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Abstract

There has been much recent research on human activity recognition (HAR), due to the
proliferation of wearable sensors in watches and phones, and the advances of deep learning
methods, which avoid the need to manually extract features from raw sensor signals. A sig-
nificant disadvantage of deep learning applied to HAR is the need for manually labelled
training data, which is especially difficult to obtain for HAR datasets. Progress is starting
to be made in the unsupervised setting, in the form of deep HAR clustering models, which
can assign labels to data without having been given any labels to train on, but there are
problems with evaluating deep HAR clustering models, which makes assessing the field
and devising new methods difficult. In this paper, we highlight several distinct problems
with how deep HAR clustering models are evaluated, describing these problems in detail
and conducting careful experiments to explicate the effect that they can have on results.
Additionally, we present a new deep clustering model for HAR. When tested under our
proposed settings, our model performs better than (or on par with) existing models, while
also being more efficient and scalable by avoiding the need for an autoencoder.

1. Introduction

Human activity recognition (HAR), the task of automatically determining the activity that
a person is performing based on recorded data, has a number of important applications. It is
of interest to healthcare research, as it can provide a direct measure of exercise frequency and
intensity. The World Health Organization lists inactivity as the fourth leading risk factor
for mortality, and estimates that over 30% of adults are insufficiently active.1 However,
such estimations are difficult. Self-report does not give a reliable measure of exercise, as
patients tend to significantly over-report (McConnell et al., 2018), so being able to directly
monitor human activity is desirable. HAR is also used in wearable sports technology. Sports
watches, for example, provide users with a breakdown of how much time they spend sitting,
standing, and walking. Globally, the wearable technology market was valued at $41bn in
2019, and it is forecasted to grow to $114bn by 2028.2

1. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3416
2. https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
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The recorded data on which human activity recognition is based can come from three
different types of device: video recorders, ambient sensors, and wearable sensors. These
data are then input to a recognition model, to infer the activity being performed. If video
recorders are used, then the task is one of computer vision, if ambient or wearable sensors
are used, then the task is a form of signal processing. The difference between ambient and
wearable sensors is that the former stays at a fixed location in the environment, and the
latter is attached to the human performing the activity. In this paper, we focus primarily
on HAR from wearable sensors. There are two types of wearable sensors, accelerometers,
which measure acceleration in three spatial dimensions, and gyroscopes, which measure
orientation and angular momentum.

Raw sensor data cannot always be easily interpreted by human inspection, which has
two important consequences. Firstly, it can make feature engineering difficult. For example,
in the case of gyroscope readings, we do not know, a priori, what the relevant differences are
between the signals for certain activities, especially those that are similar, such as walking
upstairs vs. downstairs. While engineered features have been used with some success (see
Section 2), these are mostly statistical features, rather than features that leverage domain
knowledge. Deep learning, which can learn to automatically extract features, is therefore
an attractive approach to HAR. The second important consequence is that HAR data
are very difficult to label. Labelled data are always more expensive and time-consuming
to obtain than unlabelled data, but this is especially the case for sensor-based HAR data,
because humans cannot provide annotations just by looking at the sensor readings. Instead,
annotators must directly observe a subject, which requires taking them into the lab, or
be given a video of the performed actions, which requires subjects to remember to film
themselves while using the sensors outside the lab. There is therefore a need for models
that can operate without labelled data, as has been noted in two recent survey papers
(Wang et al., 2019; Chen et al., 2021). This is one reason why HAR clustering is of value.
If it was solved very accurately, so that all instances of the same activity were clustered
together, and all instances of different activities were clustered separately, then the HAR
classification problem would also have been solved, and its solution would not have required
any labelled data at all. Another advantage of HAR clustering is that, even in the absence
of a very accurate solution, it can shed light on the most appropriate set of classes into
which activities should be partitioned. For example, some datasets distinguish between
‘walking’ and ‘fast walking’, while some others just use a single class ‘walking’; similarly
for ‘running’ and ‘jogging’. If clustering shows there to be a significant difference between
walking and fast walking, this is evidence that such a distinction is warranted. This use is
not explored further here, though it has been in previous works (Mejia-Ricart et al., 2017).

For these reasons, HAR clustering has received significant research attention. This paper
focuses on deep HAR clustering, i.e., clustering HAR data using a deep neural network for
feature extraction. Recent years have seen some works applying deep learning to HAR
clustering (McConville et al., 2021; Sheng and Huber, 2020; Ma et al., 2021). However,
progress has been obstructed in deep HAR clustering, and HAR clustering more generally,
by a lack of agreed evaluation standards. Different works test on different datasets, many
of them private, and some crucial details are left out when describing the exact evaluation
settings. In particular, the distinction between subject-dependent and subject-independent
clustering is often not made explicit, even though it greatly affects the results.
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As well as highlighting these problems and describing more rigorous evaluation settings
that can address them, we propose a new deep HAR clustering model and test it under
these settings, showing that it outperforms existing methods (insofar as a comparison can
be made, with respect to the above points). We then present ablation studies on its main
components. Ours is the first deep HAR clustering model not to require the reconstruction
loss of an autoencoder, making it more efficient and better able to scale to more complex
datasets. Below is a brief summary of our contributions.

• We explicate differences in evaluation procedures for deep HAR clustering, and show
empirically that these differences can affect performance metrics. While our main
focus is on deep HAR clustering, much of our analysis, including the important dis-
tinction between subject-dependence and subject-independence, applies to HAR clus-
tering in general.

• We discuss suitable evaluation settings to use for HAR clustering. Adoption of our
recommendations by future works will enable a direct comparison and benchmarking
of deep HAR clustering models (and HAR clustering models more generally), and
thus accelerate progress in the field.

• We describe a streamlined and scalable deep HAR clustering model. On six public
datasets, this model performs better than or on par with existing models (insofar as
they can be compared). We also present ablation studies showing the contributions
of its components.

The rest of this paper is organized as follows. Section 2 provides an overview of related work.
Section 3 explicates the shortcomings of existing evaluation methods for HAR clustering.
In Section 4, we describe our new method for HAR. Section 5 then presents the results of
our method under our proposed evaluation settings, and Section 6 summarizes our work.
Code is available at https://github.com/Lou1sM/HAR.

2. Related Work

Machine learning has been identified as a promising approach to HAR since at least 2000
(Hongeng et al., 2000), with early works using, e.g., naive Bayes (Tapia et al., 2004), support
vector machines (He and Jin, 2009), and generalized discriminant analysis (Khan et al.,
2010). These machine learning algorithms require feature engineering, and in the case
of HAR, this is commonly done by taking statistical quantities such as mean and higher
moments of the raw signal, in both the time and frequency domains. These can be combined
with more bespoke features (M. Zhang, 2011; He and Jin, 2009).

Deep learning is a form of machine learning that does not require hand-crafted features,
but rather can learn to extract features from a raw input. Applied to HAR, not only does
deep learning avoid the need for feature engineering, but has also been shown to achieve
better accuracy than feature-engineered models (Alsheikh et al., 2016; Ferrari et al., 2019).
Network architectures include convolutional neural networks (CNNs) (Yang et al., 2015;
Chen and Xue, 2015; Jiang and Yin, 2015; Ronao and Cho, 2015) and recurrent neural
networks (RNNs) (Inoue et al., 2018; Singh et al., 2017). See (Hammerla et al., 2016) for

https://github.com/Lou1sM/HAR
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an empirical comparison of CNNs and RNNs for HAR. See (Chen et al., 2021; Wang et al.,
2019) for summaries of recent deep HAR models.

There has been increasing interest in reducing the supervision needed for HAR. The first
efforts in this direction were semi-supervised methods trained on unlabelled data alongside
labelled data (Li and Dustdar, 2011), which used unlabelled data for pretraining (Li et al.,
2014; Alsheikh et al., 2016), or which investigated the optimality of the label set by com-
paring to cluster labels (Mejia-Ricart et al., 2017). However, training these semi-supervised
models still requires some labelled data. By a recent survey on HAR, the need for fully
unsupervised models is urgent, due to the difficulty of obtaining labels (Wang et al., 2019).
Another (Chen et al., 2021) discussed the advantages of unsupervised HAR models but notes
the disadvantage that most, performing only feature extraction, cannot produce labels.
Deep clustering models redress this problem by interpreting cluster membership as labels.

As is the case for supervised models, most HAR clustering models begin with a feature
extraction stage. While some works apply clustering algorithms directly to the raw sensor
signal (Trabelsi et al., 2013), the most common approach is to first extract features from the
sensor signal, and then cluster the extracted features. Initial HAR clustering models per-
formed feature extraction by computing statistical quantities (Kwon et al., 2014; Machado
et al., 2015; Lu et al., 2017). In (He et al., 2017), statistical features are replaced by the
discrete wavelet packet transform followed by principal components analysis for dimension-
ality reduction. Clustering is performed using fuzzy c-means with a novel initialization
method based on cosine similarity. Another HAR clustering model is proposed in (Sheng
and Huber, 2020), which includes a deep autoencoder in the feature extraction stage with
two additional loss terms to encourage locality and temporal consistency. Statistical feature
extraction is dispensed with completely in (Ma et al., 2021), replaced with a CNN-BiLSTM
autoencoder plus pseudo-label training (Caron et al., 2018). In (McConville et al., 2021),
a deep autoencoder is combined with UMAP (McInnes et al., 2018), for dimensionality
reduction, followed by clustering using a Gaussian mixture model (GMM).

3. Problems with Existing Literature

We identify three problems with the existing field of HAR clustering, shown with respect
to existing works in Table 1.

• Different works often report on different datasets using different metrics. Many works
report results on their own new dataset, and so cannot compare to prior works. Ad-
ditionally, the datasets are often private.

• The exact evaluation criteria are unclear. There are multiple ways of evaluating the
performance of a model, which can give significantly different results. Of particular
importance is whether each subject’s data are clustered individually or whether all
data are clustered together.

• Code is not released, making reproducibility difficult or impossible.

These problems make it hard for new researchers in the field to assess the best existing
models from which to build, and difficult for them to determine whether they have improved
over these existing models. Consequently, progress is held back.
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In the following sections, we address these issues. Section 3.1 describes our choices
of datasets on which to evaluate performance, and the reasoning behind these choices.
Section 3.2 discusses the effect of different evaluation settings on performance metrics,
and demonstrates these effects empirically, by showing that the same model can produce
significantly different results in different evaluation settings.

3.1. Datasets

We select six suitable wearable-sensor HAR datasets for measuring clustering performance:
Physical Activity Monitoring (PAMAP2) (Reiss and Stricker, 2012), Human Activity Recog-
nition using Smartphones (UCI-Sm) (Anguita et al., 2013), WISDM-v1 (Kwapisz et al.,
2011), WISDM-watch (Weiss et al., 2019), Realistic Sensor Displacement (REALDISP)
(under the ‘ideal placement’ setting) (Baños et al., 2012), and Heterogeneous Human Ac-
tivity Recognition (Stisen et al., 2015). The details of subjects, activities, and sensors for
each dataset are shown in Table 3. There are three reasons for selecting these datasets:

• They are all easily accessible in the UCI repository.

• They have been used by some previous works, and so enable comparison (though, as
seen in Table 1, there is less consistency in the use of datasets than would be ideal).

• They vary in number of activities, number of data points, number of subjects, and
number of sensor channels, helping to measure generalization ability. UCI-Sm and
WISDM-v1 are smaller datasets, with only a few channels and activity classes. The
other four datasets are more complex. WISDM-watch is unique in having a large
number of users, 51, and HHAR is unique in having a large number of data points.
REALDISP is a large dataset with many sensors channels. This set of datasets thus
tests a model’s performance in a range of settings, from a small to a large number of
users, from a small to a large number of clusters and from simple hardware to many
wearable sensors with a rich array of sensor channels.

3.2. Ambiguous Evaluation Settings

We identify two ambiguities in how HAR clustering models are evaluated, subject-dependent
vs. subject-independent, and window-wise vs. point-wise. The former refers to whether
clustering was performed on all subjects’ data at once (subject-independent) or on each
subject’s data separately (subject-dependent). For supervised models, specification of the
train-test split can disambiguate subject-dependence vs. independence, by specifying that,
e.g., data for users X,Y, Z was used for testing. Clustering, however, does not typically
use a train-test split, and the question of subject-dependence vs. independence is almost
always unclear (see Table 1). The latter refers to whether data points are taken to be the
sliding window or each time point. Each time point has one label, but training collates
multiple time points into windows. (The window size is 512 in all our experiments.) There
is ambiguity as to whether data points should be taken to be the windows or the time
points. This type of ambiguity can be present in supervised models as well.
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Table 1: Previous HAR clustering models relative to the evaluation criteria outlined in
Section 3. There are a number of different datasets and metrics, but none releases their
code, and almost all are ambiguous as to subject independence (indicated S-dep below).

Name Datasets Metrics
Code

Released
S-Dep

Kwon et al. (2014) own (private) ACC, NMI no unlcear †

Trabelsi et al. (2013) own (private) ACC, precision, recall no unclear

Lu et al. (2017) own (private)
ACC, precision,
recall, specificity,
ARI, FM-index

no unclear

Machado et al. (2015) own (private) ACC no both

He et al. (2017) WISDM-v1 RI, ARI no unclear‡

Sheng and Huber (2020) PAMAP2, SBHAR, REALDISP ACC, ARI, NMI no unclear

He et al. (2018) DSAD RI, ARI, FM-index no yes

Ma et al. (2021)
HAR, MotionSense1,

MobiAct2, own (private)
precision, recall, F1, NMI no unclear

Dobbins and
Rawassizadeh (2018)

HHAR silhouette-index no unclear *

ours
PAMAP2, UCI-Sm,

WISDM-v1, WISDM-watch,
REALDISP, HHAR

ACC, ARI, NMI, F1
yes (on

publication)
yes

1Altun et al. (2010)
2Malekzadeh et al. (2018)
† mentions different cluster sizes for different subjects, implying subject-dependence
‡displays confusion matrix referring to one subject only
∗ discusses subject heterogeneity within activity classes, implying subject-independence

We empirically investigate the effect of these two factors, by training and testing a
simplified version of our proposed model (described in Section 4) under the four resulting
settings. The results are displayed in Table 2.

Columns one and two are subject-dependent. They train a separate clustering model on
each subject and average the results across these separate models, weighting each subject
by their number of data points. Columns three and four are subject-independent. They
train a single clustering model and cluster all subjects’ data at once. The subject-dependent
models outperform the subject-independent models by a large margin. This is in keeping
with results from the supervised domain, where it has been noted that training on some
data from the test subject significantly improves performance (Reiss and Stricker, 2012; Suh
et al., 2021), which suggests the existence of subject-specific features in how activities are
performed. The large difference in results between these two settings, evidenced in Table 2,
means that it is crucial that models specify which they are using. Moreover, the two are
fundamentally different tasks, one discovering patterns in the activity signal of a specific
user, and the other learning generalized activities, independent of who is performing them.

Columns one and three in Table 2 are window-wise, while columns two and four are
point-wise. The former treats each window as a data point whose label is the most commonly
occurring label across all time points in that window. The latter treats each time point as
a data point. Using overlapping windows means that each time point appears in multiple
windows. In order to produce a single predicted label for each time point, the window-wise
setting takes the most commonly occurring label across the multiple windows that contain
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Table 2: Evaluation under the four settings corresponding to the two ambiguities described
in Section 3.2. Window-wise vs. point-wise does not affect results, but subject-dependent
vs. subject-independent does. The subject-dependent settings performs substantially better
across all datasets and metrics. It is therefore essential that HAR clustering works specify
whether they are testing in the subject-dependent or subject-independent setting.

window-wise
subject-dependent

point-wise
subject-dependent

window-wise
subject-independent

point-wise
subject-independent

PAMAP

ACC 66.28 66.27 48.30 47.35
NMI 64.95 64.80 46.61 48.14
ARI 50.57 50.54 30.44 31.31
F1 65.63 65.57 45.26 45.73

UCI-Sm

ACC 50.57 50.73 38.95 38.93
NMI 56.36 56.77 35.59 35.57
ARI 39.57 39.50 23.94 23.92
F1 46.74 46.88 35.32 35.28

WISDM-v1

ACC 72.15 72.33 50.14 50.04
NMI 69.44 69.40 38.78 38.80
ARI 60.05 60.03 33.07 33.06
F1 64.88 64.95 38.91 38.88

WISDM-
watch

ACC 78.40 78.48 25.58 25.56
NMI 84.68 84.71 28.38 28.36
ARI 72.22 72.17 12.6 12.59
F1 77.61 77.67 25.32 25.31

REALDISP

ACC 89.60 89.60 51.37 51.36
NMI 93.87 93.97 71.80 71.79
ARI 88.60 88.53 43.91 43.87
F1 84.36 84.38 47.00 46.99

HHAR

ACC 53.80 53.80 47.93 48.25
NMI 51.62 51.62 38.42 38.52
ARI 38.14 38.07 25.60 25.78
F1 52.57 52.48 49.08 49.36

Table 3: Information on each of the datasets on which we report results. Accel = 3d
accelerometer, gyro = 3d gyroscope, and magneto = 3d magnetometer. Total time points
= the sum of time points across all users, after discarding those without labels and those
with missing data.

Name
Date

Released
Number of
Activities

Number of
subjects

Sensors Channels
Total

Time Points

PAMAP2 2012 12 9
3 x (accel,

gyro, magneto)
51 1921431

UCI-Sm 2013 6 30 phone accel and gyro 6 71968
WISDM-v1 2011 5 36 phone accel 3 1085363

WISDM-watch 2019 18 51
phone and watch
accel and gyro

12 3635842

REALDISP 2012 33 17
9 x (accel, gyro,
magneto, orient)

117 669618

HHAR 2015 6 9 2 x (accel, gyro) 12 11279265
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Algorithm 1 Training algorithm

X ← data;
Mask, SemiMask ← X;
Final← empty hash table; while |Final| increases do

for i = 1, . . . , 10 do
initialize encoder, encode X and UMAP to R2 cluster using HMM, giving labels c(x)
and probabilities p(x) for x ∈ X do

if p(x) < .95 or (i > 1 and c(x) ̸= c′(x)) then
remove x from Mask and SemiMask

else
add x to SemiMask

end

end
for epoch = 1, . . . , 5 do

for x ∈ X do
if x ∈Mask then

train on x, c(x)
else if x ∈ SemiMask then

train on x, c(x), weighted by 0.5
end
c′(x)← c(x)

end

end
for x ∈Mask do

Final[x]← c(x)
end

end
for x ∈ X \ Final do

Final[x]← c(x)
end

that time point. (We also explored other means of combining these multiple labels, with
very similar results.) There is essentially no difference between window-wise and point-wise
evaluation so, although existing works are ambiguous as to which is being employed, this
ambiguity does not prevent a clear assessment of performance. The results presented in
Section 5 are all in the point-wise setting.

4. Our Method

Our model is based on the technique of pseudo-label training (Caron et al., 2018), extended
with a novel method for selecting points on which to pseudo-label train. Pseudo-label
training clusters the output of an encoder, then uses cluster labels as classification targets,
and trains on these targets to refine the weights of the encoder. It allows the encoder weights
to be iteratively refined. However, the pseudo-labels are noisy and often incorrect. Previous
works (Mahon and Lukasiewicz, 2021; Mrabah et al., 2020) have shown that filtering out
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the least confident labels can improve performance. We propose a novel method of filtering
these labels. At each iteration, we train only on those data points that received the same
cluster label as they did in the previous iteration. We also implement a graded label filtering,
by double-weighting the training updates for the points that received the same cluster label
in every iteration so far. Formally, let X be the space of data points. Elements of X are
windowed sequences of sensor readings of length 512. Our encoder network fθ and clustering
model g are then represented by the following functions

fθ : X → Z ,

g : Z → {0, . . . ,K − 1} ,

where the latent space Z is of lower dimension than X, θ denotes the network parameters,
and K is the user-defined number of clusters. Let T be the total number of training
iterations, and θj , 1 ≤ j ≤ T be the value of the network parameters at iteration j. Then,
we define the full deep clustering model at iteration j as

Cj := g ◦ fθj ,
Cj : X → {0, . . . ,K − 1} .

The encoder loss at iteration j + 1 is then given by

Lj =
∑

Mj

CE (h(fθ(xi)), Cj(xi)) +
∑

Sj

CE (h(fθ(xi)), Cj(xi)) ,

where h : Z → (0, 1)K is the softmax classifier used for pseudo-label training (it is discarded
after training), CE is the categorical cross-entropy loss,

Sj := {x ∈ X|Cj(x) = Cj−1(x)} ,

Mj := {x ∈ X|∀1 ≤ k < j,Cj(x) = Ck(x)} .

Here, Sj and Mj correspond to SemiMask and Mask in Algorithm 1, respectively, and
allow for our graded label filtering. Note that Mj ⊂ Sj .

Existing deep HAR clustering models all require an autoencoder to generate feature
vectors for clustering (Sheng and Huber, 2020; Ma et al., 2021; McConville et al., 2021).
This effectively doubles the time and space requirements, as a decoder must be trained in
conjunction with the encoder. Autoencoders can also present some problems for clustering,
as they learn to reconstruct every detail of the input, including irrelevant features and
noise. This has been well-documented in the case of image clustering, and becomes a
greater problem the larger the input is; see (Mrabah et al., 2020) and the references therein
for a full discussion. Our method, in contrast, uses a single streamlined loss, which does not
require a decoder, and thus can scale better to richer datasets with more sensors, both in
terms of computational costs and accuracy. This is supported by the results from Section 5.

Before clustering the latent space, we apply UMAP (uniform manifold approximation
(McInnes et al., 2018)), as a second round of dimensionality reduction, reducing the latent
dimension from 32 to 2, and cluster with a hidden Markov model (HMM) to capture tem-
poral consistency. As with previous HAR clustering models, the number of clusters is set
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manually to be equal to the number of classes in the dataset. The label filtering method
described above identifies, each time it is run, a subset of confident labels. It can thus be
repeated a number of times. If, in any of the repetitions, a data point received a confident
label, then the output of our model for that data point is its most recent confident label.
Otherwise, the output of our model is the label from the final repetition. We iterate until
the set of points that have ever received a confident label stops increasing.

A final feature of our model is that, for the five smaller datasets, we reduce the step
size from 100 (as is standard) to 5, to increase the number of data points. This reduction
provides 20 times more data, which improves the training of the encoder, cf. Table 7.
However HHAR, having by far the most data points, but comparatively few sensors (12,
compared to, e.g., 51 for PAMAP or 117 for REALDISP), does not require additional data,
so we keep the original step size of 100. The entire method is described in Algorithm 1.

To evaluate the four settings discussed in Section 3.2 and presented in Table 2, we use a
pared-down version of our model. This pared-down version differs from the above in that it
removes UMAP and label filtering, and does not decrease the step size. That is, it simply
encodes the data using the same convolutional architecture as the main model, with a step
size of 100, clusters the encodings using an HMM, and then performs pseudo-label training.

5. Experimental Evaluation

Metrics. We use four metrics: clustering accuracy (ACC), adjusted Rand index (ARI),
normalized mutual information (NMI), and macro-F1 (F1). After aligning predicted labels
to the ground-truth labels via the alignment that maximizes accuracy, ACC and F1 are
computed as in the supervised setting. ARI and NMI are computed by:

ARI =

∑
ij

(nij
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where nj is the number of data points in ground-truth class j, as indicated by the labels in
the dataset, ni is the number of data points in cluster i, nij is the number of data points
in ground-truth class j and cluster i, and n is the total number of data points.

We choose this set of metrics, because it covers three interpretations of clustering. ARI
measures performance with respect to the standard interpretation of finding a partition that
maximizes intra-cluster similarity and minimizes inter-cluster similarity. Calling points with
the same ground-truth label similar, and those with different labels dissimilar, ARI mea-
sures what fraction of the time similar pairs are placed together and different pairs placed
separately. NMI is based on the interpretation of clustering as compression. An accurate
clustering should be able to encode the maximum amount of useful information about a
given data point by specifying its cluster assignment, i.e., the cluster labels act as a com-
pression code, replacing the data for each point with a single integer from 0, . . . ,K − 1,
where K is the number of clusters. The ground-truth labels are thought of as the ideal
compression code, and we then measure the information-theoretic distance between it and
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Table 4: Comparison with (McConville et al.,
2021) and various supervised methods. The super-
vised methods are (Dua et al., 2021) on PAMAP,
UCI-Sm, andWISDM-v1, (Aljarrah and Ali, 2021)
on REALDISP, and (Qin et al., 2020) on HHAR.

ours n2d supervised

PAMAP

ACC 86.3 86.0 95.3
NMI 88.4 85.4 -
ARI 81.4 78.3 -
F1 80.1 83.7 95.2

UCI-Smartphone

ACC 65.9 52.1 96.2
NMI 68.6 55.8 -
ARI 56.3 38.7 -
F1 64.4 48.5 96.2

WISDM-v1

ACC 75.3 70.5 97.2
NMI 76.0 69.1 -
ARI 65.5 58.1 -
F1 68.9 63.4 97.2

WISDM-watch

ACC 91.7 84.8 -
NMI 93.8 88.9 -
ARI 88.1 79.0 -
F1 92.4 84.5 -

REALDISP

ACC 91.0 80.3 99.8
NMI 95.2 90.4 -
ARI 88.9 79.0 -
F1 88.0 72.5 99.8

HHAR

ACC 62.3 59.7 96.6
NMI 67.9 60.8 -
ARI 50.5 46.0 -
F1 59.0 59.3 96.6

UCI-full-feats

ACC 65.5 64.9 -
NMI 59.3 67.0 -
ARI 46.3 55.1 -
F1 64.5 70.4 -

Table 5: Comparison of our method
with that of (Sheng and Huber,
2020). Ours performs better on both
datasets and all metrics, with a more
significant difference on the more
complex dataset, REALDISP.

ours S20

PAMAP
ACC 86.3 85.4
NMI 88.4 87.3
ARI 81.4 80.2

REALDISP
ACC 91.0 68.1
NMI 95.2 60.5
ARI 88.9 80.4

Table 6: Comparison of our method
with that of Ma et al. (2021) on the
HHAR dataset. We achieve a signif-
icantly higher NMI but a lower F1.

HHAR

NMI F1

ours 67.9 59.0

M21 55.0 65.9

the compression code produced by the clustering model being evaluated. ACC and F1 treat
clustering as unsupervised classification. They are useful because they enable a direct com-
parison to supervised classifiers, as in Table 4. For these reasons, and to enable comparison,
we recommend that future work uses these four metrics.

Network Architecture and Training Parameters. Our encoder network contains
four convolutional layers, with batchnorm and max-pooling of size 2 after each. The filter
sizes and strides for the convolutional layers are (50, 2), (40, 2), (7, 1), (4, 1), and the number
of filters per layer are 4, 8, 16, 32. In every layer, the convolutional filters are 1D with weight
sharing across sensor channels. After the convolutional layers, all channels are combined
with a fully connected layer (with input size 32 × the number of sensor channels, and output
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Table 7: Ablation studies on the main components of our model.

ours no UMAP no label-filter GMM step 100 net. dim.

PAMAP

ACC 86.3 56.0 73.3 78.7 81.6 65.06
NMI 88.4 52.9 76.8 81.0 81.5 64.32
ARI 81.4 39.8 62.72 69.7 72.4 50.11
F1 80.1 52.9 71.4 76.7 78.4 63.69

UCI-Sm

ACC 65.9 49.8 60.8 58.7 62.5 55.63
NMI 68.6 52.7 63.8 62.4 67.2 56.38
ARI 56.3 36.9 49.3 47.1 52.1 41.71
F1 64.4 44.8 58.9 58.3 60.6 54.52

WISDM-v1

ACC 75.3 68.8 68.6 71.5 69.9 65.72
NMI 76.0 63.2 70.2 74.6 69.2 61.2
ARI 65.5 55.1 56.0 60.9 55.9 51.15
F1 68.9 58.6 60.4 63.7 64.9 57.29

WISDM watch

ACC 91.7 69.1 87.8 89.2 88.8 62.73
NMI 93.8 80.8 90.5 92.1 92.6 70.31
ARI 88.1 63.6 81.8 85.0 85.5 51.58
F1 92.4 67.0 88.0 90.4 89.5 61.9

REALDISP

ACC 91.0 82.4 82.7 87.7 76.8 51.07
NMI 95.2 91.0 92.1 93.0 91.5 68.73
ARI 88.9 82.7 79.9 84.5 79.1 46.53
F1 88.0 76.0 78.8 84.6 81.2 49.3

HHAR

ACC 62.3 57.9 58.5 61.2 - 64.84
NMI 67.9 58.4 61.0 66.7 - 65.32
ARI 50.5 45.8 45.4 50.2 - 52.3
F1 59.0 56.4 54.9 58.6 - 63.68

size 32). Weights are updated by Adam (Kingma and Ba, 2014) with learning rate 1e-3,
β1 = 0.9, β2 = 0.999 and weight decay of 0. The latent space has dimension 32. UMAP
uses two components, minimum distance 0 and n neighbours 60. Clustering is performed
by a hidden Markov model (HMM), whose emission probabilities are Gaussian distributions
with no restrictions on the covariance matrices. The transition probabilities are set to 1−p
on the diagonal and p

K−1 on the off-diagonal, where p is the fraction of time points in the
dataset that are followed by the same action. The window size is 512 for all datasets. For
information on the step size, see the discussion in Section 4. The softmax classifier used
for pseudo-label training is a multi-layer perceptron (MLP) with a single hidden layer of
250 units. After the encoder has been pseudo-label trained, we cluster again. We alternate
ten times between clustering and pseudo-label training the encoder on the cluster labels,
training for five epochs each iteration.

Comparisons with Prior Work. Tables 4, 5, and 6 compare, respectively, the perfor-
mance of our model to that of McConville et al. (2021), Sheng and Huber (2020), and Ma
et al. (2021). All evaluations are in the pointwise subject-dependent setting. For the latter
two, we are restricted to only comparing on certain datasets and metrics, as the authors do
not report on all the datasets and metrics that we do, and they do not release their code.
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We attempted to reimplement their methods using the details in the respective papers, but
were unable to, and where we contacted the authors to ask for access to their code, we
received no response. The reasons we test on these six datasets are given in Section 3.1.
Table 4 also compares to recent supervised models, to give an indication of the gap between
them and clustering models. The supervised models used are shown in the table caption.

We outperform (McConville et al., 2021) on almost all datasets and metrics. The most
significant difference is on the most complex dataset, REALDISP (see Table 3). This sup-
ports that our method is better able to scale to complex datasets, because it avoids the
need for an autoencoder. For comparison with (McConville et al., 2021), we report on both
UCI-Sm, which contains the raw sensor signal, and on UCI-feat, which contains statistical
features for each window. (Both datasets and their details are available on the UCI reposi-
tory.) The figures reported by McConville et al. (2021) on UCI-feat are significantly higher
than we obtained by running their code, 80.1 and 68.3 for ACC and NMI, respectively. This
difference could be due to their reported results using a larger number of clusters than the
ground truth, which tends to increase ACC significantly while keeping NMI similar. For
fair comparison, we fixed the number of clusters to the ground truth for all methods.

We outperform (Sheng and Huber, 2020) on both PAMAP and REALDISP. The margin
is larger for REALDISP, again suggesting that our approach is better able to leverage
the more complex information in REALDISP’s 117 channels, because it does not use an
autoencoder. We outperform (Ma et al., 2021) on NMI but not F1. Partly, this could be
due to their reporting micro-F1 (not specified but implied), which tends to be higher. Our
micro-F1 score on HHAR is closer at 62.30. This difference between metrics also highlights
the value of reporting multiple metrics to capture different aspects of performance.

Ablation Studies. Table 7 shows the results of removing each of the components of
our model. UMAP gives an improved performance across all metrics and datasets. This
is consistent with its use in image clustering models (Allaoui et al., 2020). We use two
different ablation settings, one removes all dimension reduction, the other replaces UMAP
with an MLP of hidden size 256, and output size 2. The second setting also shows a general
drop of performance, which is larger on datasets with more sensors. Results on HHAR are
comparable to using UMAP, likely because, as well as only 12 sensor channels, HHAR has
the most data with which the additional network can train. Results on all other datasets
are worse. PAMAP and, especially, REALDISP, show a significant drop. This suggests
that, for simple datasets, more of the improvement with UMAP is due to it reducing
dimension, rather than exactly how it reduces dimension, but for complex datasets with
more information to fit into the reduced dimensions, the manner of dimension reduction
is more important. Label filtering, the technique of removing likely-incorrect labels from
pseudo-label training, so that the less noisy filtered labels can facilitate a better training
of the encoder, has been shown to improve clustering performance in prior works (Mrabah
et al., 2020; Mahon and Lukasiewicz, 2021). Here, our novel method of label-filtering is also
effective, significantly increasing all metrics across all datasets. Clustering with an HMM
instead of a GMM markedly improves performance on PAMAP, UCI-Sm, and WISDM-v1.
On WISDM-watch and REALDISP, where the metrics are already high, the improvement,
though still significant, is less substantial. This suggests that, as the sensor data become
richer, the further benefit of temporal information offers less improvement. (The GMM
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has full covariance matrices, convergence threshold of .001, maximum EM steps of 100,
is warm-started with k-means, and uses five initializations.) The smaller step size, which
produces more data points to train the encoder, is effective at improving performance on all
datasets. It is most effective on the two datasets with the most sensor channels, PAMAP
and REALDISP, as they require larger networks, and hence more training data.

6. Conclusion

In this paper, we articulated and discussed the shortcomings of current evaluation pro-
cedures for HAR clustering models. We noted a lack of consistency in previous works’
reporting of results, and conducted experiments to show that a common ambiguity in eval-
uation (namely, subject dependence) can significantly alter the results. We then discussed
superior evaluation alternatives. Additionally, we introduced a new deep clustering model
for HAR. Tested on six public datasets, under our proposed settings, it performs better than
or on par with existing works, while also being more scalable and efficient by avoiding the
need for an autoencoder. This paper can serve as a guide for future efforts in deep clustering
of human activities, by articulating the requirements for comprehensive evaluation, and by
detailing a number of effective techniques with respect to our own model.
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