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Appendix A. Details of the Bregman projection

Here, we demonstrate the details of our algorithm inspired by the Non-negative alternate
scaling algorithm (NASA) introduced by Dessein et al. (2018), which is an algorithm to
obtain the solution for CROT. Although our outlier-robust CROT does not satisfy the
assumptions required for CORT, we show our algorithm is constructed similarly to the
NASA algorithm.

First, we introduce basics of convex analysis as preliminaries. Next, we explain the
alternate scaling algorithm, which is the basis of the NASA algorithm, and the required
assumptions for it. Finally, we show the NASA algorithm for the separable Bregman diver-
gence, and how we borrowed their idea to construct our algorithm.

A.1. Convex analysis

Let E be a Euclidean space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥. The boundary,
interior, and relative interior of a subset S ⊆ E are denoted by bd(S), int(S), and ri(S),
respectively. Recall that for a convex set C, we have

ri(C) = {x ∈ E | ∀y ∈ C, ∃λ > 1, λx+ (1− λ)y ∈ C}. (1)

In convex analysis, scalar functions are defined over the whole space E and take values in
R ∪ {−∞, ∞}. The effective domain, or simply domain, of a function f is defined as the
set:

dom f = {x ∈ E | f(x) < +∞}. (2)

Definition 1 (Closed functions). A function f : Rn → R is said to be closed if for each
α ∈ R, the sublevel set {x ∈ dom f | f(x) ≤ α} is a closed set.

If dom f is closed, then f is closed.
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Definition 2 (Proper functions). Suppose a convex function f : E → R ∪ {±∞} satisfies
f(x) > −∞ for every x ∈ dom f and there exists some point x0 in its domain such that
f(x0) < +∞. Then f is called a proper function.

A proper convex function is closed if and only if it is lower semi-continuous. 1 A closed
function f is continuous relative to any simplex, polytope of a polyhedral subset in dom f .
A convex function f is always continuous in the relative interior ri(dom f).

Definition 3 (Essential smoothness Bauschke and Borwein (1997)). Suppose f is a closed
convex proper function on E with int(dom f) ̸= ∅. Then f is essentially smooth, if f is
differentiable on int(dom f) and

∀n ∈ N, xn ∈ int(dom f),
xn → x ∈ bd(dom f)

}
⇒ ∥∇f(xn)∥ → ∞.

Definition 4 (Essential strict convexity Bauschke and Borwein (1997)). Let ∂f be the
subgradient of f . Suppose f is closed convex proper on E. Then, f is essentially strictly
convex, if f is strictly convex on every convex subset of dom(∂f ).

We define a set of functions called the Legendre type and Fenchel conjugate functions.

Definition 5 (Legendre type Bauschke and Borwein (1997)). Suppose f is a closed convex
proper function on E. Then, f is said to be of the Legendre type if f is both essentially smooth
and essentially strictly convex.

Definition 6 (Fenchel conjugate Dessein et al. (2018)). The Fenchel conjugate f∗ of a
function f is defined for all y ∈ E as follows:

f∗(y) = sup
x∈int(dom f)

⟨x,y⟩ − f(x). (3)

The Fenchel conjugate f∗ is always a closed convex function and if f is a closed convex
function, then (f∗)∗ = f , and f is of the Legendre type if and only if f∗ is of the Legendre
type. If f∗ is of the Legendre type, the gradient mapping ∇f is a homeomorphism2 between
int(domf) and int(domf∗), with inverse mapping (∇f)−1 = ∇f∗. This guarantees the
existence of dual coordinate systems x(y) = ∇f∗(y) and y(x) = ∇f(x) on int(dom f) and
int(dom f∗).

Finally, we say that a function f is a cofinite if it satisfies

lim
λ→+∞

f(λx)/λ = +∞, (4)

for all nonzero x ∈ E . Intuitively, it means that f grows super-linearly in every direction.
In particular, a closed convex proper function is cofinite if and only if dom f∗ = E .

1. Let X be a topological space. A funtion f : X → R∪{−∞,∞} is called lower semi-continuous at a point
x0 ∈ X if for every y < f(x0) there exists a neighborhood U of x0 such that f(x) > y for all x ∈ U .

2. A function f : X → Y between two topological spaces is a homeomorphism if it has the following three
properties: (a) f is a bijection. (b) f is continuous. (c) The inverse function f−1 is continuous.
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A.2. Alternate scaling algorithm

Here, we show the details of obtaining the Bregman projection onto a convex set. Let ϕ
be a function of the Legendre type with Fenchel conjugate ϕ∗ = ψ. In general, computing
Bregman projections onto an arbitrary closed convex set C ⊆ E such that C ∩ int(domϕ) ̸=
∅ is nontrivial Dessein et al. (2018). Sometimes, it is possible to decompose C into an
intersection of finitely many closed convex sets:

C =
s⋂
l=1

Cl, (5)

where the individual Bregman projections onto the respective sets C1, . . . , Cs are easier
to compute. It is then possible to obtain the Bregman projections onto C by alternate
projections onto C1, . . . , Cs according to Dykstra’s algorithm (Boyle and Dykstra, 1986).

In more detail, let σ : N→ {1, . . . , s} be a control mapping that determines the sequence
of subsets onto which we project. For a given point x0 ∈ int(domϕ), the Bregman projection
TC(x0) of x0 onto C can be approximated with Dykstra’s algorithm by iterating the following
updates:

xk+1 ← TCσ(k)
(∇ψ(∇ϕ(xk + yσ(k))), (6)

where the correction term y1, . . . ,ys for the respective subsets are initialized with the null
element of E , and are updated after projection as follows:

yσ(k) ← yσ(k) +∇ϕ(xk)−∇ϕ(xk+1). (7)

Under some technical assumptions, the sequence of updates (xk)k∈N converges in terms of
some norm to PC(x0) with a linear rate. Several sets of such conditions have been studied
(Dhillon and Tropp, 2007; Bauschke and Lewis, 1993, 2000). Here, we use the following
conditions proposed by Dhillon and Tropp [2007] for the CROT framework:

• The function ϕ is cofinite

• The constraint qualification ri(C1) ∩ · · · ∩ ri(Cs) ∩ int(domϕ) ̸= ∅ holds

• The control mapping σ is essentially cyclic, that is , there exists a number t ∈ N such
that σ takes each output value at least once during any t consecutive input values

Once these conditions are imposed, the convergence of Dykstra’s algorithm is guaranteed.

A.3. Technical assumptions for CROT to hold

Some mild technical assumptions are required on the convex regularizer ϕ and its Fenchel
conjugate ψ = ϕ∗ for the CROT framework to hold. The assumptions are as follows:

1. ϕ is of Legendre type.

2. (0, 1)d×d ⊆ domϕ

3. domψ = Rd×d
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Algorithm NASA algorithm

θ̃ ← −γ/λ
θ∗ ← max{∇ϕ(0m×n), θ̃}
repeat
τ ← 0m
repeat

τ ← τ +
∇ψ(θ∗−τ1⊤

n )1n−1m
m

∇2ψ(θ∗−τ1⊤
n )1n

until convergence
θ̃ ← θ̃ − τ1⊤n
θ∗ ← max{∇ϕ(0m×n), θ̃}
σ ← 0⊤n
repeat

σ ← σ +
1⊤
m∇ψ(θ∗−1mσ)−(1n

n
)⊤

1⊤
m∇2ψ(θ∗−1mσ)

until convergence
θ̃ ← θ̃ − 1mσ
θ∗ ← max{∇ϕ(0m×n), θ̃}

until convergence
π∗ ← ∇ψ(θ∗)

Some assumptions relate to required conditions for the definition of Bregman projections
and convergence of the algorithms, while others are more specific to CROT problems.

The first assumption (1) is required for the definition of the Bregman projection. In ad-
dition, it guarantees the existence of dual coordinate systems on int(domϕ) and int(domψ)
via the homeomorphism ∇ϕ = ∇ψ−1.

The second assumption (2) ensures the constraint qualification G(1m
m , 1n

n ) ∩ int(domϕ)
for the Bregman projection onto the transport polytope.

The third assumption (3) equivalently requires ϕ to be cofinite for convergence.

A.4. NASA algorithm

In this subsection, we show the NASA algorithm based on Dykstra’s algorithm constructed
by projections on C0,C1, and C2.

A.4.1. Projcetion onto C0
Let us consider the projection of given matrix π onto C0. We denote this projection PC0(π)
by π∗

0. Then, the Karush-Kuhn-Tucker conditions (Kuhn and Tucker, 1951; Karush, 1939)
for π∗

0 are as follows:

π∗
0 ≥ 0, (8)

∇ϕ(π∗
0)−∇ϕ(π) ≥ 0, (9)

(∇ϕ(π∗
0)−∇ϕ(π))⊙ π∗

0 = 0, (10)

where (8) is the primal feasibility, (9) is the dual feasibility, and (10) is the complementary
slackness.
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Since we are thinking of the separable Bregman divergence, the projection onto C0 can
be performed with a closed-form expression on primal parameters:

π∗0,ij = max{0, πij}, (11)

where, π∗0,ij is the (i, j)-element of matrix π∗
0. Since ϕ′ is increasing, this is equivalent on

the dual parameters of π∗
0, θ

∗
0, to

θ∗0,ij = max{ϕ′(0), θij}. (12)

Here, the dual coordinate of the input matrix π is denoted by θ.

A.4.2. Projection onto C1 and C1
Next, we consider the Bregman projections of a given matrix π ∈ int(domϕ) onto C1 and
C2. For the projection onto C1 and C2, we employ the method of Lagrange multipliers. The
Lagrangians with Lagrange multipliers µ ∈ Rm and ν ∈ Rn for the Bregman projections
π∗
1 and π∗

2 of a given matrix π ∈ int(domϕ) onto C1 and C2 respectively write as follows:

L1(π,µ) = ϕ(π)− ⟨π,∇ϕ(π)⟩+ µ⊤(π1− 1

m
), (13)

L2(π,ν) = ϕ(π)− ⟨π,∇ϕ(π)⟩+ ν⊤(π⊤1− 1

n
). (14)

Their gradients are given on int(domϕ) by

∇L1(π,µ) = ∇ϕ(π)−∇ϕ(π) + µ1⊤, (15)

∇L2(π,ν) = ∇ϕ(π)−∇ϕ(π) + 1ν⊤, (16)

and vanish at π∗
1,π

∗
2 ∈ int(domϕ) if and only if

π∗
1 = ∇ψ(∇ϕ(π)− µ1⊤), (17)

π∗
2 = ∇ψ(∇ϕ(π)− 1ν⊤). (18)

By duality, the Bregman projections onto C1, C2 are thus equivalent to finding the unique
vectors µ, ν, such that the rows of π∗

1 sum up to 1
m , respectively the columns of π∗

2 sum
up to 1

n :

∇ψ(∇ϕ(π)− µ1⊤)1 =
1

m
, (19)

∇ψ(∇ϕ(π)− 1ν⊤)⊤1 =
1

n
. (20)

Again, since we are resticting ourselves to the separable Bregman divergence, we can com-
pute the projection step more efficiently. Due to the separability, the projections onto C1
and C2 can be divided into m and n parallel subproblems in the search space of 1-dimension
as follows:

n∑
j=1

ψ′(θij − µi) =
1

m
, (21)

m∑
i=1

ψ′(θij − νj) =
1

n
. (22)
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Here, we denote the dual coordinate of π by θ.
In order to obtain the Lagrange multipliers µi and νj , we use the Newton-Raphson

method. More specifically, we eploit the following functions:

f(µi) = −
n∑
j=1

ψ′(θij − µi), (23)

g(νj) = −
m∑
i=1

ψ′(θij − νj). (24)

These functions are defined on the open intervals (θ̂i − θlimit,+∞) and (θ̌j − θlimit,+∞),

where 0 < θlimit < +∞ is such that domψ = (−∞, θlimit), and θ̂i = max{θij}1≤j≤n, θ̌j =
max{θij}1≤i≤m. We can now obtain the unique solution to f(µi) = − 1

m and g(νj) = − 1
n .

Starting with µi = 0 and νj = 0, the Newton-Raphson updates:

µi ← µi +

∑n
j=1 ψ

′(θij − µi)− 1
m∑n

j=1 ψ
′′(θij − µi)

, (25)

νj ← νj +

∑m
i=1 ψ

′(θij − νi)− 1
n∑m

i=1 ψ
′′(θij − νi)

, (26)

converge to the optimal solution with a quadraitic rate. To avoid storing the intermediate
Lagrange multipliers, the updates can be directly written in terms of the dual parameters:

θ∗1,ij ← θ∗1,ij −
∑n

j=1 ψ
′(θ∗1,ij)− 1

m∑n
j=1 ψ

′′(θ∗1,ij)
, (27)

θ∗2,ij ← θ∗2,ij −
∑m

i=1 ψ
′(θ∗2,ij)− 1

n∑m
i=1 ψ

′′(θ∗2,ij)
, (28)

after initilalization by θ∗1,ij ← θij , θ
∗
2,ij ← θij . Here, θ∗1,ij and θ∗2,ij are the ith row and

jth column of θ∗1 and θ∗2 respectively. θ∗1 and θ∗2 are the dual coordinates of π∗
1 and π∗

2

respectively.
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Table 1: Domain of Euclidean norm and β-potential (β > 1).
Regularization term dom ϕ dom ψ

β-potential ( β > 1 ) R+ ( 1
1−β ,∞)

Euclidean norm R R

From the above, starting from ξ and writing the successive vectors µ(k), ν(k) along
iterations, we have:

ψ′(−γ/λ) → ψ′
(
max{ϕ′(0), −γ/λ}

)
→ ψ′

(
max{ϕ′(0), −γ/λ} − µ(1)1⊤

)
→ ψ′

(
max{ϕ′(0), −γ/λ− µ(1)1⊤ )}

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(1)1⊤)} − 1ν(1)⊤

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(1)1⊤ − 1ν(1)⊤}

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(1)1⊤)− 1ν(1)⊤}+ µ(1)1⊤ − µ(2)1⊤

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(2)1⊤ − 1ν(1)⊤}

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(2)1⊤)− 1ν(1)⊤}+ 1ν(1)⊤ − 1ν(2)⊤

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(2)1⊤ − 1ν(2)⊤}

)
→ · · ·
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(k)1⊤ − 1ν(k)⊤}

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(k)1⊤ − 1ν(k)⊤}+ µ(k)1⊤ − µ(k+1)1⊤

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(k+1)1⊤ − 1ν(k)⊤}

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(k+1)1⊤ − 1ν(k)⊤}+ 1ν(k)⊤ − 1ν(k+1)⊤

)
→ ψ′

(
max{ϕ′(0),−γ/λ− µ(k+1)1⊤ − 1ν(k+1)⊤}

)
→ · · ·
→ π∗.

An efficent algorithm then exploits the differences τ (k) = µ(k) − µ(k−1) and σ(k) =
ν(k) − ν(k−1) to scale the rows and columns (Algorithm ).

A.5. The different point of our algorithm from NASA

An example of applying NASA algorithm is when the regulariler is the Euclidean norm
ϕ(π) = 1

2(π − 1)2. As it is shown in Table 1, we can easily confirm the Euclidean norm
satisfies the three assumptions introduced in A.3. However, for the outlier-robust CROT, we
use β-potential (β > 1) as the regularizer, which violates the third assumption, domψ = R
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(Table 1). Therefore, we cannot naively apply the NASA algorithm for the outlier-robust
CROT. For instance, lines 2, 7, and 11 in our algorithm are not mathematically correct
as projections onto C0. Similarly, lines 4–6 and 8–10 are not mathematically correct for
projections onto C1 and C2, respectively.

In spite of these mathematical issues, we still see lines 2, 7, and 11 in our algorithm
as projections onto C0. In addition, since we cannot update the Newton-Raphson more
than twice for projections onto C1 and C2 because θ∗ ∈ dom∇ψ(= dom∇ψ) is no longer
guaranteed, we overcome this issue by only updating it once.

Appendix B. The proof of Proposition 1

Proposition 1. For a given z (> λ
β−1), let J ⊆ {1, . . . , n} be a subset of indices which

satisfies the condition shown in Definition 2. Suppose we obtained a transport matrix πoutput

by running the alogrithm T times satisfying the following condition:

T <
z
λ(β − 1)− 1

( 1
m)β−1 + ( 1n)

β−1
. (29)

Then, πoutput transports no mass to J.

Proof Before the algorithm starts,

− z
λ
<

1

1− β
(30)

holds. Since every element in θ∗ is greater than or equal to ϕ′(0) = 1
1−β , the following

inequality holds for every i in the algorithm:

τi ≥
1

1− β
− ϕ′

( 1

m

)
(31)

=
1

1− β
−

(
1

β − 1

((
1

m

)β−1

− 1

))

= − 1

β − 1

(
1

m

)β−1

. (32)

Therefore,

−τi ≤
1

β − 1

(
1

m

)β−1

. (33)

Similarly, for every j, the following inequality holds:

−σj ≤
1

β − 1

(
1

n

)β−1

. (34)

Therefore, if the algorithm finished running T times and the following inequality holds,

− z
λ
+ T × 1

β − 1

(
1

m

)β−1

+ T × 1

β − 1

(
1

n

)β−1

<
1

1− β
, (35)
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then,

∀i, θ̃ij <
1

1− β
if j ∈ J (36)

(37)

holds. Therefore,

∀i,πoutput
ij = 0 if j ∈ J. (38)
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