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Appendix
Appendix A. An Overview of the Method and Computational Costs

Figure 9 presents and overview scheme of the method:
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Figure 9: An Overview scheme of the IQNAS method with computational costs

The search space, latency measurements and formula, supernetwork training and fine-
tuning blocks (1,2,3,5,6,7,10,11,12) are identical to those introduced in HardCoRe-NAS:

We first train for 250 epochs a one-shot model wh using the heaviest possible config-
uration, i.e., a depth of 4 for all stages, with er = 6, k = 5 × 5, se = on for all the blocks.
Next, to obtain w∗, for additional 100 epochs of fine-tuning wh over 80% of a 80-20 random
split of the ImageNet train set Deng et al. (2009). The training settings are specified in
appendix C. The first 250 epochs took 280 GPU hours and the additional 100 fine-tuning
epochs took 120 GPU hours, both Running with a batch size of 200 on 8×NVIDIA V100,
summing to a total of 400 hours on NVIDIA V100 GPU to obtain both wh and w∗.

A significant benefit of this training scheme is that it also shortens the generation of
trained models. The common approach of most NAS methods is to re-train the extracted
sub-networks from scratch. Instead, we follow HardCoRe-NAS and leverage having two sets
of weights: wh and w∗. Instead of retraining the generated sub-networks from a random
initialization we opt for fine-tuning w∗ guided by knowledge distillation Hinton et al. (2015)
from the heaviest model wh. Empirically, we observe that this surpasses the accuracy
obtained when training from scratch at a fraction of the time: 8 GPU hours for each
generated network.

The key differences from HardCoRe-NAS reside in the latency constrained search blocks
(4,8,9 of figure 9) that have to do with constructing the quadratic accuracy estimator of
section 3.3 and solving the IQCQP problem. The later requires only several minutes on
CPU for each generated netowork (compared to 7 GPU hours of HardCoRe-NAS), while the
former requires to measure the individual accuracy contribution of each decision. Running
a validation epoch to estimate E[Acc] and also for each decision out of all 255 entries in the
vector ζ to obtain ∆s

b,c and ∆s
b requires 256 validation epochs in total that last for 3.5 GPU

hours. Figure 7 (Left) shows that reducing the variance by taking 10 validation epochs per
measurement is beneficial. Thus a total of 2560 validation epochs requires 35 GPU hours
only once.
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Overall, we are able to generate a trained model within a small marginal cost of 8 GPU
hours. The total cost for generating N trained models is 435 + 8N , much lower than the
1200+25N reported by OFA Cai et al. (2019) and more scalable compared to the 400+15N
reported by HardCoRe-NAS. See Table 1. The reduced search cost frees more compute
that can be utilized for a longer fine-tuning of 15 GPU hours to surpass HardCoRe-NAS
with the same marginal cost of 15N . This makes our method scalable for many devices and
latency requirements.

Appendix B. More Specifications of the Search Space

Inspired by EfficientNet Tan and Le (2019) and TF-NAS Hu et al. (2020), HardCoRe-
NAS Nayman et al. (2021) builds a layer-wise search space that we utilize, as explained in
Section 3.1 and detailed in Table 3. The input shapes and the channel numbers are the
same as EfficientNetB0. Similarly to TF-NAS and differently from EfficientNet-B0, we use
ReLU in the first three stages. As specified in Section 3.1, the ElasticMBInvRes block is the
elastic version of the MBInvRes block as in HardCoRe-NAS, introduced in Sandler et al.
(2018). Those blocks of stages 3 to 8 are to be searched for, while the rest are fixed.

Stage Input Operation Cout Act b
1 2242 × 3 3 × 3 Conv 32 ReLU 1
2 1123 × 32 MBInvRes 16 ReLU 1
3 1122 × 16 ElasticMBInvRes 24 ReLU [2, 4]
4 562 × 24 ElasticMBInvRes 40 Swish [2, 4]
5 282 × 40 ElasticMBInvRes 80 Swish [2, 4]
6 142 × 80 ElasticMBInvRes 112 Swish [2, 4]
7 142 × 112 ElasticMBInvRes 192 Swish [2, 4]
8 72 × 192 ElasticMBInvRes 960 Swish 1
9 72 × 960 1 × 1 Conv 1280 Swish 1
10 72 × 1280 AvgPool 1280 - 1
11 1280 Fc 1000 - 1

c er k se
1 2 3 × 3 off
2 2 3 × 3 on
3 2 5 × 5 off
4 2 5 × 5 on
5 3 3 × 3 off
6 3 3 × 3 on
7 3 5 × 5 off
8 3 5 × 5 on
9 6 3 × 3 off
10 6 3 × 3 on
11 6 5 × 5 off
12 6 5 × 5 on

Table 3: Search space specifications and indexing. ”MBInvRes” is the basic block in Sandler
et al. (2018). ”ElasticMBInvRes” denotes the elastic blocks (Section 3.1) to be searched
for. ”Cout” stands for the output channels. Act denotes the activation function used in a
stage. ”b” is the number of blocks in a stage, where [b, b̄] is a discrete interval. If necessary,
the down-sampling occurs at the first block of a stage. ”er” stands for the expansion ratio
of the point-wise convolutions, ”k” stands for the kernel size of the depth-wise separable
convolutions and ”se” stands for Squeeze-and-Excitation (SE) with on and off denoting
with and without SE respectively. The configurations are indexed according to their expected
latency.

Appendix C. Reproducibility and Experimental Setting

In all our experiments we train the networks using SGD with a learning rate of 0.1, cosine
annealing, Nesterov momentum of 0.9, weight decay of 10−4, applying label smoothing
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Szegedy et al. (2016) of 0.1, cutout, Autoaugment Cubuk et al. (2018), mixed precision and
EMA-smoothing.

The supernetwork is trained following Nayman et al. (2021) over 80% of a random
80-20 split of the ImageNet train set. We utilize the remaining 20% as a validation set for
collecting data to obtain the accuracy predictors and for architecture search with latencies
of 40, 45, 50, . . . , 60 and 25, 30, 40 milliseconds running with a batch size of 1 and 64 on an
Intel Xeon CPU and and NVIDIA P100 GPU, respectively.

The evolutionary search implementation is adapted from Cai et al. (2019) with a
population size of 100, mutation probability of 0.1, parent ratio of 0.25 and mutation ratio
of 0.5. It runs for 500 iterations, while the the BCFW runs for 2000 iterations and its
projection step for 1000 iterations. The MIQCP solver runs up to 100 seconds with CPLEX
default settings.

Appendix D. Comparing other Resources

Figure 10 shows a comparison of Imagenet top-1 accuracy and FLOPS between generated
models by our method and other leading NAS methods, some of which optimized for FLOPS.
Our models outperform the rest in terms of the tradeoff between accuracy and FLOPS.
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Figure 10: Imagenet Top-1 accuracy vs FLOPS. (Right) All models are trained from scratch.
BINAS generates better models than other methods with a reduced scalable marginal cost
of 8 GPU hours for each additional model. (Right) Surpassing State-of-the-Art. BINAS
generates superior models than HardCoReNAS for the same search space, supernetwork
weights and marginal cost of 15 GPU hours.

Table 4 presents comparisons in terms of model size, e.g. number of parameters, FLOPS
together with latency.

Appendix E. Proof of Theorem 3.1

Theorem E.1 Consider n independent random variables {Xi}i∈[1,2...,n] conditionally independent
with another random variable A. Suppose in addition that there exists a positive real number 0 < ϵ ≪ 1
such that for any given Xi, the following term is bounded by above:∣∣∣∣P [A = a|Xi = xi]

P [A = a] − 1
∣∣∣∣ < ϵ.
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Model Size
(106)

FLOPS
(108)

Latency
(ms)

Top-1
(%)

MnasNetB1 4.4 3.1 39 74.5
TFNAS-B 4.9 2.3 40 75.0
SPNASNet 4.4 3.3 41 74.9
OFA CPU 4.9 3.6 42 75.7
HardCoRe A 5.3 2.5 40 75.8
BINAS*(40) 5.6 2.3 40 76.5
MobileNetV3 5.4 2.2 45 75.2
FBNet 5.5 3.8 47 75.7
MnasNetA1 3.9 3.1 55 75.2
HardCoRe B 5.2 2.7 44 76.4
BINAS*(45) 7.1 2.7 45 77.0
MobileNetV2 6.1 5.8 70 76.5
TFNAS-A 7.1 3.0 60 76.5
HardCoRe C 7.5 2.9 50 77.1
BINAS*(50) 7.0 3.0 50 77.6
EfficientNetB0 5.3 3.9 85 77.3
HardCoRe D 8.1 3.3 55 77.6
BINAS*(55) 7.7 3.5 55 77.8
FairNAS-C 4.4 3.2 60 77.0
HardCoRe E 8.2 3.4 61 78.0
BINAS*(60) 8.2 3.8 59 78.0

Table 4: ImageNet top-1 accuracy, model size (number of parameters), FLOPS and latency
comparison with other methods. The latency is reported for Intel Xeon CPU with a batch
size of 1.

Then we have that:

E [A|X1 = x1, . . . , Xn = xn] = E [A] +
∑

i

(E [A|Xi = xi] − E [A]) (1 + O(nϵ))

Proof We consider two independent random variables X, Y that are also conditionally
independent with another random variable A. Our purpose is to approximate the following
conditional expectation:

E [A|X = x, Y = y] .

We start by writing :

P [A = a|X = x, Y = y] = P [X = x, Y = y|A = a]P [A = a]
P [X = x, Y = y]

Assuming the conditional independence, that is

P [X = x, Y = y|A = a] = P [X = x|A = a]P [Y = y|A = a] ,
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we have

P [A = a|X = x, Y = y] = P [X = x|A = a]P [Y = y|A = a]P [A = a]
P [X = x]P [Y = y]

= P [A = a|X = x]P [A = a|Y = y]
P [A = a]

(13)

Next, we assume that the impact on A of the knowledge of X is bounded, meaning that
there is a positive real number 0 < ϵ ≪ 1 such that:∣∣∣∣P [A = a|X = x]

P [A = a] − 1
∣∣∣∣ < ϵ.

We have:

P [A = a|X = x] = P [A = a] + P [A = a|X = x] − P [A = a]

= P [A = a]

1 +
(
P [A = a|X = x]

P [A = a] − 1
)

︸ ︷︷ ︸
ϵx


Using a similar development for P [A = a|Y = y] we also have:

P [A = a|Y = y] = P [A = a]

1 +
(
P [A = a|Y = y]

P [A = a] − 1
)

︸ ︷︷ ︸
ϵy


Plugging the two above equations in (13), we have:

P [A = a|X = x, Y = y] = P [A = a] (1 + ϵx)P [A = a] (1 + ϵy)
P [A = a]

= P [A = a] (1 + ϵx)(1 + ϵy)
= P [A = a] (1 + ϵx + ϵy) + O(ϵ2)

= P [A = a]
(

1 +
(
P [A = a|X = x]

P [A = a] − 1
)

+
(
P [A = a|Y = y]

P [A = a] − 1
))

+ O(ϵ2)

= P [A = a]
(
P [A = a|X = x]

P [A = a] + P [A = a|Y = y]
P [A = a] − 1

)
+ O(ϵ2)

= P [A = a|X = x] + P [A = a|Y = y] − P [A = a] + O(ϵ2)

Then, integrating over a to get the expectation leads to:

E [A|X = x, Y = y] =
∫

a

aP [A = a|X = x, Y = y] da

=E [A|X = x] + E [A|Y = y] − E [A] + O(ϵ2)
=E [A] + (E [A|X = x] − E [A])

+ (E [A|Y = y] − E [A]) + O(ϵ2).

In the case of more than two random variables, X1, X2, . . . , Xn, denoting by un =
E [A|X1 = x1, . . . , Xn = xn]−E [A], and by vn = E [A|Xn = xn]−E [A], we have |un − un−1 − vn| <
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ϵun−1 A simple induction shows that:

vn + (1 − ϵ)vn−1+(1 − ϵ)2vn−2 + · · · + (1 − ϵ)nv1

<un < vn + (1 + ϵ)vn−1 + (1 + ϵ)2vn−2 + · · · + (1 + ϵ)nv1

Hence:
(1 − ϵ)

∑
vi < un < (1 + ϵ)n

∑
vi

that shows that

un =
(∑

vi

)
(1 + O(nϵ))

Now we utilize Theorem E.1 for proving Theorem 3.1. Consider a one-shot model whose
subnetworks’ accuracy one wants to estimate:
E[Acc|∩S

s=1 ∩D
b=1Os

b , ∩S
s=1ds], with αs

b,c = 1Os
b

=Oc
the one-hot vector specifying the selection

of configuration c for block b of stage s and βs
b = 1ds=b the one-hot vector specifying the

selection of depth b for stage s, such that (α,β) ∈ S with S specified in equation 2 as
described in section 3.1.

We simplify our problem and assume {Os
b , ds}, ds for s = 1, . . . , S and b = 1, . . . , D are

conditionally independent with the accuracy Acc. In our setting, we have

E[Acc|∩S
s=1 ∩D

b=1 Os
b ; ∩S

s=1ds] = E[Acc| ∩S
s=1 ∩ds

b=1{Os
b , ds}; ∩S

s=1ds] (14)
≈ E [Acc]

+
S∑

s=1

D∑
b=1

(E [Acc|Os
b , ds] − E [Acc])1b≤ds (1 + O(Nϵ)) (15)

+
S∑

s=1
(E [Acc|ds] − E [Acc])1b≤ds (1 + O(Nϵ)) (16)

where equation 14 is since the accuracy is independent of blocks that are not participating
in the subnetowrk, i.e. with b > ds, and equations 15 and 16 are by utilizing Theorem E.1.

Denote by bs and cs
b to be the single non zero entries of βs and αs

b respectively, whose
entries are βs

b for b = 1, . . . , D and αs
b,c for c ∈ C respectively. Hence βs

b = 1b=bs and
αs

b,c = 1c=cs
b
. Thus we have,

E [Acc|ds = bs] − E [Acc] =
D∑

b=1
1b=bs(E [Acc|ds = b] − E [Acc])

=
D∑

b=1
βs

b (E [Acc|ds = b] − E [Acc]) =
D∑

b=1
βs

b ∆s
b (17)
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Similarly,

E
[
Acc|Os

b = Ocs
b
, ds = b

]
− E [Acc] =

∑
c∈C

1c=cs
b
(E [Acc|Os

b = Oc, ds = b] − E [Acc])

=
∑
c∈C

αs
b,c(E [Acc|Os

b = Oc, ds = b] − E [Acc])

=
∑
c∈C

αs
b,c∆s

b,c (18)

And since effectively 1b≤ds =
∑D

b′=b βs
b′ we have,(

E
[
Acc|Os

b = Ocs
b
, ds = b

]
− E [Acc]

)
1b≤ds

=
∑
c∈C

αs
b,c∆s

b,c · 1b≤ds

=
D∑

b′=b

∑
c∈C

αs
b,c · ∆s

b,c · βs
b′ (19)

Finally by setting equations 17 and 19 into 15 and 16 respectively, we have,

E
[
Acc

∣∣∩S
s=1 ∩D

b=1 Os
b , ∩S

s=1ds
]

= E[Acc] + (1 + O(Nϵ)) ·
S∑

s=1

D∑
b=1

βs
b · ∆s

b

+ (1 + O(Nϵ)) ·
S∑

s=1

D∑
b=1

D∑
b′=b

∑
c∈C

αs
b,c · ∆s

b,c · βs
b′

Appendix F. Deriving a Closed Form Solution for a Linear Regression

We are given a set (X, Y ) of architecture encoding vectors and their accuracy measured on
a validation set.

We seek for a quadratic predictor f defined by parameters Q ∈ Rn×n, a ∈ Rn, b ∈ R
such as

f(x) = xT Qx + aT x + b

Our purpose being to minimise the MSE over a training-set Xtrain, we seek to minimize:

min
Q,a,b

∑
(x,y)∈(Xtrain,Ytrain)

∥xT Qx + xT a + b − y∥2 (20)

We also have that
xT Qx = trace

(
QxxT

)
Denoting by q the column-stacking of Q, the above expression can be expressed as:

xT Qx = trace
(
QxxT

)
= q (x ⊗ x)

where ⊗ denotes the Kronecker product. Hence, equation 20 can be expressed as:

min
q,a,b

∑
(x,y)∈(Xtrain,Ytrain)

∥ (x, x ⊗ x)T (a, q) + b − y∥2. (21)

Denoting by x̃ = (x, x ⊗ x) and v = (a, q), we are led to a simple regression problem:
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min
v,b

∑
(x̃,y)∈(X̃train,Ytrain)

∥x̃T v + b − y∥2. (22)

We rewrite the objective function of equation 22 as:

(x̃T v + b − y)T (x̃T v + b − y) = vT x̃x̃T v + 2(b − y)x̃T v + (b − y)2

Stacking the x̃, y in matrices X̃, Y, the above expression can be rewritten as:

vT X̃X̃T v + 2(b1− Y)T X̃T v + (b1− Y)T (b1− Y) (23)

Deriving with respect to b leads to: 21T X̃T v + 2nb − 21T Y = 0 Hence:

b = 1
n

(
1T (Y − X̃T v)

)
= 1

n

(
(Y − X̃T v)T1

)
We hence have

(b1− Y)T (b1− Y) = nb2 − 2b1T Y + YT Y

= 1
n

(
vT X̃11T X̃T v − 2YT11T X̃T v + 2YT11T˜T v

)
= 1

n
vT X̃11T X̃T v

In addition:

(b1− Y)T X̃T v = 1
n

(
YT11T X̃T v − vT X̃11T X̃T v

)
− YT X̃T v

Hence, equation 23 can be rewritten as:

vT X̃X̃T v − 1
n

vT X̃11T X̃T v + YT

(
Id − 1

n
11T

)
X̃T v

Denoting by I =
(
Id − 1

n11
T
)
, X̂ = IX̃T and by Ŷ = IY, and noticing that IT I = I, we

then have:
X̂T X̂v = X̂T Ŷ

To solve this problem we can find am SVD decomposition of X̂ = UDVT , hence:

VD2VT v = VDUT Ŷ

that leads to:
v = VD−1UT Ŷ

The general algorithm to find the decomposition is the following:

In order to choose the number k of principal components described in the above
algorithm, we can perform a simple hyper parameter search using a test set. In the below
figure, we plot the Kendall-Tau coefficient and MSE of a quadratic predictor trained using
a closed form regularized solution of the regression problem as a function of the number
of principal components k, both on test and validation set. We can see that above 2500
components, we reach a saturation that leads to a higher error due to an over-fitting on the
training set. Using 1500 components leads to a better generalization. The above scheme is
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Algorithm 2 Closed Form Solution of a Linear Regression for the Quadratic Predictors
input {xi = (αi,βi) ∈ Rn, yi = Acc(αi,βi)}N

i=1, k = number of principal components
1: Compute x̃i = (xi, xi ⊗ xi), ∀i ∈ {1, . . . , N}
2: Perform a centering on x̃i computing x̂i = x̃i − meani=1,...,N (x̃i) , ∀i ∈ {1, . . . , N}
3: Perform a centering on yi computing ŷi = yi − meani=1,...,N (yi) , ∀i ∈ {1, . . . , N}
4: Define X̂ = stack({x̂i}N

i=1)
5: Compute a k-low rank SVD decomposition of X̂, defined as U diag(s)V T

6: Compute W = V diag(s−1)UT ŷ

7: Compute b = mean
(
y − X̃W

)
8: Define a = W1:n
9: Reshape the end of the vector W as an n × n matrix, Q = reshape(Wn+1:n+1+n2 , n, n)

output b, a, Q

another way to regularize a regression and, unlike Ridge Regression, can be used to solve
problems of very a high dimesionality without the need to find the pseudo inverse of a high
dimensional matrix, without using any optimization method, and with a relatively robust
discrete unidimensional parameter that is easier to tune.
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Figure 11: Kendall-Tau correlation coefficients and MSE of different predictors vs number
of principal components

Appendix G. Convergence Guarantees for Solving BLCP with BCFW
with Line-Search

In this section we proof Theorem 3.2, guaranteeing that after O(1/ϵ) many iterations,
Algorithm 1 obtains an ϵ-approximate solution to problem 1.
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G.1. Convergence Guarantees for a General BCFW over a Product Domain

The proof is heavily based on the convergence guarantees provided by Lacoste-Julien et al.
(2013) for solving:

min
ζ∈M(1)×···×M(n)

f(ζ) (24)

with the BCFW algorithm 3, where M(i) ⊂ Rmi is the convex and compact domain of
the i-th coordinate block and the product M(1) × · · · × M(n) ⊂ Rm specifies the whole
domain, as

∑n
i=1 mi = m. ζ(i) ∈ Rmi is the i-th coordinate block of ζ and ζ\(i) is the rest

of the coordinates of ζ. ∇(i) stands for the partial derivatives vector with respect to the
i-th coordinate block.

Algorithm 3 Block Coordinate Frank-Wolfe (BCFW) on Product Domain
input ζ0 ∈ M(1) × · · · × M(n) ⊂ Rm

1: for k = 0, . . . , K do
2: Pick i at random in {1, . . . , n}
3: Find sk = argmin s∈M(i) sT · ∇(i)f(ζk)
4: Let s̃k =: 0m ∈ Rm is the zero padding of sk such that we then assign s̃

(i)
k := sk

5: Let γ := 2n
k+2n ,

or perform line-search: γ =: argmin γ′∈[0,1] f ((1 − γ′) · ζk + γ′ · s̃k)
6: Update ζk+1 = (1 − γ) · ζk + γ · s̃k

7: end for
The following theorem shows that after O(1/ϵ) many iterations, Algorithm 3 obtains

an ϵ-approximate solution to problem 24, and guaranteed ϵ-small duality gap.

Theorem G.1 For each k > 0 the iterate ζk Algorithm 3 satisfies:

E[f(ζk)] − f(ζ∗) ≤ 2n

k + 2n

(
C⊗

f + (f(ζ0) − f(ζ∗))
)

where ζ∗ is the solution of problem 24 and the expectation is over the random choice of the block i in
the steps of the algorithm.

Furthermore, there exists an iterate 0 ≤ k̂ ≤ K of Algorithm 3 with a duality gap bounded by
E[g(ζk̂)] ≤ 6n

K+1

(
C⊗

f + (f(ζ0) − f(ζ∗))
)

.

Here the duality gap g(ζ) ≥ f(ζ) − f(ζ∗) is defined as following:

g(ζ) = max
s∈M(1)×···×M(n)

(ζ − s)T · ∇f(ζ) (25)
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and the global product curvature constant C⊗
f =

∑n
i=1 C

(i)
f is the sum of the (partial)

curvature constants of f with respect to the individual domain M(i):

C
(i)
f = sup

x ∈ M(1) × · · · × M(n),
s(i) ∈ M(i), γ ∈ [0, 1],

y(i) = (1 − γ)x(i) + γs(i),
y\(i) = x\(i)

2
γ2

(
f(y) − f(x) −

(
y(i) − x(i)

)T

∇(i)f(x)
)

(26)

which quantifies the maximum relative deviation of the objective function f from its linear
approximations, over the domain M(i).

The proof of theorem G.1 is given in Lacoste-Julien et al. (2013).

G.2. Analytic Line-Search for Bilinear Objective Functions

The following theorem provides a trivial analytic solution for the line-search of algorithm 3
(line 5) where the objective function has a bilinear form.

Theorem G.2 The analytic solution of the line-search step of algorithm 3 (line 5) with a bilinear
objective function of the form:

f(ζ) =
n∑

i=1

(
ζ(i)
)T

· p
(i)
f +

n∑
i=1

n∑
j=i

(
ζ(i)
)T

· Q
(i,j)
f · ζ(j) (27)

with p
(i)
f ∈ Rmi and Q

(i,j)
f ∈ Rmi×mj , reads γ ≡ 1 at all the iterations.

Proof In each step of algorithm 3 at line 3, a linear program is solved:

s = argmin
s′∈M(i)

∇(i)f(ζ)T · s′ (28)

= argmin
s′∈M(i)

(p
(i)
f

)T

+
i−1∑
j=1

(
ζ(j)
)T

· Q
(i,j)
f +

n∑
j=i+1

(
ζ(j)
)T

·
(

Q
(i,j)
f

)T

 · s′

and the Line-Search at line 5 reads:

γ =: argmin
γ′∈[0,1]

f ((1 − γ′) · ζ + γ′ · s̃)

= argmin
γ′ ∈ [0, 1]

y = (1 − γ′) · ζ(i) + γ′ · s


(

p
(i)
f

)T

+
∑i−1

j=1
(
ζ(j))T · Q

(i,j)
f

+
∑n

j=i+1
(
ζ(j))T ·

(
Q

(i,j)
f

)T

 · y

= argmin
γ′ ∈ [0, 1]

y = (1 − γ′) · ζ(i) + γ′ · s

∇(i)f(ζ)T · y (29)

Since ζ(i), s ∈ M(i) and γ ∈ [0, 1] then the convex combination of those also satisfies
y ∈ M(i), hence considering that s is the optimizer of 28 the solution to 29 reads y := s and
hence γ := 1. Thus, effectively the analytic solution to line-search for a bilinear objective
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function is γ ≡ 1 at all times.

G.3. Solving BLCP by BCFW with Line-Search

In addition to a bilinear objective function as in equation 27, consider also a domain that is
specified by the following bilinear constraints:

n∑
i=1

(
ζ(i)
)T

· p
(i)
M +

n∑
i=1

n∑
j=i

(
ζ(i)
)T

· Q
(i,j)
M · ζ(j) ≤ T ; A · ζ ≤ b (30)

with p
(i)
M ∈ Rmi , Q

(i,j)
M ∈ Rmi×mj , A ∈ RC×m and b ∈ RC for C ≤ 0, such that the individual

domain of the i-th coordinate block is specified by the following linear constraints:(p
(i)
M

)T

+
i−1∑
j=1

(
ζ(j)
)T

· Q
(i,j)
M +

n∑
j=i+1

(
ζ(j)
)T

·
(

Q
(i,j)
M

)T

 · ζ(i) ≤ T (31)

A(i) · ζ(i) ≤ b(i) (32)

where A(i) ∈ RC×mi are the rows r ∈ {1 +
∑

j<i mj , . . . ,
∑

j≤i mj} of A and b(i) ∈ Rm
i are

the corresponding elements of b.
Thus in each step of algorithm 3 at line 3, a linear program is solved:

min
ζ(i)

(p
(i)
f

)T

+
i−1∑
j=1

(
ζ(j)
)T

· Q
(i,j)
f +

n∑
j=i+1

(
ζ(j)
)T

·
(

Q
(i,j)
f

)T

 · ζ(i)

s.t.

(p
(i)
M

)T

+
i−1∑
j=1

(
ζ(j)
)T

· Q
(i,j)
M +

n∑
j=i+1

(
ζ(j)
)T

·
(

Q
(i,j)
M

)T

 · ζ(i) ≤ T

A(i) · ζ(i) ≤ b(i)

And thus equipped with theorem G.2, algorithm 4 provides a more specific version of
algorithm 3 for solving BLCP.

In section 3, we deal with n = 2 blocks where ζ = (α,β) such that:

ζ(1) = α m1 = D · S · |C| p
(1)
f = pα p

(1)
M = 0 A(1) = Aα

S b(1) = bα
S Q

(1,2)
f = Qαβ

ζ(2) = β m2 = D · S p
(2)
f = pβ p

(2)
M = 0 A(2) = Aβ

S b(2) = bβ
S Q

(1,2)
M = Θ

(33)

Thus for this particular case of interest algorithm 4 effectively boils down to algorithm 1.

G.3.1. Proof of Theorem 1

Let us first compute the curvature constants C
(i)
f (equation 26) and C⊗

f for the bilinear
objective function as in equation 27.
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Algorithm 4 BCFW with Line-Search on QCQP Product Domain

input ζ0 ∈ {ζ |
∑n

i=1
(
ζ(i)
)T

· p
(i)
M +∑n

i=1
∑n

j=i

(
ζ(i)
)T

· Q
(i,j)
M · ζ(j) ≤ T ; A · ζ ≤ b}

1: for k = 0, . . . , K do
2: Pick i at random in {1, . . . , n}
3: Keep the same values for all other coordinate blocks ζ

\(i)
k+1 = ζ

\(i)
k and update:

ζ
(i)
k+1 = argmin

s

((
p

(i)
f

)T
+

i−1∑
j=1

(
ζ

(j)
)T

· Q
(i,j)
f

+

n∑
j=i+1

(
ζ

(j)
)T

·
(

Q
(i,j)
f

)T

)
· s

s.t.

((
p

(i)
M

)T
+

i−1∑
j=1

(
ζ

(j)
)T

· Q
(i,j)
M +

n∑
j=i+1

(
ζ

(j)
)T

·
(

Q
(i,j)
M

)T

)
· s ≤ T

A
(i) · s ≤ b

(i)

4: end for

Lemma G.3 Let f have a bilinear form, such that:
f(x) =

∑n
i=1
(
x(i))T · p

(i)
f +

∑n
i=1
∑n

j=i

(
x(i))T · Q

(i,j)
f · x(j) then C⊗

f = 0.

Proof Separating the i-th coordinate block:

f(x) =
n∑

l=1

(
x(l)
)T

· p
(l)
f +

n∑
l=1

n∑
j=l

(
x(l)
)T

· Q
(l,j)
f · x(j) (34)

=
(

x(i)
)T

· p
(i)
f +

i−1∑
j=1

(
x(j)

)T

· Q
(i,j)
f · x(i) +

n∑
j=i+1

x(i) · Q
(i,j)
f · x(j) (35)

+
n∑

l=1
1l ̸=i

(
x(l)
)T

· p
(l)
f +

n∑
l=1

n∑
j=l

1l ̸=i · 1j ̸=i

(
x(l)
)T

· Q
(l,j)
f · x(j) (36)

where 1A is the indicator function that yields 1 if A holds and 0 otherwise.
Thus for y with y(i) = (1 − γ)x(i) + γs(i) and y\(i) = x\(i), we have:

f(y) =
(

y(i)
)T

· p
(i)
f +

i−1∑
j=1

(
y(j)
)T

· Q
(i,j)
f · y(i) +

n∑
j=i+1

y(i) · Q
(i,j)
f · y(j) (37)

+
n∑

l=1
1l ̸=i

(
y(l)
)T

· p
(l)
f +

n∑
l=1

n∑
j=l

1l ̸=i · 1j ̸=i

(
x(l)
)T

· Q
(l,j)
f · y(j) (38)

=
(

y(i)
)T

· p
(i)
f +

i−1∑
j=1

(
x(j)

)T

· Q
(i,j)
f · y(i) +

n∑
j=i+1

y(i) · Q
(i,j)
f · x(j) (39)

+
n∑

l=1
1l ̸=i

(
x(l)
)T

· p
(l)
f +

n∑
l=1

n∑
j=l

1l ̸=i · 1j ̸=i

(
x(l)
)T

· Q
(l,j)
f · x(j) (40)

Hence,

f(y) − f(x) = ∇(i)f(x) ·
(

y(i) − x(i)
)

(41)
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since 36 and 40 cancel out and,

∇(i)f(x) =

(p
(i)
f

)T

+
i−1∑
j=1

(
x(j)

)T

· Q
(i,j)
f +

n∑
j=i+1

(
x(j)

)T

·
(

Q
(i,j)
f

)T

 (42)

Hence we have,

C
(i)
f = 0 ∀i ∈ {1, . . . , n} ; C⊗

f =
n∑

i=1
C

(i)
f = 0 (43)

Thus for a bilinear objective function, theorem G.1 boils down to:

Theorem G.4 For each k > 0 the iterate ζk Algorithm 4 satisfies:

E[f(ζk)] − f(ζ∗) ≤ 2n

k + 2n
(f(ζ0) − f(ζ∗))

where ζ∗ is the solution of problem 24 and the expectation is over the random choice of the block i in
the steps of the algorithm. Furthermore, there exists an iterate 0 ≤ k̂ ≤ K of Algorithm 4 with a
duality gap bounded by E[g(ζk̂)] ≤ 6n

K+1 (f(ζ0) − f(ζ∗)).

And by setting n = 2 with equations 33 for f(ζ) := ACC(ζ), theorem 3.2 follows.

Appendix H. Sparsity Guarantees for Solving BLCP with BCFW with
Line-Search

In order to proof 3.3, we start with providing auxiliary lemmas proven at Nayman et al.
(2021). To this end we define the relaxed Multiple Choice Knapsack Problem (MCKP):

Definition H.1 Given n ∈ N, and a collection of k distinct covering subsets of {1, 2, · · · , n} denoted
as Ni, i ∈ {1, 2, · · · , k}, such that ∪k

i=1Ni = {1, 2, · · · , n} and ∩k
i=1Ni = ∅ with associated values

and costs pij , tij ∀i ∈ {1, . . . , k}, j ∈ Ni respectively, the relaxed Multiple Choice Knapsack Problem
(MCKP) is formulated as following:

max
vu

k∑
i=1

∑
j∈Ni

pijuij

s.t.
k∑

i=1

∑
j∈Ni

tijuij ≤ T (44)

∑
j∈Ni

uij = 1 ∀i ∈ {1, . . . , k}

uij ≥ 0 ∀i ∈ {1, . . . , k}, j ∈ Ni

where the binary constraints uij ∈ {0, 1} of the original MCKP formulation Kellerer et al. (2004)
are replaced with uij ≥ 0.
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Definition H.2 An one-hot vector ui satisfies:

||u∗
i ||0 =

∑
j∈Ni

|u∗
ij |0 =

∑
j∈Ni

1u∗
ij

>0 = 1

where 1A is the indicator function that yields 1 if A holds and 0 otherwise.

Lemma H.1 The solution u∗ of the relaxed MCKP equation 44 is composed of vectors u∗
i that are

all one-hot but a single one.

Lemma H.2 The single non one-hot vector of the solution u∗ of the relaxed MCKP equation 44
has at most two nonzero elements.

See the proofs for Lemmas H.1 and H.1 in Nayman et al. (2021) (Appendix F).
In order to prove Theorem 3.3, we use Lemmas H.1 and H.1 for each coordinate block ζ(i)

for i ∈ {1, . . . , n} separately, based on the observation that at every iteration k = 0, . . . , K
of algorithm 4, each sub-problem (lines 3,5) forms a relaxed MCKP equation 44. Thus
replacing

• u in equation 44 with ζ(i).

• p with
(

p
(i)
f

)T

+
∑i−1

j=1
(
ζ(j))T · Q

(i,j)
f +

∑n
j=i+1

(
ζ(j))T ·

(
Q

(i,j)
f

)T

• The elements of t with the elements of(
p

(i)
M

)T

+
i−1∑
j=1

(
ζ(j)
)T

· Q
(i,j)
M +

n∑
j=i+1

(
ζ(j)
)T

·
(

Q
(i,j)
M

)T

• The simplex constraints with the linear inequality constraints specified by A(i), b(i).

Hence for every iteration theorem 3.3 holds and in particular for the last iteration k = K
which is the output of solution of algorithm 4.

By setting n = 2 with equations 33 for f(ζ) := ACC(ζ), algorithm 4 boils down to
algorithm 1 and thus theorem 3.3 holds for the later as special case of the former.

Appendix I. On the Transitivity of Ranking Correlations

While the predictors in section 5.2 yields high ranking correlation between the predicted
accuracy and the accuracy measured for a subnetwork of a given one-shot model, the ultimate
ranking correlation is with respect to the same architecture trained as a standalone from
scratch. Hence we are interested also in the transitivity of ranking correlation. Langford
et al. (2001) provides such transitivity property of the Pearson correlation between random
variables P, O, S standing for the predicted, the one-shot and the standalone accuracy
respectively:

|Cor(P, S) − Cor(P, O) · Cor(O, S)| ≤
√

(1 − Cor(P, O)2) · (1 − Cor(O, S)2)

This is also true for the Spearman correlation as a Pearson correlation over the corresponding
ranking. Hence, while the accuracy estimator can be efficiently acquired for any given
one-shot model, the quality of this one-shot model contributes its part to the overall ranking
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correlation. In this paper we use the official one-shot model provided by Nayman et al.
(2021) with a reported Spearman correlation of ρP,O = 0.99 to the standalone networks.
Thus together with the Spearman correlation of ρO,S = 0.97 of the proposed accuracy
estimator, the overall Spearman ranking correlation satisfies ρP,S ≥ 0.93.

Appendix J. Averaging Individual Accuracy Contribution for
Interpretability

In this section we provide the technical details about the way we generate the results
presented in section 5.3, Figure 8 (Middle and Right).

We measure the average contribution of adding a S&E layer at each stage s by:

1
D

D∑
b=1

 1
|Cse|

∑
c∈Cse

∆s
b,c − 1

|C̄se|

∑
c∈C̄se

∆s
b,c


and each block b by:

1
S

S∑
s=1

 1
|Cse|

∑
c∈Cse

∆s
b,c − 1

|C̄se|

∑
c∈C̄se

∆s
b,c


where Cse = {2, 4, 6, 8, 10, 12} (|Cse| = 6) are all the configurations that include S&E layers
according to Table 3 (Right) and its complementary set C̄se = {1, 3, 5, 7, 9, 11} (|C̄se| = 6).

Similarly the average contribution of increasing the kernel size from 3 × 3 to 5 × 5 at
each stage s by:

1
D

D∑
b=1

 1
|C5×5|

∑
c∈C5×5

∆s
b,c − 1

|C3×3|
∑

c∈C3×3

∆s
b,c


and each block b by:

1
S

S∑
s=1

 1
|C5×5|

∑
c∈C5×5

∆s
b,c − 1

|C3×3|
∑

c∈C3×3

∆s
b,c


where C3×3 = {1, 2, 5, 6, 9, 10} (|C3×3| = 6) and C5×5 = {3, 4, 7, 8, 11, 12} (|C5×5| = 6) are all
the configurations with a kernel size of 3 × 3 and 5 × 5 respectively according to Table 3
(Right).

The average contribution of increasing the expansion ratio from 2 to 3 at each stage s
by:

1
D

D∑
b=1

(
1

|C3|
∑
c∈C3

∆s
b,c − 1

|C2|
∑
c∈C2

∆s
b,c

)
and each block b by:

1
S

S∑
s=1

(
1

|C3|
∑
c∈C3

∆s
b,c − 1

|C2|
∑
c∈C2

∆s
b,c

)
where C3 = {5, 6, 7, 8} (|C3| = 4) and C2 = {1, 2, 3, 4} (|C2| = 4) are all the configurations
with an expansion ratio of 3 and 2 respectively according to Table 3 (Right).
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Finally, the average contribution of increasing the expansion ratio from 3 to 6 at each
stage s by:

1
D

D∑
b=1

(
1

|C6|
∑
c∈C6

∆s
b,c − 1

|C3|
∑
c∈C3

∆s
b,c

)
and each block b by:

1
S

S∑
s=1

(
1

|C6|
∑
c∈C6

∆s
b,c − 1

|C3|
∑
c∈C3

∆s
b,c

)
where C6 = {9, 10, 11, 12} (|C6| = 4) are all the configurations with an expansion ratio of 6
according to Table 3 (Right).

Appendix K. Extended Figures

Due to space limit, here we present extended figures to better describe the estimation of
individual accuracy contribution terms described in section 3.2.
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Figure 12: Extension of Figure 4: Estimating the expected accuracy gap caused by macro-
scopic design choices of the depth of the stages.



BINAS: Bilinear Interpretable Neural Architecture Search
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Figure 13: Extension of Figure 5: Estimating the expected accuracy gap caused by micro-
scopic design choices on the operation applied at every block one at a time.
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