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Abstract

To provide intelligent and personalized models for clients, personalized federated learning
(PFL) enables learning from data, identifying patterns, and making automated decisions in
a privacy-preserving manner. PFL involves independent training for multiple clients with
synchronous aggregation steps. However, the assumptions made by existing works are not
realistic given the heterogeneity of clients. In particular, the volume and distribution of
collected data vary in the training process, and the clients also vary in their available system
configurations, which leads to vast heterogeneity in the system. To address these challenges,
we present an asynchronous method (AsyPFL), where clients learn personalized models
w.r.t. local data by making the most informative parameters less volatile. The central
server aggregates model parameters asynchronously. In addition, we also reformulate PFL
by unifying both synchronous and asynchronous updating schemes with an asynchrony-
related parameter. Theoretically, we show that AsyPFL’s convergence rate is state-of-
the-art and provide guarantees of choosing key hyperparameters optimally. With these
theoretical guarantees, we validate AsyPFL on different tasks with non-IID and staleness
settings. The results indicate that, given a large proportion of irregular clients, AsyPFL
excels at empirical performance compared with vanilla PFL algorithms on non-IID and IID
cases.

Keywords: Personalized federated learning; Asynchronous optimization

1. Introduction

The recently emerged personalized federated learning involves collaboratively training per-
sonalized models on clients without disclosing their private datasets (Smith et al. (2017)). It
aims to produce highly accurate statistical models by aggregating knowledge from disparate
data sources. Specifically, the processes of this paradigm can be summarized as follows: (i)
the server sends the global model (or the initialization of the global model) to all clients in
a round; (ii) the clients train personalized models w.r.t. their local data samples. (iii) the
server collects newly trained models to update the global model synchronously and broad-
casts the new model to clients. The process is repeated until convergence (Mansour et al.
(2020)).
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However, to deploy PFL in practice, the resulting system must be accurate and satisfy
several constraints, such as systemic and statistical heterogeneity. Unfortunately, simul-
taneously satisfying these varied constraints can be exceptionally difficult (Kairouz et al.
(2019)).

Systemic heterogeneity exists in clients with limited computing and communication
resources, where clients may fail to communicate with the server, i.e., be inactive or return
updates asynchronously. These undesirable behaviors are proven to degrade the system’s
performance since they magnify the discrepancies between irregular and global models (Sahu
et al. (2018); Chen et al. (2018)). Statistical heterogeneity refers to non-IID data, where
data are highly skewed and imbalanced and vary across clients (McMahan et al. (2017)).
From a statistical perspective, it leads to distribution shifts, which raises the difficulties of
model convergence.

Many prior efforts have considered a partial client participation scheme to relieve the
heterogeneity concern, where the server only aggregates local models without waiting for
irregular clients. Unfortunately, only a few client selection policies have been proven to
work in this setting, and the selection must be independent of the status of clients (Li et al.
(2019a)). In other words, for the training to converge successfully, all selected clients must
be able to train their personalized models and upload the results whenever they are selected.
Thus, the traditional PFL paradigm requires participating clients to be dedicated to the
training during the entire period.

PFL typically takes thousands of communication rounds to converge. Ensuring that all
clients will be available during the entire training in practice is not easy. Moreover, multi-
ple apps typically run simultaneously on clients, competing for already highly constrained
hardware resources. As such, as expected, the system cannot guarantee that clients will
complete their assigned training tasks in every training round. Even for cross-silo appli-
cations, where the system may adopt more powerful computers or cloud servers, clients’
availability can still be an issue due to the increasingly widespread usage of preemptive
cloud services such as AWS’s spot instances, where the user process can be interrupted
unexpectedly.

While many other methods have been proposed to mitigate the workload of individual
clients, such as weight compression and federated dropout (Caldas et al. (2018)), they
cannot remove the possibility of confronting irregular client behaviors during the training.
This probability, intuitively, increases as more clients join the training. Therefore, in large-
scale PFL, many low-end clients have to be excluded from joining the system in the first
place, which restricts the potential availability of training datasets and weakens the system’s
applicability. Furthermore, the existing training procedure does not specify how to react
when confronting undesirable client behaviors such as asynchronous communication and
does not analyze such behaviors’ adverse effects on the training progress.

Inspired by the critical roles of asynchronous optimization in several business appli-
cations of AI services (Bianchi et al. (2015)), we address these constraints by presenting
theoretical analysis and proposing a new PFL scheme, where model aggregations are asyn-
chronous, and the most informative parameters of models are less volatile during training.
This scheme allows irregular clients to be involved in the system and optimized to enhance
performance.
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Contributions of this paper are summarized as follows. First, we formulate a new
asynchronous method designed for PFL (AsyPFL) by incorporating an elastic term into the
local objective to stabilize the training of personalized models. The asynchronous structure
of AsyPFL has a crucial advantage: it allows asynchronous updates from multiple clients
and is robust against high communication delays with an asynchrony-related parameter.
Thus, AsyPFL mitigates the irregular client behavior caused by two-fold heterogeneity.

Second, we exploit the convexity-preserving and smoothness-enabled properties of AsyPFL
to facilitate the convergence analysis of the method. We present new assumptions for non-
IID data to measure and bound their impact using model discrepancies. We also analyze
the bi-level training strategy for choosing proper key hyperparameters. With optimized hy-
perparameters, AsyPFL can obtain the state-of-the-art speedup (resp. sublinear speedup of
order 2/3), compared with the current works with linear speedup (resp. sublinear speedup
of order 1/2), for the strongly convex objective.

Finally, we supplement our theoretical findings with extensive corroborating experimen-
tal results that demonstrate the superiority of the proposed scheme over commonly used
PFL algorithms. We empirically evaluate the performance of AsyPFL using real and syn-
thetic datasets that capture the statistical diversity of clients’ data and show that AsyPFL
outperforms the vanilla PFL methods in dealing with irregular clients.

2. Related Work

Personalized Federated Learning Given the variability of data in federated learning,
personalization is a natural approach used to improve accuracy, and numerous works have
been proposed for PFL. Mainly, Smith et al. (2017) first explores PFL via a primal-dual
multi-task learning framework, which applies to convex settings. As summarized in (Deng
et al. (2020); Tan et al. (2021)), the subsequent works have explored PFL through local
customization (Fallah et al. (2020b); Jiang et al. (2019); Khodak et al. (2019); Mansour
et al. (2020); Wang et al. (2019)), where personalized models are built by customizing a
well-trained global model. There are several ways to conduct customization: (i) mixture of
the global and local models customizes for each client by combining the global model with
the client’s latent local model (Hanzely and Richtárik (2020); Deng et al. (2020); Mansour
et al. (2020)); (ii) meta-learning approaches build an initial meta-model that can be updated
effectively by Hessian or its approximations. The personalized models are customized w.r.t.
local data (Fallah et al. (2020b); Nichol et al. (2018); Fallah et al. (2020a); Khodak et al.
(2019); Jiang et al. (2019)); (iii) local fine-tuning methods customize the global model using
local datasets to learn personalized models for each client (Mansour et al. (2020); Liang et al.
(2020)).
Asynchronous Optimization Asynchronous optimization can accelerate training perfor-
mance in near-linear time but is known to have a staleness effect (Mitliagkas et al. (2016);
Hadjis et al. (2016); Lian et al. (2015); Cui et al. (2016)), which is introduced by delayed
gradients. Moreover, the method suffers from high computational complexity in model dy-
namics, i.e., hyperparameters tuning and the trade-off between speed and accuracy (Hakimi
et al. (2019); Zhang et al. (2015)). To address these problems, dynamically changing learn-
ing rates, including learning rate decay and adaptive learning rates, are proposed (Zheng
et al. (2017); Dai et al. (2018)). Furthermore, Hakimi et al. (2019) models the delay with a
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new metric and optimizes performance by minimizing the gap to tackle the staleness caused
by momentum-based approaches. However, these works only focus on the distributed sys-
tem but little on federated learning, where clients are heterogeneous.

3. Asynchronous Personalized Federated Learning (AsyPFL)

3.1. AsyPFL: Preliminaries and Problem Formulation

Notations Given M clients and a server in the system and the k-th client has mk data
samples, where m =

∑M
k=1mk be the total number of samples among M clients. De-

note by X = ∪kXk the set of data among M clients, ω ∈ Rd0 the shared parame-
ters, β = (β1, β2, ..., βM ) with βk ∈ Rdk the personalized local models in the k-th client,
Fk : (Rd0|dk , Xk) → R the expected loss over the data distribution of the k-th client, ∆T g

k

the time cost of one update in local optimizer, and ∆T c
k the time cost for one communication

between the k-th client and the server, respectively.
In PFL, clients communicate with the server to solve

min
β

F (β) =

M∑
k=1

mk

m
Fk(ω, βk) (1)

to find personalized models β. Generally, Equation (1) is optimized w.r.t. β using stochastic
gradient descent (SGD) in clients. The server updates the model synchronously, i.e., it has
to wait until all participants send model updates to the server. However, this scheme is
inefficient, given heterogeneous settings.

Instead of synchronously solving the traditional PFL problem in Equation (1), AsyPFL
takes a different approach by employing a regularized local objective and an asynchronous
updating scheme, where

min
βk

F̃k(βk;ω
∗) = Fk(βk) +

λ

2
(βk − ω∗)Tdiag(h(ω∗))(βk − ω∗)

s.t. ω∗ ∈ argmin
ω

M∑
k=1

pkFk(ω).

(2)

λ is the regularization weight that controls the interpolation between the global and per-
sonalized models. When λ = 0, the local objective aims at training purely local models.
h(·) denotes the Fisher information matrix, which is the negative expected Hessian of the
log-likelihood function, and diag(h(·)) is the matrix that preserves the Fisher information
matrix’s diagonal values, penalizing parts of the parameters that are too volatile in a round.
pk = mk

m .
In AsyPFL, while ω∗ is found by exploiting the data aggregation from multiple clients at

the outer level, βk is optimized w.r.t. k-th client’s data and is maintained at a bounded dis-
tance from ω∗ at the inner level. This bi-level objective decouples the process of optimizing
personalized models from learning the global model, which preserves the low complexity.

AsyPFL incorporates an asynchronous updating scheme that allows each client to update
its model or download the global model whenever it is ready. Denote by {ωτ

k}Tτ=0 the con-
secutive models trained in k-th client from step 0 to T , and πk the staleness indicator of the
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k-th client, which represents the communication schedule. Let Πk := {lπkE|l = 0, 1, 2, 3, ...}
denote the set of time steps when the k-th client communicates with the server, i.e., the
k-th client communicates with the server every πkE step. As a result, when τ ∈ Πk, the
k-th client uploads its updates and downloads the newly aggregated model from the server.
Otherwise, it continues to train the model locally. we can formulate this asynchronous
update rule as

ωτ+1
k =

{
ωτ
k − ητ∇Fk(ω

τ
k), if τ + 1 /∈ Πk

ωτ+1, if τ + 1 ∈ Πk.
(3)

Equation (3) unifies the two updating schemes using Πk, i.e., when Π1 = Π2 =, ...,= ΠM ,
the clients communicate with the server simultaneously. Otherwise, it is the asynchronous
case.

Finally, the server aggregates the global model by

ωτ+1 = ωτ +
∑

k=1,...,M ;τ+1∈Πk

pk(ωτ+1
k − ω

rτk
k ), (4)

where ωτ+1
k is the uploaded model trained from the initialization of ω

rτk
k in the k-th client,

and ω
rτk
k = ωrτk is the global model downloaded by the client in the previous round. Denote

by rτk ∈ {0, 1, ..., T} the corresponding time step when the k-th client downloads the global
model ωrτk .

Assumption 1 (Lc-continuous and Ls-smooth functions) Fk is Lc-continuous and Ls-
smooth for k = 1, 2, ...,M .

Assumption 2 (µ-strongly convexity) Fk is µ-strongly convex with constant µ > 0 for
k = 1, 2, ...,M . ∀a, a′

, we have:

Fk(a
′
)− Fk(a)−∇Fk(a)||a

′ − a|| ≥ µ

2
||a′ − a||2

Assumption 3 (Bounded variance) Suppose ξτk is a uniformly sampled data point from Xk

at τ = 1, 2, ..., T , and k = 1, 2, ...,M . The variance of stochastic gradients in each client is
bounded by

E[||∇Fk(ω
τ
k , ξ

τ
k)−∇Fk(ω

τ
k)||2] ≤ σ2

k,

Assumption 4 (Bounded gradient discrepancy) Let ωτ
k = ωτ for τ = 1, 2, ..., T , and k =

1, 2, ..., T . The discrepancy of model gradients is bounded by

maxE[||gτk − gτ ||] = χ,

where gτk = ∇Fk(ω
τ
k , ξ

τ
k) is the local stochastic gradient of sampled data ξτk , and gτ =∑M

k=1 p
k∇Fk(ω

τ
k) is the expectation of gradients.

Assumption 5 (Bounded model discrepancy) Denote by ω∗
k = argminFk(ω) the optimal

model in k-th client, and ω0 the initialization of the global model. For a given ratio q ≫ 1,
the discrepancy between ω0 and ω∗ is sufficiently larger than the discrepancy between ω∗

k

and ω∗, i.e., ||ω0 − ω∗|| > q||ω∗
k − ω∗||
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Algorithm 1 AsyPFL. M clients are indexed by k, λ is the regularization weight, η and δ
are the learning rate, and γ is the decay factor; T is the maximal number of communication
rounds; Q represents the waiting queue; ∆T g

k denotes the time cost of one update in the
local optimizer; ∆T c

k is the time cost for one communication between the k-th client and
the server.
Server executes:

initialize local epoch E, ω0, β0
k.

for τ = 0, 1, ..., T do
Sτ ← (subset of M clients).
for each client k ∈ Sτ in parallel do
ωτ+1
k ,rτk ,∆T g

k ,∆T c
k ← ClientUpdate(k,ωτ ,Ek).

Push (ωτ+1
k ,rτk ,∆T g

k ,∆T c
k) into Q.

πmin = min{ ∆T c
k

∆T g
k p

k }, πk = | ∆T c
k

∆T g
k p

kπmin
|.

Ek = πkE

ωτ+1 = ωτ +
∑

k;τ+1∈Πk
pk(ωτ+1

k − ω
rτk
k )

end for
end for

ClientUpdate(k,ωτ ,Ek):

rτk = τ , E = Ek.
for e ∈ {1, 2, ..., E} do

ωτ+1
k = ωτ

k −
η

1+γτ∇Fk(ω
τ
k).

βτ+1
k = βτ

k −
δ

1+γτ (∇Fk(β
τ
k ) + λ(βτ

k − ωτ+1
k )diag(h(ωτ+1

k ))).

Calculate the average ∆T g
k , ∆T c

k .
end for

While Assumptions 1 and 2 are standard for convergence analysis, Assumptions 3 and
4 are widely used in the FL context in which σ2 and χ quantify the sampling noise and the
diversity of the client’s data distribution, respectively (Karimireddy et al. (2020); Fallah
et al. (2020b); Li et al. (2019b); Yu et al. (2019)). Note that we avoid using the uniformly
bounded gradient assumption, i.e., ||∇Fk(a) ≤ G||, ∀k, used in several related works (Deng
et al. (2020); Fallah et al. (2020b)). It is shown that this assumption is not satisfied in the
strongly convex minimization (Zhou et al. (2019); Li et al. (2019b)).

3.2. AsyPFL: Algorithm

In this section, we propose AsyPFL, presented in Algorithm 1, to solve Equation (2).
Specifically, the algorithm jointly optimizes the global model ω and personalized models
β in an alternating fashion. Optimization proceeds in two phases: (i) updates to the global
model, ω, are computed across the network, and then (ii) the personalized models βk are
fit on each local client. Optimizing ω is different from conventional PFL algorithms, where
local epochs Ek are carefully chosen by calculating the staleness indicator πk on the k-th
client.

In AsyPFL, (i) the server first broadcasts the newly aggregated global model (or ini-
tialization of the global model) and the number of local epochs to participants in the τ -th
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round; (ii) the k-th client runs a local optimizer w.r.t. local datasets on ωk and βk with
a decayed learning rate. The algorithm solves the local subproblem of minω

∑M
k=1 p

kFk(ω)
approximately. For personalization, client k solves the global-regularized local objective
minβk

F̃k(βk;ω
∗) inexactly at each round. We note that another natural choice to solve

Equation (2) is first to obtain ω∗, and then for each client k, perform finetuning on the
local objective minβk

F̃k(βk;ω
∗). These two approaches will arrive at the same solutions in

strongly convex cases. In non-convex settings, we observe that an approximate solver in
joint optimization has additional benefits. Empirically, we find that the updating scheme
tends to guide the optimization trajectory towards a better solution compared with fine-
tuning starting from ω∗; (iii) the server collects the time cost of updates both in the local
optimizer and communications to adjust the staleness indicator and local epochs dynami-
cally. Since clients communicate with the server asynchronously, the server aggregates and
updates the global model according to Equation (4).

3.3. AsyPFL: Theoretical Analysis

In this section, we theoretically analyze the asynchronous scheme used in AsyPFL, which
decouples the optimization of personalized model β from the global model ω. In the following
analysis, we first present the convergence bounds with/without decayed learning rates. Then
we analyze the method to choose optimal hyperparameters such as local epochs Ek and
staleness indicator πk on the k-th client.

Theorem 1 Given the maximum time step T , for any fixed number of local epoch E, the
fixed learning rate η ≤ 1

4L , F
∗ and F ∗

k denotes the minimum of objective functions F and
Fk. Under Assumption 1-4, the error of AsyPFL is bounded by

E[F (ωT )]− F ∗ ≤ L(1− µη)T

2
(||ω0 − ω∗||2 − 2B) +B, (5)

where

B =
Lη

2µ
(
M∑
k=1

p2kσ2
kΣ

2
k + 6LΓ + 2E

M∑
k=1

pk(π2
kE − πk)χ

2),

and Γ = |F ∗ −
∑M

k=1 p
kF ∗

k |.

Theorem 1 presents the error of AsyPFL with a fixed learning rate. Inspired by (Li et al.
(2019a)), convergence can be guaranteed with learning rate decay for synchronous PFL in
non-IID settings, which may also be applicable for asynchronous models. We theoretically
analyze and compare the convergence with learning rate decay in Theorem 2.

Theorem 2 Given the same conditions in Theorem 1 except for the fixed learning rate,
γ = max{8L

µ ,maxk{πk}E}, and decayed learning rate ητ = 2
µ(γ+τ) , the error of AsyPFL is

bounded by

E[F (ωT )]− F ∗ ≤ 2L

µ(γ + T )2/3
(
A

µ
+ 2L||ω0 − ω∗||), (6)

where

A =
M∑
k=1

p2kσ2
kΣ

2
k + 6LΓ + 8E

M∑
k=1

pk(π2
kE − πk)χ

2.
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Table 1: Convergence results of several PFL algorithms are summarized. The maximum
number of communications is T . SC refers to strongly convex, and NC refers to
non-convex.

Algorithm Bounded gradient Convexity Convergence speedup

Karimireddy et al. (2020) ✓ µ-SC O( 1√
T
)

Deng et al. (2020) × NC O( 1
T 1/3 )

Dinh et al. (2020) ✓ µ-SC O( 1√
T
)

Li et al. (2020) × NC O( 1√
T
)

AsyPFL × µ-SC O( 1
T 2/3 )

Theorems 1 and 2 demonstrate the convergence bounds of AsyPFL with fixed and
decayed learning rates, respectively. Theorem 2 confirms that under the non-IID and asyn-
chronous cases, AsyPFL reaches a state-of-the-art convergence rate with a sublinear speed-
up of O(1/T 2/3) using decayed learning rate. We compare our results with several PFL
algorithms in Table 1.

Next, we present how to achieve the optimal local epochs E in Theorem 3 and optimal
staleness indicator π in Theorem 4.

Theorem 3 Denote by Tmin the minimal number of global epochs to achieve ϵ-accuracy,
where

E[ωTmin)]− F ∗ ≤ 2L

µ(γ + Tmin)2/3
(
A

µ
+ 2L||ω0 − ω∗||) ≤ ϵ.

Given the same conditions as Theorem 2, the minimum communication round Rmin(E) =
Tmin
E can be achieved by

E =

√√√√Vϵ +
4L2

µϵ ||ω0 − ω∗||
16L
µ2ϵ

χ2
∑M

k=1 p
kπ2

k

,

where Vϵ =
2L
µϵ

∑M
k=1 p

2
kσ

2
k+6LΓ

µ .

Theorem 3 gives the optimal choice of E to reduce communication overhead with the
non-IID data, i.e., χ ̸= 0. The choice of E is not static throughout the training process. It
can be seen that E is proportional to the global error ||ω0 − ω∗||, which indicates that E
can be reduced as the training continues.

To further estimate the overall training time for achieving ϵ-accuracy, we define the total
time cost of k-th client as

Cπk
= ∆T g

k Tmin +∆T c
k

Rmin

πk
= ∆T g

k Tmin +∆T c
k

Tmin

Eπk
, (7)

and the total time cost of the system is ∆T = max{Cπ1 , Cπ2 , ..., Cπk
}.

Theorem 4 Given Assumptions 1-4, the minimal time cost min∆T is achieved by

πk = (
Zkµϵµ

2

32LE3χ2pk
∆T c

k

∆T g
k

)1/3,
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Table 2: Statistics of datasets with non-IID partitions are summarized. The number of
clients, the number of samples, and the mean and the standard deviation of data
on each client are summarized.

Dataset # clients # Samples # classes Mean Std.

MNIST 100 58,254 10 583 146
EMNIST 500 131,600 62 263 93
CIFAR100 100 59,137 100 591 32
Shakespeare 132 359,016 132 2,719 204
Sentiment140 1,503 90,110 2 60 41

where

Zk = Vϵ +
4L2

µϵ
||ω0 − ω∗|| − γ + E

16L

ϵµ2

M∑
l=1

pl(π2
l E − πl)χ

2 − E
16L

ϵµ2
pk(π2

kE − πk)χ
2.

Theorem 4 presents how to choose the optimal π to reduce time cost. Specifically, when
the k-th client has a slow connection, i.e., ∆T c

K is large, we can reduce communication
rounds by setting a more significant πk. When it has a limited computation resource,
i.e., ∆T g

k is large, we choose a smaller πk. Furthermore, when the k-th client has a large
data size, we choose a smaller πk to avoid degrading the training quality. Please refer to
supplemental material for the detailed proof of Theorems 1-4.

4. Experimental Results and Discussion

In this section, we first demonstrate the effectiveness and efficiency of AsyPFL in non-IID
and IID data settings and compare it with several baseline algorithms. Then, we show the
robustness of AsyPFL on irregular clients’ challenges.

4.1. Experimental Setup

Datasets AsyPFL is evaluated on several benchmark datasets and compared with leading
baselines. We use five benchmark datasets, which can be categorized as follows:

• Image Classification we adopt MNIST (LeCun et al. (1998)), EMNIST (Cohen et al.
(2017)) dataset with Resnet50 (He et al. (2016)), CIFAR100 dataset (Krizhevsky et al.
(2009)) with VGG11 (Simonyan and Zisserman (2014)) network. The MNIST dataset
has images of hand-written digits from 100 clients with 58k samples. The EMNIST
dataset contains images of hand-written digits and characters from 500 clients with
a total of 131k samples, and CIFAR100 dataset contains 59k samples separated into
100 clients. For the IID setting, we split the training data randomly into equally
sized shards and assigned one shard to every client. For the non-IID (m) setting, we
assign every client sample from exactly m classes of the dataset. The data splits are
non-overlapping and balanced, so every client has the same number of data points.
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Figure 1: Testing Accuracy-Communication Rounds comparisons of VGG11 on CIFAR100
and Resnet50 on EMNIST in a distributed setting for IID and non-IID data. In
the non-IID cases, every client only holds examples from exactly m classes in
the dataset. All methods suffer from degraded convergence speed in the non-IID
situation, but AsyPFL is affected the least.

• Natural Language Processing (NLP) We evaluate AsyPFL on Shakespeare dataset
with an LSTM (McMahan et al. (2017)) to predict the next character, and Senti-
ment140 dataset (Go et al. (2009)) with an LSTM to classify sentiment. The Shake-
speare dataset contains 359k samples separated into 132 clients, and the Sentiment140
dataset has 90k samples among 1,503 clients.

Table 2 summarizes the statistics of the datasets.
Metrics We evaluate AsyPFL and report the testing accuracy and best-mean-testing

accuracy (BMTA) in IID and non-IID settings. The mean testing accuracy is the average
testing accuracy of all clients.

BaselinesWe compare AsyPFL with several leading baselines in PFL. FedProx (Li et al.
(2018)) incorporates a proximal term in local objective to improve the model performance
on the non-IID data, SCAFFOLD adopts control variate to alleviate the effects of data
heterogeneity (Karimireddy et al. (2020)), and APFL learns personalized local models to
mitigate heterogeneous data on clients (Deng et al. (2020)). FedGATE introduces a local
gradient tracking scheme to mitigate the heterogeneity (Haddadpour et al. (2021)), VRL-
SGD eliminates the dependency on the gradient variance among clients (Liang et al. (2019)),
and FedAMP employs federated attentive message passing to facilitate similar clients to
collaborate more (Huang et al. (2021)).

4.2. Performance Comparison

Figure 1 shows the convergence comparison of gradient evaluations for the two models using
different algorithms.

We observe that while all methods achieve comparably fast convergence in gradient
evaluations on IID data, they suffer considerably in the non-IID setting. From left to right,
as data becomes more non-IID, convergence worsens for FedProx, and it can sometimes
diverge. SCAFFOLD and APFL exhibit their ability to alleviate the data heterogeneity,
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Table 3: BMTA for the non-IID data setting

Methods MNIST CIFAR100 Sentiment140 Shakespeare

FedAvg 98.30 2.27 59.14 51.35
FedGATE 99.15 80.94 68.84 54.71
VRL-SGD 98.86 2.81 68.62 52.33
APFL 98.49 77.19 68.81 55.27

FedAMP 99.06 81.17 69.01 58.42
AsyPFL 99.10 81.38 68.95 60.49

Figure 2: The first row shows the Testing Accuracy-Communication Rounds comparison,
and the second row shows the Training Loss-Communication Rounds comparison
in non-IID settings. AsyPFL with elastic term stabilizes and improves the con-
vergence of the algorithm.

but they are not stable during training. As this trend can also be observed for Resnet50
in the EMNIST case, it can be concluded that the performance loss originating from the
non-IID data is not unique to some functions.

Aiming at better illustrating the effectiveness of the proposed algorithm, we further
evaluate and compare AsyPFL with the state-of-the-art algorithms, including FedGATE
(Haddadpour et al. (2021)), VRL-SGD (Liang et al. (2019)), APFL (Deng et al. (2020))
and FedAMP (Huang et al. (2021)) on MNIST, CIFAR100, Sentiment140, and Shakespeare
dataset. The performance of all the methods is evaluated by the best mean testing accuracy
(BMTA) in percentage, where the mean testing accuracy is the average testing accuracy of
all participants. For each of the datasets, we apply a non-IID data setting.

Table 3 shows the BMTA of all the methods under the non-IID data setting, which
is not easy for vanilla algorithm FedAvg. On the challenging CIFAR100 dataset, VRL-
SGD is unstable and performs catastrophically because the models are destroyed, so the
customized gradient updates in the method can not tune it up. APFL and FedAMP train
personalized models to alleviate the non-IID data. However, the performance of APFL is
still damaged by unstable training. FedGATE, FedAMP, and AsyPFL achieve comparably
good performance on all datasets.



Ma Lu Li Cui

Figure 3: Testing Accuracy-Communication Rounds comparisons among different algo-
rithms with irregular clients. AsyPFL utilizes stale updates from stragglers and
is robust to irregular clients.

4.3. Effects of the Elastic Term

AsyPFL utilizes the elastic term scaled by λ, allowing clients to pursue their personalized
models in different directions but not to stay far away from the ”reference point” ω∗, to
which every client contributes. Intuitively, a proper λ restricts the optimization trajectory
by limiting the change of the most informative parameters and guarantees convergence.

We explore the impacts of the elastic term by setting different values of λ. Figure 2
shows the performance comparison on different datasets using different models. We compare
the result between AsyPFL with λ = 0 and AsyPFL with best λ. For all datasets, it can
be observed that the appropriate λ can increase the stability for unstable methods and can
force divergent methods to converge. It also increases accuracy in most cases. As a result,
setting λ ≥ 0 is particularly useful in the non-IID setting, which indicates that the AsyPFL
benefits practical federated settings.

4.4. Robustness of AsyPFL

Finally, in Figure 3, we demonstrate that AsyPFL is robust to irregular clients. In partic-
ular, we track the convergence speed of LSTM trained on Sentiment140 and Shakespeare
datasets. It can be observed that a more significant number of irregular clients have adverse
effects on all methods. However, the causes for these adverse effects are different: In Fed-
Prox and APFL, the actual participation rate is determined by the number of clients that
finish the complete training process because it does not include the asynchronous updates.
Since irregular clients (stragglers) do not participate in the training, the optimization pro-
cess can be steered away from the minimum and might even cause catastrophic forgetting.
On the other hand, asynchronous updates reduce the convergence speed of AsyPFL by in-
creasing the gradient staleness. The more rounds a client has to wait before being selected
to return to training, the more outdated the accumulated gradients become.

5. Conclusion

In this paper, we propose AsyPFL as an asynchronous PFL algorithm that can adapt
to heterogeneity issues to improve PFL performance. Our approach uses the elastic term,
which helps decompose the personalized model optimization from global model learning, and
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allows irregular clients to communicate with the server asynchronously. Theoretical results
show that AsyPFL can achieve a state-of-the-art convergence speedup rate. Experimental
results demonstrate that AsyPFL outperforms the vanilla PFL algorithms in both convex
and non-convex settings, using both IID and non-IID datasets.
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mentum, with an application to deep learning. In 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 997–1004. IEEE, 2016.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia
Smith. On the convergence of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127, 3, 2018.



Ma Lu Li Cui

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-
task learning. arXiv preprint arXiv:1705.10467, 2017.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated
learning. arXiv preprint arXiv:2103.00710, 2021.
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