
Proceedings of Machine Learning Research 189, 2022 ACML 2022

AIIR-MIX: Multi-Agent Reinforcement Learning Meets
Attention Individual Intrinsic Reward Mixing Network

Wei Li(�) li-wei@seu.edu.cn

Weiyan Liu liuweiyan@seu.edu.cn

Shitong Shao shaoshitong@seu.edu.cn

Shiyi Huang huangshiyi@seu.edu.cn

School of Instrument Science and Engieering, Southeast University, Nanjing, Jiangsu 210096, China

Editors: Emtiyaz Khan and Mehmet Gönen

Abstract

Deducing the contribution of each agent and assigning the corresponding reward to them
is a crucial problem in cooperative Multi-Agent Reinforcement Learning (MARL). Pre-
vious studies try to resolve the issue through designing an intrinsic reward function, but
the intrinsic reward is simply combined with the environment reward by summation in
these studies, which makes the performance of their MARL framework unsatisfactory. We
propose a novel method named Attention Individual Intrinsic Reward Mixing Network
(AIIR-MIX) in MARL, and the contributions of AIIR-MIX are listed as follows: (a) we
construct a novel intrinsic reward network based on the attention mechanism to make team-
work more effective. (b) we propose a Mixing network that is able to combine intrinsic
and extrinsic rewards non-linearly and dynamically in response to changing conditions of
the environment. We compare AIIR-MIX with many State-Of-The-Art (SOTA) MARL
methods on battle games in StarCraft II. And the results demonstrate that AIIR-MIX per-
forms admirably and can defeat the current advanced methods on average test win rate.
To validate the effectiveness of AIIR-MIX, we conduct additional ablation studies. The
results show that AIIR-MIX can dynamically assign each agent a real-time intrinsic reward
in accordance with their actual contribution.

Keywords: Multi-Agent Reinforcement Learning, Attention Mechanism, Mixing Network,
Intrinsic Reward.

1. Introduction

Deep Reinforcement Learning (DRL) is an crucial branch of machine learning. It utilizes
neural networks to approximate the optimal action decision or value function of the agent,
realizing the generalization of the representation ability. By reason of the powerful fitting
ability of deep learning, DRL can be employed as an effective way to tackle agent decision-
making problems in complicated environments, such as group decision-making Nguyen et al.
(2020), speech recognition Mousavi et al. (2016); Shen et al. (2019), autonomous driv-
ing Shen et al. (2019), natural language processing Young et al. (2018), and intelligent
control Carlucho et al. (2020).

A multi-agent environment, where multiple agents are present for interaction and learn-
ing, is an emerging hot topic in recent years. Unfortunately, single-agent reinforcement
learning is not very effective when used in a multi-agent environment, because the joint

© 2022 W. Li(�), W. Liu, S. Shao & S. Huang.

Li(�) Liu Shao Huang

action space of the agent resulting from fully centralized learning is too large to learn the
optimal policy. Therefore, Multi-Agent Reinforcement Learning (MARL) is an extension
of deep reinforcement learning from single-agent to multi-agent, and has a list of methods
to solve this problem. Centralized Training and Decentralized Execution (CTDE) Foerster
et al. (2016); Wang* et al. (2020), an effective and widely applied method in this list. In this
paradigm, the central controller manages all the agents’ observations, actions, and rewards
during training. And the central controller and its value networks are not utilized during
execution. Due to the above features and superiority, CTDE has become a widely applied
paradigm in MARL, such as COMA Foerster et al. (2018), VDN Sunehag et al. (2017),
QMIX Rashid et al. (2018) and QTRAN Son et al. (2019). In our research, we will also
follow the CTDE paradigm in our proposed method.

In MARL, the reward function is extremely significant. However, it is difficult to go
about formalizing all situations as reward functions in some real-world tasks. For exploring
new environments in reinforcement learning, often only sparse rewards can be set. And
yet, in practical application scenarios, sparse rewards still face problems such as inefficient
samples and difficulty in exploration. This problem is more evident in MARL. Because of the
inherent challenges of MARL, such as unstable environment and dimensional catastrophe,
extending MARL to sparse reward settings will further increase the difficulty of policy
learning. A good method for solving the incentive issue in a multi-agent environment is to
assign extrinsic rewards and construct an intrinsic reward for each agent. In recent years,
many researchers have started to focus on these directions. LIIR Du et al. (2019) learns
an intrinsic reward function for each agent and continuously updates it to maximize the
expected accumulated team reward from the environment. GIIR Wu et al. (2021) solves
the lazy agent problem by using an intrinsic reward encoder to generate a separate intrinsic
reward for each agent. OpenAI Berner et al. (2019) uses artificially set intermediate rewards
to accelerate learning. FTW Jaderberg et al. (2019) learns the agent’s intrinsic reward
through two layers of optimization. However, both approaches overlook the following points:
(a) building dependencies (i.e., attention mechanisms) between agents can induce more
precise rewards; (b) integrating intrinsic and extrinsic rewards to facilitate policy learning
better.

In this paper, we propose Attention Individual Intrinsic Reward Mixing Network (AIIR-
MIX) method to fill this gap. AIIR-MIX includes the generation of precise intrinsic reward
network (AIIR) and a non-linear Mixing network (MIX) to combine the intrinsic and ex-
trinsic rewards. In terms of generating intrinsic reward, we propose an intrinsic reward
network based on the attention mechanism. We assume that each agent has a separate
intrinsic reward. The agents’ observations and actions are extremely similar when they
perform teamwork. Based on the above, the contribution of each agent in teamwork is
calculated from each agent’s observation and action using the attention mechanism, and a
more accurate intrinsic reward is generated for each agent. The intrinsic reward network
is updated to maximize the standard cumulative discounted extrinsic rewards from the en-
vironment. In terms of combining intrinsic and extrinsic rewards, we propose a Mixing
network that allows intrinsic and extrinsic rewards to be combined in a non-linear manner.
The extrinsic reward is fed to the hyper network to generate the weights of the Mixing
network. The Mixing network combines weights and intrinsic rewards to output global re-
wards for each agent. In addition, we apply an intrinsic reward function to the Actor-Critic

AIIR-MIX

algorithm, where each agent’s individual policy is updated under the direction of the corre-
sponding proxy critic. Benefitting from these improvements, AIIR-MIX generates a more
appropriate global reward and reduces artificial intervention in reward function design.

We evaluate the AIIR-MIX method on StarCraft II micromanagement benchmark
Samvelyan et al. (2019). The experimental results show that the AIIR-MIX performs better
than the mainstream algorithms such as LIIR and QMIX in both homogeneous and het-
erogeneous maps. We conduct ablation experiments and demonstrate that both AIIR and
MIX perform better than the baseline algorithm when they are used individually. Moreover,
we visualize the training process and show the dynamic change process of attention weights
and intrinsic reward as time advances in the complete trajectory. The results demonstrate
the effectiveness and importance of the intrinsic reward based on the attention mechanism.

2. Related Work

2.1. Sparse Reward

In many Reinforcement Learning (RL) tasks, the reward from the environment is sparse.
Therefore, it may take agents too many steps to reach the state with a positive reward.
This situation causes many problems such as low efficiency and exploration difficulty.

Researchers have proposed an intrinsic motivation approach to address the sparse re-
ward problem, in which an intrinsic reward function will be designed to generate intrinsic
rewards for agents to promote learning efficiency. Pathak et al. (2017) proposed using pre-
diction errors in pixel space as curiosity rewards to drive exploration in a self-supervised
manner. Strehl and Littman (2008) recorded counts of accessed state-action pairs in table
form and converted the counts into an intrinsic reward, which was additionally added to
the reward from environmental feedback. Song et al. (2018) extended generative adversarial
imitation learning to the multi-agent field, but the need for expert demonstrations lim-
ited its generality. Hao et al. (2019) combined generative adversarial imitation learning and
self-limitation learning and applied them to multi-agent systems to facilitate multi-agent co-
operation, but still did not fundamentally reduce the difficulty of training when the number
of agents was large.

In order to design an intrinsic reward function that can solve the sparse reward issue
more efficiently, the attention mechanism, a method of establishing dependencies between
agents, can be utilized by us to solve the sparse reward issue in MARL.

2.2. Attention mechanism

The attention mechanism, a method capable of automatically selecting significant informa-
tion, is widely utilized in computer vision, natural language processing, and reinforcement
learning. In recent years, the attention mechanism has been introduced into MARL to
facilitate the learning effectiveness of agents to some extent. For example, Multi-Actor-
Attention-Critic (MAAC) Iqbal and Sha (2019) applies an attention mechanism to model
centralized Critic networks. The Attention communication (ATOC) Jiang and Lu (2018)
model proposes a bi-directional LSTM communication channel with an attention layer,
whose attention mechanism allows each agent to focus on messages from other agents ac-
cording to their state-related importance.

Li(�) Liu Shao Huang

Inspired by these work, we propose an intrinsic reward generation network based on an
attention mechanism. Unlike existing methods, this paper utilizes an attention mechanism
in generating intrinsic rewards for each agent. It adaptively processes historical information
from other agents, focuses on each agent’s contribution in teamwork, and generates more
precise intrinsic rewards. At the same time, the intrinsic reward network is combined with
the Actor-Critic architecture to improve its performance.

3. Background

In generally, a fully cooperative multi-agent problem can be described as a decentralized
partially observable Markov decision process (Dec-POMDP) Oliehoek and Amato (2016)
consisting of a tuple G =< N ; S; U; P; Z;O; r;
; �0 >. N = f1; 2; � � � ; ng denote the set
of n agents and i 2 N . s 2 S is the state of the environment which includes global
information for all agents. U is the set of actions. Z is the agent’s observation set, each agent
gets its own observation oi 2 Z according to the observation function O(s; i) : S � N !
Z. At each timestep, each agent i 2 N � f1; � � � ; ng chooses an action ui through the
parameterized policy network �i (oi) according to the current observation oi, forming a
joint action ui 2 U � Un and leading to next state s0 according to the transition function
P (s0js; u) : S �U � S ! [0; 1]. � = f�1; �2; � � � ; �ng denotes the joint policy consists of the
policy of each agent. In order to distinguish different rewards, we denote the team reward
from the environment as extrinsic reward rex. The intrinsic reward set that will be learned
as rint =

�
rini
	n
i=1

, where t is the index of the timestep. rex(s; ui) : S � U ! R is the team
reward for each agent i from environment. �0 : S ! R is the distribution of the initial state
s0. In a fully cooperative multi-agent problem, each agent receives the same rex to promote
cooperative behavior.

The learning objective of the cooperative multi-agent problem is that n agents learn a
policy network �i parameterized by �i to maximize the global cumulative discounted reward
set rtotalt . That is, when rtotalt is the largest, the optimal joint policy of all agents is obtained

�∗ = argmax
�

Es0;u0;:::;sn;un
hPT

t=0

trext

i
, where
 2 [0; 1) is a discount factor and T is the

maximum number of steps.

3.1. Policy Gradient

The goal of reinforcement learning is to find an optimal behavior policy for the agent so as
to obtain the maximum reward. The main characteristic of the policy gradient method is
to model and optimize the policy directly. A policy is usually modeled as a function ��(ajs)
parameterized by �. For each training iteration, the parameter � is changed in the direction
given by the gradient O�J(�) to find the optimal ��, the gradient related to the parameter
is expressed as:

O�J(�) = Es�d�� ;u��� [Ψ(s; u)O� log ��(ujs)] ; (1)

where d�� denotes a state transition following the policy, and Ψ(s; u) is the trajectory reward
related to agent states and actions. The policy gradient algorithm is extended to multi-
agent field, and each agent i 2 f1; � � � ; ng has a policy function ��i(uijoi). The multi-agent

AIIR-MIX

policy gradient can be expressed as:

O� J (�) = E� � i � � �

"
nX

i =1

	 (s; u)O� i log � � i (ui joi)

#

; (2)

whereui denotes the action of agenti , oi denotes the observation of agenti , u and � denotes
the joint action and policy of all agents, respectively. There are two training methods for
calculating 	 (s;u). One is to train the policy network through the REINFORCE Williams
(1992). The other is to introduce the policy gradient into the Actor-Critic framework, and
actors are trained through the gradient of Critic. In this paper, we choose the second
method in training. The advantage function, as a common way to measure the value of
an agent action, is usually designed asA � (s;u) = Q� (s;u) � V� (s), where Q� (s;u) is
r (s;u) +
V � (s0) used to help calculate the advantage function.

3.2. QMIX

QMIX Rashid et al. (2018) applies a mixing network that takes the outputs of all agent
networks as input, mixes them monotonically, and adds global state information to the
training process to improve algorithm performance. In this method, the weights and biases
of the mixing network are generated by each hypernetwork based on the input states.
The generated weights ensure that the weights are non-negative by means of an absolute
activation function. For each training iteration, the goal of QMIX is to minimize the loss
function:

L (�) =
bX

i =1

�
(ytot

i � Qtot (� ; u; s; �))2�
; (3)

whereytot
i = r +
 maxu0Qtot (� ; u0; s0; �� i), �� i represent the parameters of the target networks,

b denotes the batch size of transitions sampled from the replay bu�er, and� denotes the
joint action-observation history. Inspired by this paradigm, we adopt a feed-forward neural
network as a mixing network, combining r in

i and r ex into the global reward r total
i , thus

improving the algorithm performance.

3.3. Attention Mechanism

For attention mechanism, the input is some vectorsV � f v1; v2; � � � ; vng. For each vector
v i in V, according to Equation 4, the output of attention mechanism is ev i .

ev i =
nX

j =1

exp (� (v i ; v j)) v jP n
k=1 exp (� (v i ; v k))

; (4)

where � (�; �) denotes a similarity metric function. AIIR-MIX devises an attention informa-
tion processing mechanism to calculate the correlation of the historical information of the
agents, so that it has the ability to adaptively identify and process meaningful information,
and enhance team cooperation between agents.

Li (�) Liu Shao Huang

Figure 1: Architecture of the overall AIIR-MIX framework. At timestep t, the total Actor
obtains state information (e.g., health, location, shield, agent's sight range, and
others) from the environment and generates actions. Then ther ex is obtained
from the environment and the intrinsic reward set r in

t is generated by AIIR ac-
cording to state information and actions. And Mixing network obtains the global
reward set r total

t by combining r in
t and r ex through non-linear operations.

4. Method

In this Section, we introduce a new method called AIIR-MIX, which is based on the Actor-
Critic framework. The main contribution of AIIR-MIX is to generate set r in

t (w.r.t., the
timestep is t) and combine it with r ex to generate setr total

t nonlinearly. We �rst present the
overall AIIR-MIX framework in Fig. 1, and then we speci�cally show the relevant details
about AIIR-MIX in Fig. 2.

As shown in Fig. 1, the total AIIR-MIX framework consists of �ve parts: extrinsic Critic
network, total Critic network, total Actor network, AIIR, and Mixing network. AIIR and
Mixing network make up a module for generatingr total

t , which is the most important part
of AIIR-MIX. In particular, the total Actor network is made up of n Actor networks, each
Actor network with parameter � i generates the policy of its corresponding agent. And we
denote the current states si as the input and the agent's policy � � i (ui jsi) as the output
of each Actor network. Similarly, each Critic network in total Critic with parameter ! i

evaluates an agent's policy, which can update the Actor network end-to-end. Speci�cally,
each Critic network updates the value function parameters! i depending on Q(si ; ui ; ! i)
and each Actor network updates the policy parameters� i for � � i (ui jsi) in the direction
suggested by its corresponding Critic network. Following the CTDE paradigm, the total

AIIR-MIX

Critic network is only utilized during training. Like Lowe et al. (2017); Foerster et al. (2018),
the total Critic network is updated by the Temporal-Di�erence error (TD-error) as well.
But we utilize r total

t generated from Mixing network by combining r ex and r in
t instead of r ex

to calculate TD-error. To better facilitate teamwork among the agents, we designed AIIR
based on an attention mechanism to generater in

t . Due to the powerful representational
abilities of AIIR-MIX, it can update the total Critic network and the total Actor network
better.

Based on the Bellman equation, the loss function of a Critic network can be de�ned as:

L total (! i) =
1
n

nX

i =1

h
(ytotal

i � Q(si ; ui ; ! i))
2
i

; (5)

where i 2 N � f 1; � � � ; ng and ytotal
i = r total

i +
Q (s
0

i ; u
0

i ; !
0

i). Of particular note is our
de�nition of r total

i is the global reward of agenti , which is an element inr tota l
t . Each Actor

network is updated by the policy gradient:

O� i J (� i) = E � � i

h
A � � i

(ui jsi) O� i log� � i (ui jsi)
i

; (6)

where A � � i
(ui jsi) is the advantage function based onA � (s;u) (have been introduced in

Section 3.1) andA � � i
(ui jsi) = r ex (si ; ui) +
V � � i (si) � V � � i (s0

i). With a learning rate of
� for the Actor network, the update of the parameter � i can be de�ned as:

� i;t +1 � i;t + �A � � i
(ui jsi) O� i log� � i (ui jsi) : (7)

By referring to Fig. 1, all agent share the extrinsic Critic network. The loss function of
this extrinsic Critic network with parameter � can be de�ned as:

L ex (�) = [yex � Q(s; u; �)]2 ;

where s � f si g
n
i =1 ; u � f ui g

n
i =1 ; yex = r ex +
Q (s0; u0; � 0):

(8)

Then, the generating procedure ofr in
t and r total

t is described in detail. To promote
cooperation amongst agents and meet the objective of maximizing the global reward for
r in

t , we design an intrinsic reward generation framework based on an attention mechanism.
As shown in Fig.2c, we �rst de�ne a feature extractor, to process the statest

i and the last
action ut

i of the agent i at timestep t, where the feature extractor is a sequence of consecutive
ReLU-FC-ReLU-FC. Then, v t

i appears both as an output of the feature extractor and as
an input to the attention mechanism, representing the local attention embedding of the
agent. With the help of the attention mechanism, we get the correlation of all agent pairs.
Commonly, the correlation of agent pairs is obtained by a distance metric function, and we
apply cosine similarity to calculate the correlation between the attention embeddings of the
agents in this paper:

A t
i;j =

< v t
i ; v t

j >

k v t
i k2 �k v t

j k
2

(9)

In addition, we perform softmax function on the calculated correlations:

bA t
i;j = softmax

�
A t

i; :

�
=

exp
�
A t

i;j

�

P

k
exp

�
A t

i;k

� : (10)

	Introduction
	Related Work
	Sparse Reward
	Attention mechanism

	Background
	Policy Gradient
	QMIX
	Attention Mechanism

	Method
	Experiments
	StarCraft II Micromanagement
	Comparison
	Ablations
	Visualization

	Conclusion

