agent i and the set of all intrinsic rewards rint are output:

rint =
{
rini

}n

i=1
, where rini = FC(zti). (12)

As shown in Fig. 2a, rint output by AIIR is non-linearly combined with rex through
the Mixing network to output rtotalt . In previous studies, both LIIR Du et al. (2019) and
GIIR Wu et al. (2021) combined rint and rex by weighted summation:

rtotalt = rex + λrint . (13)

In AIIR-MIX, we apply a non-linear approach to combine rint and rex to dynamically
generate rtotalt , so that the agent can obtain a more accurate reward at each timestep, thus
facilitating the agent to select the optimal policy more readily. The weights {W1,W2}
and biases {b1,b2} of the Mixing network are generated by a separate hyper network, as
shown in the left of Fig. 2a. The rex is utilized as input to the hyper network, which
generates same weights {W1,W2} and biases {b1,b2} through different linear layers and
outputs them as weights and biases of the Mixing network, respectively. Combining the
gradient descent method and the hyper network to update the Mixing network, allows for
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the dynamic adjustment of the weights of the Mixing network, thus enabling to combine
rint and rex:

W1 =W2 = dropout
(

softmax
(

FC (ReLU (rex))× FC (ReLU (rex))T
))

,

b1 = b2 = FC (rex) ,

rtotalt =
{
rini ×W1 ×W2 + b1 ×W2 + b2

}n

i=1
.

(14)

Then rtotalt is obtained by AIIR-MIX, which is introduced in Fig. 2b in more detail.

5. Experiments

In this Section, we evaluate our AIIR-MIX method on the StarCraft Multi-Agent Challenge
(SMAC) environment Samvelyan et al. (2019), which has become a benchmark for evalu-
ating MARL methods. We compare AIIR-MIX with the state-of-the-art MARL methods
such as LIIR Du et al. (2019), QMIX Rashid et al. (2018), COMA Foerster et al. (2018),
QTRAN Son et al. (2019). We conduct ablation experiments to demonstrate the effective-
ness and rationality of AIIR and Mixing network. Finally, in order to analyze the learning
process of the agents more clearly, we visualize the attention weights and intrinsic reward
at each timestep.

5.1. StarCraft II Micromanagement

The StarCraft Multi-Agent Challenge (SMAC) environment is an experimental environment
based on the real-time strategy game StarCraft II. Compared with the full StarCraft II, it
focuses more on the micro-strategy of each agent than on macro-operations, that is, SMAC
focuses on how to control each agent to defeat the enemy without considering the high-level
macro-operations such as how to develop the economy and perform resource scheduling.

Table 1: Maps in different scenarios.

Name Ally Units Enemy Units Type

2s3z 2 Zealots 3 Stalkers 2 Zealots 3 Stalkers heterogeneous
3s5z 3 Zealots 5 Stalkers 3 Zealots 5 Stalkers heterogeneous
8m 8 Marines 8 Marines homogeneous

MMM
1 Medivac 2 Marauders
7 Marines

1 Medivac 2 Marauders
7 Marines

heterogeneous

In the experiment, this paper applies all the default settings in SMAC, including game
difficulty settings, shooting range and observation range. Both the shooting range and the
observation range are circles with a certain radius. Only the agents within the observation
range can enter the field of view, and only the agents within the shooting range can be
attacked. As shown in the environment of Fig. 1, the attributes of the agents include weapon
cooling down (CD), health point (HP), shield (2S3Z and 3S5Z), unit type, relative distance
of the unit being observed, and last action. The action space of an agent consists of four
discrete actions: move[direction], attack[enemy id], stop and noop. The agent movement
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(a) 8m (b) MMM

(c) 2s3z (d) 3s5z

Figure 3: Average Test Win Rate for LIIR, QMIX, COMA, QTRAN, and AIIT-MIX on
Homogeneous and Heterogeneous Scenarios

space includes four directions: east, south, west and north. The attack action requires
designating the enemy id within its shooting range. We select four challenging symmetric
scenarios, 2s3z, 3s5z, MMM and 8m to evaluate the performance of the algorithms. 2s3z,
3s5z and MMM are heterogeneous maps and 8m is a homogeneous map. The scenario
details for different maps of SMAC are shown in Table 1. Different game characters have
different health point, attack power and shooting range.

We train these methods in 5 independent runs with different random seeds. During
each run, these methods are evaluated every 5000 timesteps of training in 20 independent
evaluation episodes. The evaluation episode will be regarded as the winning episode if
all enemy units are defeated in time limit, then the percentage of the winning episodes is
calculated as the win rate.
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(a) 8m (b) 2s3z

Figure 4: Average Test Win Rate for AIIR-MIX and ablations on 8m and 2s3z.

5.2. Comparison

Fig. 3 demonstrates the performance on 4 different maps in SMAC. Among all the baseline
algorithms, QMIX and QTRAN are the most advanced algorithms among the current pre-
dominant value decomposition algorithms. In MMM and 2s3z, both QMIX and QTRAN
obtain good performance. QMIX obtains a good performance in 3s5z. However, QMIX and
QTRAN converge at a much slower pace than other state-of-the-art algorithms and QMIX
performs relatively poorly in 8m. These results show that QMIX and QTRAN based on
value decomposition can master the heterogeneous scenarios to some extent, but has a rel-
atively poor performance in homogeneous scenarios. COMA fails to perform well in MMM,
2s3z, and 3s5z scenarios, and this result confirms that there is a performance gap between
counterfactual policy gradients and TD dominance policy gradients in guiding the Actor
network. LIIR can master homogeneous scenarios, such as 8m, but in heterogeneous scenar-
ios, such as in MMM, 2s3z, and 3s5z, it has a slow convergence speed and poor performance.
For all scenarios, the AIIR-MIX algorithm consistently outperforms the other algorithms.
This result concludes that the Mixing network, which combines the intrinsic reward gen-
erated by the attention mechanism and extrinsic reward, can significantly contribute to
obtaining better trained policies.

5.3. Ablations

We conduct ablation experiments to investigate the effect of the attention mechanism on
AIIR and the necessity of non-linear transformation in Mixing network. For one thing, we
analyze the importance of the attention mechanism in AIIR by comparing it with RMIX
(i.e., Mixing network), which employs the same intrinsic reward network structure as in LIIR
instead of an attention mechanism to generate intrinsic reward. For another, we investigate
the necessity of the non-linear Mixing network. We replace the Mixing network with a linear
Mixing network in which intrinsic and extrinsic reward of each agent are simply weighted
and summed to generate the global reward.
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(a) Intrinsic reward
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(b) Attention weights

Figure 5: Intrinsic Reward and Attention Weights in AIIR-MIX.

Fig. 4 shows the results of AIIR-MIX and its ablations on SMAC benchmark 8m and
2s3z. It can be seen that AIIR-MIX outperforms all its ablations in the experiments.
Fig. 4a shows that in homogeneous scenarios, RMIX and AIIR slow down the learning speed
compared with the baselines algorithm LIIR due to the complexity of the architecture.
However, when the attention-based intrinsic reward function and the non-linear Mixing
network are together in AIIR-MIX, the improvement is capable of making up for the decrease
in training speed results from the complex architecture. Fig. 4b shows that in heterogeneous
scenarios, a non-linear Mixing network is required to achieve better performance. Also, the
performance of AIIR-MIX compared with RMIX demonstrates the importance of precise
intrinsic reward and the combination with extrinsic reward through a non-linear approach.

5.4. Visualization

In addition to evaluate the performance of the trained policy in Section 5.2, we are more
curious about how much the attention mechanism contributes to learning intrinsic reward,
and the learned intrinsic reward contributes to policy learning. In order to figure out what is
learned in the above two processes, we propose to explicitly visualize the attention weights
and intrinsic reward at each timestep in the trajectory. For clarity, we choose scenario 2s3z
which has a relatively small number of agents for our analysis. Fig. 5 shows the attention
weights and intrinsic rewards of the agents. And Fig. 6 shows some auxiliary snapshots of
the agents. The above figures include agent type (s means Stalker, z means Zealot) and
agent id (from 1 to 5).

It can be seen in Fig. 5a that after timestep 10, the intrinsic reward of ally Zealot 3
increases a lot. The reason for this phenomenon is clearly illustrated in Fig. 6a and Fig. 6b.
Before timestep 10, ally Zealot 3 with a low HP is attacking the enemy Zealot 3. After
timestep 10, while ally Zealot 2 starts attacking the enemy, ally Zealot 3 stops firing and
flees. Avoiding attacking the enemy head-on is certainly a good behavior when the agent
does not have enough HP. After timestep 30, the intrinsic reward of ally Zealot 1 decreases
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(a) t=5 (b) t=15

(c) t=23 (d) t=34

Figure 6: Some auxiliary snapshots in 2s3z.

a lot. As shown in Fig. 6d, ally Zealot 1 is attacking enemy Zealot 2 along with ally Zealot
2, 4 and 5. However, ally Zealot 1’s HP is very low at this point, and it is not a good
policy to continue attacking the enemy. In general, the intrinsic reward increases when the
agent chooses a good policy, and decreases when the agent chooses a bad policy. This more
precise reward contributes significantly in helping the agent learn good policies quickly.

As shown in Fig. 5a, the intrinsic reward are more fluctuating for Zealot-type agents. For
a more detailed analysis, we visualize the attention weights for Zealot-type agents. Fig. 5b
shows the attention weights of three Zealots to other allied agents. It is clear that Zealots
always pay more attention to the other two Ally Zealots. The elevated attention weights
indicate the occurrence of cooperative behavior between agents, including ally Zealot 1 to
ally Zealot 2 at timestep 23 and ally Zealot 2 to ally Zealot 3 at timestep 5 in Fig. 6. That
is, the attention mechanism facilitates the cooperative behavior between agents in a certain
extent.

6. Conclusion

This paper presents AIIR-MIX, a novel multi-agent RL algorithm that learns an individual
intrinsic reward through an attention mechanism for each agent so that the agent can
obtain different rewards to facilitate the learning of the agent. Besides, we design a non-
linear Mixing network to combine intrinsic and extrinsic rewards instead of a simple linear
summation for the first time, thereby dynamically generating global rewards for each agent
according to the changing environment. Our empirical results of the experiments carried
out on the battle games in StarCraft II demonstrate that our approach induces trained
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policy compared with a few state-of-the-art MARL methods better. We further conduct
ablation studies to confirm the effectiveness of the intrinsic reward network based on the
attention mechanism and the non-linear Mixing network. And we visualize the intrinsic
rewards and attention weights to illustrate how the intrinsic reward network assigns each
agent an appropriate reward and promotes cooperation amongst agents.

Acknowledgments

This work was supported in part by the Aeronautical Science Foundation of China under
Grant 20200058069001 and in part by the Fundamental Research Funds for the Central
Universities under Grant 2242021R41094.

References

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law Dȩbiak,
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