
Proceedings of Machine Learning Research 189, 2022 ACML 2022

BINAS: Bilinear Interpretable Neural Architecture Search

Niv Nayman∗ nivn@campus.technion.ac.il
Technion - Israel Institute of Technology, Haifa, Israel+

Yonathan Aflalo∗ yoaflalo@amazon.com
Amazon Alexa Shopping, Tel-Aviv, Israel+

Asaf Noy asaf.noy@alibaba-inc.com
Alibaba Group, Tel Aviv, Israel

Lihi Zelnik-Manor lihi@technion.ac.il
Technion - Israel Institute of Technology, Haifa, Israel+

Editors: Emtiyaz Khan and Mehmet Gönen

Abstract
Making neural networks practical often requires adhering to resource constraints such as
latency, energy and memory. To solve this we introduce a Bilinear Interpretable approach
for constrained Neural Architecture Search (BINAS) that is based on an accurate and simple
bilinear formulation of both an accuracy estimator and the expected resource requirement,
jointly with a scalable search method with theoretical guarantees. One major advantage of
BINAS is providing interpretability via insights about the contribution of different design
choices. For example, we find that in the examined search space, adding depth and width is
more effective at deeper stages of the network and at the beginning of each resolution stage.
BINAS differs from previous methods that typically use complicated accuracy predictors
that make them hard to interpret, sensitive to many hyper-parameters, and thus with
compromised final accuracy. Our experiments 1 show that BINAS generates comparable to
or better than state of the art architectures, while reducing the marginal search cost, as
well as strictly satisfying the resource constraints.
Keywords: Neural Architecture Search, Computer Vision, Deep Learning, Optimization

1. Introduction

The increasing utilization of Convolutional Neural Networks (CNN) in real systems and
commercial products puts neural networks with both high accuracy and fast inference speed
in high demand. Early days architectures, such as VGG Simonyan and Zisserman (2015)
or ResNet He et al. (2015), were designed for powerful GPUs as those were the common
computing platform for deep CNNs, however, in recent years the need for deployment on
standard CPUs and edge devices emerged. These computing platforms are limited in their
abilities and as a result require lighter architectures that comply with strict requirements

*. These authors contributed equally.
+. This work was partially done while all the authors were also affiliated with Alibaba Group.
1. The full code is available at https://github.com/Alibaba-MIIL/BINAS

© 2022 N. Nayman, Y. Aflalo, A. Noy & L. Zelnik-Manor.

https://github.com/Alibaba-MIIL/BINAS

Nayman Aflalo Noy Zelnik-Manor

on real time latency and power consumption. This has spawned a line of research aimed at
finding architectures with both high performance and constrained resource demands.

The main approaches to solve this evolved from Neural Architecture Search (NAS) Zoph
and Le (2016); Liu et al. (2018); Cai et al. (2018), while a constraint on the target latency
is added over various platforms, e.g., CPU, TPU, FPGA, MCU etc. Those constrained-
NAS methods can be grouped into two categories: (i) Reward based methods such as
Reinforcement-Learning (RL) or Evolutionary Algorithms (EA) Cai et al. (2019); Tan et al.
(2019); Tan and Le (2019); Howard et al. (2019), where the latency and accuracy of sampled
architectures are predicted by evaluations on the target devices over some validation set to
perform the search. The predictors are typically made of complicated models and hence
require many samples and sophisticated fitting techniques White et al. (2021). Overall
this oftentimes leads to inaccurate, expensive to acquire, and hard to optimize objective
functions due to their complexity. (ii) Resource-aware gradient based methods formulate a
differentiable loss function consisting of a trade-off between an accuracy term and either a
proxy soft penalty term Hu et al. (2020); Wu et al. (2019) or a hard constraint Nayman et al.
(2021). Therefore, the architecture can be directly optimized via bi-level optimization using
stochastic gradient descent (SGD) or stochastic Frank-Wolfe (SFW) Hazan and Luo (2016),
respectively. However, the bi-level nature of the problem introduces many challenges Chen
et al. (2019); Noy et al. (2020); Nayman et al. (2019) and recently Wang et al. (2021)
pointed out the inconsistencies associated with using gradient information as a proxy for
the quality of the architectures, especially in the presence of skip connections in the search
space. These inconsistencies call for making NAS more interpretable, by extending its
scope from finding optimal architectures to interpretable features Ru et al. (2021) and their
corresponding impact on the network performance.

In this paper, we propose an interpretable search algorithm that is fast and scalable,
yet produces architectures with high accuracy that satisfy hard latency constraints. At the
heart of our approach is an accuracy estimator which is interpretable, easy to optimize and
does not have a strong reliance on gradient information. Our proposed predictor measures
the performance contribution of individual design choices by sampling sub-networks from a
one-shot model (Bender et al. (2018); Chu et al. (2019); Guo et al. (2020); Cai et al. (2019);
Nayman et al. (2021)). Constructing the estimator this way allows making insights about
the contribution of the design choices. It is important to note, that albeit its simplicity, our
predictor’s performance matches that of previously proposed predictors, that are typically
expensive to compute and hard to optimize due to many hyper-parameters.

The predictor we propose has a bilinear form that allows formulating the latency
constrained NAS problem as an Integer Quadratic Constrained Quadratic Programming
(IQCQP). Thanks to this, the optimization can be efficiently solved via a simple algorithm
with some off-the-shelf components. The algorithm we suggest solves it within a few minutes
on a common CPU.

Overall our optimization approach has two main performance related advantages. First,
the outcome networks provide high accuracy and closely comply with the latency constraint.
Second, the search is highly efficient, which makes our approach scalable to multiple target
devices and latency demands.

2. Related Work

Neural Architecture Search methods automate models’ design per provided constraints.
Early methods like NASNet Zoph and Le (2016) and AmoebaNet Real et al. (2019) focused
solely on accuracy, producing SotA classification models Huang et al. (2019) at the cost

BINAS: Bilinear Interpretable Neural Architecture Search

of GPU-years per search, with relatively large inference times. DARTS Liu et al. (2018)
introduced a differential space for efficient search and reduced the training duration to
days, followed by XNAS Nayman et al. (2019) and ASAP Noy et al. (2020) that applied
pruning-during-search techniques to further reduce it to hours.

Predictor based methods recently have been proposed based on training a model to
predict the accuracy of an architecture just from an encoding of the architecture. Popular
choices for these models include Gaussian processes, neural networks, tree-based methods.
See Lu et al. (2020) for such utilization and White et al. (2021) for comprehensive survey.

Interpretabe NAS was introduced by Ru et al. (2021) through an elaborated Bayesian
optimisation with Weisfeiler-Lehman kernel to identify beneficial topological features. We
propose an intuitive and simpler approach for NAS interpretibiliy for the efficient search
space examined. This leads to more understanding and applicable design rules.

Hardware-aware methods such as ProxylessNAS Cai et al. (2018), Mnasnet Tan et al.
(2019), SPNASNet Stamoulis et al. (2019), FBNet Wu et al. (2019), and TFNAS Hu et al.
(2020) generate architectures that comply to the constraints by applying simple heuristics
such as soft penalties on the loss function. OFA Cai et al. (2019) and HardCoRe-NAS Nay-
man et al. (2021) proposed a scalable approach across multiple devices by training an one-shot
model Brock et al. (2017); Bender et al. (2018) once. This pretrained super-network is
highly predictive for the accuracy ranking of extracted sub-networks, e.g. FairNAS Guo
et al. (2020), SPOS Guo et al. (2020). OFA applies evolutionary search Real et al. (2019)
over a complicated multilayer perceptron (MLP) Rumelhart et al. (1985) based accuracy
predictor with many hyperparameters to be tuned. HardCore-NAS searches by backpropa-
gation Kelley (1960) over a supernetwork under strict latency constraints for several GPU
hours per network. Hence it requires access to a powerful GPU to perform the search
and both approaches lack interpretability. This work relies on such one-shot model, for
intuitively building an interpretable and simple bilinear accuracy estimator that matches in
performance without any tuning and optimized under strict latency constraints by solving
an IQCQP problem (for related work see the introduction section of Billionnet et al. (2016))
in several CPU minutes following by a short fine-tuning.

3. Method

All the rest of the candidate decisions are of uniform probability

Alternative candidate decisions are assigned with zero probability

The measured candidate decision is assigned with a probability of one

Sampled
Sub-networks

Co
nv FC

Super-network

Accuracy
Contribution

Measurements

max
$,&

𝒒(𝛽 + 𝛼(𝑸𝛽

s.t. 		𝛼(Θ𝛽 ≤ 𝑇

Kendall-Tau:
Spearman:
Pearson:
MSE:

0.84
0.97
0.96
0.07

Figure 1: (Left) The BINAS scheme constructs a bilinaer accuracy estimator by measuring
the accuracy contribution of individual design choices and then maximizing this objective
under bilinear latency constraints. (Right) Accuracy predictions vs measured accuracy of
500 subnetworks sampled uniformly at random. High ranking correlations are achieved.

In this section we propose our method for latency-constrained NAS. We search for an
architecture with the highest validation accuracy under a predefined latency constraint,

Nayman Aflalo Noy Zelnik-Manor

denoted by T . We start by following Bender et al. (2018), training a supernetwork that
accommodates the search space S, as described in section 3.1. The supernetwork training
ensures that the accuracy of subnetworks extracted from it, together with their corresponding
weights, are properly ranked Guo et al. (2020); Chu et al. (2019); Cai et al. (2019); Nayman
et al. (2021) as if those were trained from scratch. Given such a supernetwork, we sample
subnetworks from it for estimating the individual accuracy contribution of each design
choice (section 3.2), and construct a bilinear accuracy estimator for the expected accuracy
of every possible subnetwork in the search space (section 3.3). Finally, the latency of each
possible block configuration is measured on the target device and aggregated to form a
bilinear latency constraint. Putting it all together (section 3.4) we formulate an IQCQP:

max
ζ

ACC(ζ) = qT ζ + ζT Qζ (1)

s.t. LAT (ζ) = ζT Θζ ≤ T, AS · ζ ≤ bS , ζ ∈ Z
N

where ζ =(α,β) ∈ S ⊂ZN , is the parametrization of the design choices in the search space
that govern the architecture structure, q ∈RN , Q∈RN×N , Θ∈RN×N , AS ∈RC×N , bS ∈RC

and ζ ∈ S can be expressed as a set of C linear equations. Finally, in section 3.5 we propose
an optimization method to efficiently solve Problem 1. Figure 1 (Left) shows a high level
illustration of the scheme.

3.1. The Search Space

We consider a general search space that integrates a macro search space and a micro search
space. The macro search space is composed of S stages s ∈ {1, .., S} of different input
resolutions, each composed of blocks b ∈ {1, .., D} with the same input resolution, and
defines how the blocks are connected, see Figure 2. The micro search space controls the
internal structures of each block. Specifically, this search space includes latency efficient
search spaces introduced in Wu et al. (2019); Howard et al. (2019); Tan et al. (2019); Hu
et al. (2020); Cai et al. (2019); Nayman et al. (2021).

Operation 1
∆","$ =0.05%
𝑡","$ =1.2ms

Operation 2
∆1,22 =−0.15%
𝑡1,22 =0.7ms

Operation C
∆",)$ =0.1%
𝑡",$$ =1.5ms

Block 1

Stem

Stage 1

Stage 2

Global
Pooling + FC

Stage S

Block 2

Block D

𝜷𝟏𝟐

𝜷-𝟐

𝜷𝟐𝟐

𝜶𝟏,𝟏𝟐
𝜶𝟏,𝟐𝟐 𝜶𝟏,𝑪𝟐

0 𝛽23
-

24"
= 1

𝛽23 ∈ [0,1]

0 𝛼2,;3
)

;4"
= 1

𝛼2,;3 ∈ [0,1]

∆𝟏𝐬 = −1.2%

∆$3 = 0.3%

∆𝐃3 =1.4%

Figure 2: BINAS search space. The individual accuracy contribution and latency of each
configured operation are measured.

A block configuration c∈C (specified in Appendix B) corresponds to parameters α. For
each block b of stage s we have αs

b,c ∈ {0, 1}|C| and Σc∈Cαs
b,c = 1. An input feature map xs

b

to block b of stage s is processed as follows: xs
b+1 =

∑
c∈C αs

b,c · Os
b,c(xs

b), where Os
b,c(·) is the

operation configured by c ∈ C. The depth of each stage s is controlled by the parameters β:
xs+1

1 = ΣD
b=1βs

b · xs
b+1, such that βs

b ∈ {0, 1}D and ΣD
b=1βs

b = 1.

BINAS: Bilinear Interpretable Neural Architecture Search

To summarize, the search space is composed of both the micro and macro search spaces
parameterized by α and β, respectively:

S =
{

(α,β)
∣∣∣∣ αs

b,c ∈ {0, 1}|C| ; Σc∈Cαs
b,c = 1

βs
b ∈ {0, 1}D ; ΣD

b=1βs
b = 1 ; ∀s ∈ {1, .., S}

∀b ∈ {1, .., D}, c ∈ C

}
(2)

such that a continuous probability distribution is induced over the space, by relaxing
αs

b,c ∈ {0, 1}|C| to αs
b,c ∈ R|C|

+ and βs
b ∈ {0, 1}D to βs

b ∈ RD
+ to be continuous rather

than discrete. Therefore, this probability distribution can be expressed by a set of linear
equations and one can view the parametrization ζ = (α,β) as a composition of probabilities
in Pζ(S) = {ζ | ASζ ≤ bS} = {(α,β) | Aα

S · α ≤ bα
S , Aβ

S · β ≤ bβ
S} or as degenerate one-hot

vectors in S.

3.2. Estimating the Accuracy Contribution of Design Choices

Next we introduce a simple way to estimate the accuracy contribution of each design choice,
given a trained one-shot model. With this at hand, we will be able to select those design
choices that contribute the most to the accuracy under some latency budget. Suppose
a supernetwork is constructed, such that every sub-network of it resides in the search
space of Section 3.1. The supernetwork is trained to rank well different subnetworks Guo
et al. (2020); Chu et al. (2019); Cai et al. (2019); Nayman et al. (2021). The expected
accuracy of such a supernetwork E[Acc] is estimated by uniformly sampling a different
subnetwork for each input image from 20% of the Imagenet train set (considered as a
validation set), as illustrated in Figure 3. This estimate serves as the base accuracy of the

Operation 1 Operation 2 Operation C

𝜶𝒃,𝟏𝒔 =
𝟏
𝑪

𝜶𝒃,𝟐𝒔 =
𝟏
𝑪

𝜶𝒃,𝑪𝒔 =
𝟏
𝑪

Operation 1 Operation 2 Operation C

𝜶𝒃)𝟏,𝟏𝒔 =
𝟏
𝑪

𝜶𝒃)𝟏,𝟐𝒔 =
𝟏
𝑪

𝜶𝒃)𝟏,𝑪𝒔 =
𝟏
𝑪

Operation 1 Operation 2 Operation C

𝜶𝒃*𝟏,𝟏𝒔 =
𝟏
𝑪

𝜶𝒃*𝟏,𝟐𝒔 =
𝟏
𝑪

𝜶𝒃*𝟏,𝑪𝒔 =
𝟏
𝑪

Block 1
𝜶+, ≡ 1 𝐶⁄

Block b
𝜶1, ≡ 1 𝐶⁄

Block D
𝜶2, ≡ 1 𝐶⁄

𝜷𝟏, =
𝟏
𝑫

Stem

Stage 1
𝜷+ ≡ 1 𝐷⁄

Stage s
𝜷, ≡ 1 𝐷⁄

Global
Pooling + FC

Stage S
𝜷6 ≡ 1 𝐷⁄

𝜷7, =
𝟏
𝑫

𝜷78 =
𝟏
𝑫

Figure 3: Estimating the base accuracy of the supernetwork is done by random uniform
sampling of subnetworks for each input image.

supernetwork and thus every design choice should be evaluated by its contribution on top
of it. Hence, the individual accuracy contribution of setting the depth of stage s to b is
the gap: ∆s

b = E[Acc|ds = b] − E[Acc], where the first expectation is estimated by setting
βs

b = 1 and uniform distribution for the rest of the design choices. This is done for every
possible depth of every stage (Figure 4).

Similarly, the individual accuracy contribution of choosing configuration c in block b
of stage s is given by the gap: ∆s

b,c = E[Acc|Os
b,c = Oc, ds = b] − E[Acc], where the first

expectation is estimated by setting αs
b,c = 1 and βs

b = 1, while keeping a uniform distribution
for all the rest of the design choices in the supernetwork, as illustrated in Figure 5.

Nayman Aflalo Noy Zelnik-Manor

Block 1
𝜶"# ≡ 1 𝐶⁄

Block 2
𝜶(# ≡ 1 𝐶⁄

Block D
𝜶)# ≡ 1 𝐶⁄

Block 1
𝜶"#*" ≡ 1 𝐶⁄

Block 2
𝜶(#*" ≡ 1 𝐶⁄

Block D
𝜶)#*" ≡ 1 𝐶⁄

𝜷𝟏# =
𝟏
𝑫

𝜷)# =
𝟏
𝐷

𝜷𝟐# =
𝟏
𝐷

∆𝟏𝐬 = −1.2%

∆(# = 0.3%

∆𝐃# =1.4%

𝜷𝟏#
*" = 𝟎

𝜷)#*" = 𝟏

𝜷𝟐#*
" = 𝟎

∆𝟏𝐬 = −1.1%

∆(# = 0.5%

∆𝐃# =1.6%

Block 1
𝜶"# ≡ 1 𝐶⁄

Block 2
𝜶(# ≡ 1 𝐶⁄

Block D
𝜶)# ≡ 1 𝐶⁄

Block 1
𝜶"#*" ≡ 1 𝐶⁄

Block 2
𝜶(#*" ≡ 1 𝐶⁄

Block D
𝜶)#*" ≡ 1 𝐶⁄

𝜷𝟏# = 0

𝜷)# = 1

𝜷𝟐# = 0

∆𝟏𝐬 = −1.2%

∆(# = 0.3%

∆𝐃# =1.4%

𝜷𝟏#*" =
𝟏
𝑫

𝜷)#*" =
𝟏
𝑫

𝜷𝟐#*" =
𝟏
𝑫∆"#>"=?

∆(#>"=?

∆)#>"=?

Block 1
𝜶"# ≡ 1 𝐶⁄

Block 2
𝜶(# ≡ 1 𝐶⁄

Block D
𝜶)# ≡ 1 𝐶⁄

Block 1
𝜶"#*" ≡ 1 𝐶⁄

Block 2
𝜶(#*" ≡ 1 𝐶⁄

Block D
𝜶)#*" ≡ 1 𝐶⁄

𝜷𝟏# = 0

𝜷)# = 𝟎

𝜷𝟐# = 1
∆𝟏𝐬 = −1.2%

∆(# = 0.3%

∆𝐃# =?

𝜷𝟏#*" =
𝟏
𝑫

𝜷)#*" =
𝟏
𝑫

𝜷𝟐#*" =
𝟏
𝑫∆"#>"=?

∆(#>"=?

∆)#>"=?

Block 1
𝜶"# ≡ 1 𝐶⁄

Block 2
𝜶(# ≡ 1 𝐶⁄

Block D
𝜶)# ≡ 1 𝐶⁄

Block 1
𝜶"#*" ≡ 1 𝐶⁄

Block 2
𝜶(#*" ≡ 1 𝐶⁄

Block D
𝜶)#*" ≡ 1 𝐶⁄

𝜷𝟏# = 𝟏

𝜷)# = 𝟎

𝜷𝟐# = 𝟎

∆𝟏𝐬 = −1.2%

∆(# =?

∆𝐃# =?

𝜷𝟏#
*" =

𝟏
𝑫

𝜷)#*
" =

𝟏
𝑫

𝜷𝟐#*
" =

𝟏
𝑫∆"#>"=?

∆(#>"=?

∆)#>"=?

𝔼 𝑨𝒄𝒄	|𝒅𝒔 = 𝟏 𝔼 𝑨𝒄𝒄	|𝒅𝒔 = 𝟐 𝔼 𝑨𝒄𝒄	|𝒅𝒔 = 𝑫 𝔼 𝑨𝒄𝒄	|𝒅𝒔*𝟏 = 𝑫

Figure 4: Estimating the expected accuracy gap caused by macroscopic design choices of
the depth of the stages.

∆𝐛,𝟏𝐬 	=0.03% ∆𝐛,𝟏𝐬 	=−0.12% ∆𝐛,𝐂𝐬 	=0.09%

∆𝐛1𝟏,𝟏𝐬 	=0.01% ∆𝐛1𝟏,𝟏𝐬 	=−0.11% ∆𝐛1𝟏,𝐂𝐬 	=0.11%

𝜶𝒃1𝟏,𝟏𝒔 = 𝟎
𝜶𝒃1𝟏,𝟐𝒔 = 𝟎

𝜶𝒃1𝟏,𝑪𝒔 = 𝟏

∆𝐛8𝟏,𝟏𝐬 	=0.05% ∆𝐛8𝟏,𝟏𝐬 	=−0.15% ∆𝐛8𝟏,𝟏𝐬 	=0.1%

𝜶𝒃8𝟏,𝟏𝒔 =
𝟏
𝑪

𝜶𝒃8𝟏,𝟐𝒔 =
𝟏
𝑪

𝜶𝒃8𝟏,𝑪𝒔 =
𝟏
𝑪

𝜶𝒃,𝟏𝒔 =
𝟏
𝑪

𝜶𝒃,𝟐𝒔 =
𝟏
𝑪

𝜶𝒃,𝑪𝒔 =
𝟏
𝑪

∆𝐛,𝟏𝐬 	=0.03% ∆𝐛,𝟏𝐬 	=? ∆𝐛,𝐂𝐬 	=?

𝜶𝒃,𝟐𝒔 = 𝟎
𝜶𝒃,𝑪𝒔 = 𝟎

∆𝐛8𝟏,𝟏𝐬 	=0.05% ∆𝐛8𝟏,𝟏𝐬 	=−0.15% ∆𝐛8𝟏,𝟏𝐬 	=0.1%

𝜶𝒃8𝟏,𝟏𝒔 =
𝟏
𝑪

𝜶𝒃8𝟏,𝟐𝒔 =
𝟏
𝑪

𝜶𝒃8𝟏,𝑪𝒔 =
𝟏
𝑪

𝜶𝒃,𝟏𝒔 = 𝟏

𝔼 𝑨𝒄𝒄	|𝑶𝒃8𝟏𝒔 = 𝑶𝒃8𝟏,𝟐𝒔 ,𝒅𝒔 = 𝒃 − 𝟏 𝔼 𝑨𝒄𝒄	|𝑶𝒃𝒔 = 𝑶𝒃,𝟏𝒔 , 𝒅𝒔 = 𝒃 𝔼 𝑨𝒄𝒄	|𝑶𝒃1𝟏𝒔 = 𝑶𝒃1𝟏,𝑪𝒔 , 𝒅𝒔 = 𝒃 + 𝟏

∆𝐛8𝟏,𝟏𝐬 	=0.05% ∆B8C,CD 	=−0.15% ∆𝐛8𝟏,𝐂𝐬 	=?

𝜶𝒃1𝟏,𝟏𝒔 = 𝟎
𝜶𝒃1𝟏,𝟐𝒔 = 𝟏

𝜶𝒃8𝟏,𝑪𝒔 = 𝟎

Stage s+1 (𝜷F1C ≡ 1 𝐷⁄ , 𝜶JF1C ≡ 1 𝐶⁄ 	∀𝑏) Stage s+1 (𝜷F1C ≡ 1 𝐷⁄ , 𝜶JF1C ≡ 1 𝐶⁄ 	∀𝑏) Stage s+1 (𝜷F1C ≡ 1 𝐷⁄ , 𝜶JF1C ≡ 1 𝐶⁄ 	∀𝑏)

Figure 5: Estimating the expected accuracy gap caused by microscopic design choices on
the operation applied at every block one at a time.

3.3. Constructing a Bilinear Accuracy Estimator

We next propose an intuitive and effective way to utilize the estimated individual accuracy
contribution of each design choice (section 3.2) to estimate the expected overall accuracy of
a certain architecture in the search space.

The expected accuracy contribution of a block b can be computed by summing over
the accuracy contributions ∆s

b,c of every possible configuration c ∈ C: δ̄s
b = Σc∈Cαs

b,c · ∆s
b,c

Thus the expected accuracy contribution of the stage s of depth b′ is δs
b′ = ∆s

b′ + Σb′

b=1δ̄s
b ,

where the first term is the accuracy contribution associated solely with the choice of depth
b′ and the second term is the aggregation of the expected accuracy contributions of the first
b′ blocks in the stage. Taking the expectation over all possible depths for stage s yields
δs =

∑D
b′=1 βs

b′ · δs
b′ and summing over all the stages results in the aggregated accuracy

contribution of all design choices. Hence the accuracy of a subnetwork can be calculated by
this estimated contribution on top of the estimated base accuracy E[Acc] (Figure 3):

ACC(α,β) = E[Acc] +
S∑

s=1

D∑
b=1

βs
b · ∆s

b +
S∑

s=1

D∑
b=1

D∑
b′=b

∑
c∈C

αs
b,c · ∆s

b,c · βs
b′ (3)

And its vectorized form can be expressed as the following bilinear formula in α and β:
ACC(α,β) = r + qT

β β + αT Qαββ, where r = E[Acc], qβ ∈ RD·S is a vector composed of
∆s

b and Qαβ ∈ RC·D·S×D·S is a matrix composed of ∆s
b,c.

BINAS: Bilinear Interpretable Neural Architecture Search

We next present a theorem (with proof in Appendix E) that states that the estimator
in equation 3 approximates well the expected accuracy of an architecture.

Theorem 3.1 Assume {Os
b , ds} for s = 1, . . . , S and b = 1, . . . , D are conditionally independent

with the accuracy Acc. Suppose that there exists a positive real number 0 < ϵ ≪ 1 such that for any
X ∈ {Os

b , ds} the following holds |P[Acc|X] − P[Acc]| < ϵP[Acc]. Then:

E
[
Acc

∣∣∩S
s=1 ∩D

b=1 Os
b , ∩S

s=1ds
]

= E[Acc] + (1 + O(Nϵ)) ·
S∑

s=1

D∑
b=1

βs
b · ∆s

b (4)

+ (1 + O(Nϵ)) ·
S∑

s=1

D∑
b=1

D∑
b′=b

∑
c∈C

αs
b,c · ∆s

b,c · βs
b′

Some of the assumptions we adopted were to enable and facilitate the analysis. Our empirical
evaluation shows that in certain search spaces and tasks this assumption holds nicely, while
for others it might hold to some extent.

Theorem 3.1 and Figure 1 (right) demonstrate the effectiveness of relying on ∆s
b,c, ∆s

b to
express the expected accuracy of networks. Since those terms measure the accuracy contri-
butions of individual design decisions, many insights and design rules can be extracted from
those, as discussed in section 5.3, making the proposed estimator intuitively interpretable.
Furthermore, the transitivity of ranking correlations is used in appendix I for guaranteeing
good prediction performance with respect to architectures trained from scratch.

3.4. The Integer Quadratic Constraints Quadratic Program

In this section we formulate latency-constrained NAS as an IQCQP of bilinear objective
function and bilinear constraints. For the purpose of maximizing the validation accuracy of
the selected subnetwork under latency constraint, we utilize the bilinear accuracy estimator
derived in section 3.3 as the objective function and define the bilinear latency constraint
similarly to Hu et al. (2020); Nayman et al. (2021):

LAT (α,β) =
S∑

s=1

D∑
b=1

D∑
b′=b

∑
c∈C

αs
b,c · ts

b,c · βs
b′ = αT Θβ (5)

where Θ ∈ RC·D·S×D·S is a matrix composed of the latency measurements ts
b,c on the target

device of each configuration c ∈ C of every block b in every stage s (Figure 2). The bilinear
version of problem 1 turns to be:

max
αs

b,c
,βs

b

S∑
s=1

D∑
b=1

βs
b · ∆s

b +
S∑

s=1

D∑
b=1

D∑
b′=b

∑
c∈C

αs
b,c · ∆s

b,c · βs
b′ (6)

s.t.
S∑

s=1

D∑
b=1

D∑
b′=b

∑
c∈C

αs
b,c · ts

b,c · βs
b′ ≤ T

Σc∈Cαs
b,c = 1 ; αs

b,c ∈ {0, 1}|C| ∀s ∈ {1, .., S}, b ∈ {1, .., D}, c ∈ C
ΣD

b=1βs
b = 1 ; βs

b ∈ {0, 1}D ∀s ∈ {1, .., S}, b ∈ {1, .., D}

And in its vectorized form:

max
α,β∈{0,1}

qT
β β + αT Qαββ s.t. αT Θβ ≤ T ; Aα

S · α ≤ bα
S ; Aβ

S · β ≤ bβ
S (7)

Nayman Aflalo Noy Zelnik-Manor

3.5. Solving the Integer Quadratic Constraints Quadratic Program

By formulating the latency-constrained NAS as a binary problem in section 3.4, we can now
use out-of-the-box Mixed Integer Quadratic Constraints Programming (MIQCP) solvers to
optimize problem 6. We use IBM CPLEX IBM ILOG CPLEX that supports non-convex
binary QCQP and utilizes the Branch-and-Cut algorithm Padberg and Rinaldi (1991) for
this purpose. A heuristic alternative for optimizing an objective function under integer
constraints is evolutionary search Real et al. (2019), as next we propose a more theoretically
sound alternative.

3.5.1. Utilizing the Block Coordinate Frank-Wolfe Algorithm

As pointed out by Nayman et al. (2021), since Θ is constructed from measured latency in
equation 5, it is not guaranteed to be positive semi-definite, hence, the induced quadratic
constraint makes the feasible domain in problem 1 non-convex in general. To overcome
this we adapt the Block-Coordinate Frank-Wolfe (BCFW) Lacoste-Julien et al. (2013) for
solving a continuous relaxation of problem 1, such that ζ ∈ RN

+ . Essentially BCFW adopts
the Frank-Wolfe Frank et al. (1956) update rule for each block of coordinates in δ ∈ {α,β}
picked up at random at each iteration k, such that δk+1 = (1−γk)·δk +γk · δ̂ with 0 ≤ γk ≤ 1,
for any partially differentiable objective function ACC(α,β):

α̂ = argmax
α

∇αACC(α,βk)T · α s.t. βT
k ΘT · α ≤ T ; Aα

S · α ≤ bα
S (8)

β̂ = argmax
β

∇βACC(αk,β)T · β s.t. αT
k Θ · β ≤ T ; Aβ

S · β ≤ bβ
S (9)

where ∇δ stands for the partial derivatives with respect to δ. Convergence guarantees
are provided in Lacoste-Julien et al. (2013). Then, once converged to the solution of the
continuous relaxation of the problem, we need to project the solution back to the discrete
space of architectures, specified in equation 2, as done in Nayman et al. (2021). This step
could deviate from the solution and cause degradation in performance.

Due to the formulation of the NAS problem 7 as a Bilinear Programming (BLP) Gallo
and Ülkücü (1977) with bilinear constraints (BLCP) we design Algorithm 1 that applies the
BCFW with line-search for this special case. Thus more specific convergence guarantees can
be provided together with the sparsity of the solution, hence no additional discretization
step is required. The following theorem states that after O(1/ϵ) iterations, Algorithm 1
obtains an ϵ-approximate solution to problem 7.

Algorithm 1 BCFW with Line Search for BLCP

input (α0,β0) ∈
{

(α,β)
∣∣∣ αT Θβ ≤ T, Aα

Sα ≤ bα
S , Aβ

Sβ ≤ bβ
S

}
1: for k = 0, . . . , K − 1 do
2: if Bernoulli(p) == 1 then
3: αk+1 = argmax α(qT

α + βT
k QT

αβ) ·α s.t. βT
k ΘT ·α ≤ T ; Aα

S ·α ≤ bα
S and βk+1 = βk

4: else
5: βk+1 = argmax β(qT

β + αT
k Qαβ) · β s.t. αT

k Θ · β ≤ T ; Aβ
S · β ≤ bβ

S and αk+1 = αk

6: end if
7: end for

output ζ∗ = (αK ,βK)

BINAS: Bilinear Interpretable Neural Architecture Search

Theorem 3.2 For each k > 0 the iterate ζk = (αk,βk) of Algorithm 1 satisfies:

E[ACC(ζk)] − ACC(ζ∗) ≤ 4
k + 4 (ACC(ζ0) − ACC(ζ∗))

where ζ∗ = (α∗,β∗) is the solution of a continuous relaxation of problem 7 and the expectation is
over the random choice of the block α or β.

The proof is in Appendix G. We next provide a guarantee that Algorithm 1 directly yields
a sparse solution, representing a valid sub-network without the additional discretization
step required by other continuous methods Liu et al. (2018); Wu et al. (2019); Hu et al.
(2020); Nayman et al. (2021).

Theorem 3.3 The output solution (α,β) = ζ∗ of Algorithm 1 contains only one-hot vectors for αs
b,c

and βs
b , except from a single one for each of those blocks, which contains a couple of non-zero entries.

The proof is in Appendix H. In practice, a negligible latency deviation is associated with
taking the argmax over the only two couples. Differently from the sparsity guarantee for
the discretization step in Nayman et al. (2021), Theorem 3.3 guarantees similar desirable
properties but for the fundamentally different Algorithm 1 that does not involve an additional
designated projection step.

4. Experimental Results

4.1. Search for State-of-the-Art Architectures

4.1.1. Search Space Specifications.

Aiming at latency efficient architectures, we adopt the search space introduced in Nayman
et al. (2021), which is closely related to those used by Wu et al. (2019); Howard et al.
(2019); Tan et al. (2019); Hu et al. (2020); Cai et al. (2019). The macro search space is
composed of S = 5 stages, each composed of at most D = 4 blocks. The micro search
space is based on Mobilenet Inverted Residual (MBInvRes) blocks Sandler et al. (2018) and
controls the internal structures of each block. Every MBInvRes block is configured by an
expansion ratio er ∈ {3, 4, 6} of the point-wise convolution, kernel size k ∈ {3 × 3, 5 × 5} of
the Depth-Wise Separable convolution (DWS), and Squeeze-and-Excitation (SE) layer Hu
et al. (2018) se ∈ {on, off} (details in Appendix B).

4.1.2. Comparisons with Other Methods.

37 39 41 43 45 47 49 51 53 55 57 59 61
74.5

75

75.5

76

76.5

77

77.5

78

MobileNet V3
TF-NAS-CPU B

TF-NAS-CPU A

MNAS-NET-A1

MNAS-NET-B1

SPNAS-NET

FB-NET-C

FairNAS-C

Latency (milliseconds)

To
p-

1
A

cc
ur

ac
y

(%
)

BINAS (from scratch)

Figure 6: Imagenet Top-1 accuracy vs latency.
All models are trained from scratch.

We compare our generated architec-
tures to other state-of-the-art NAS
methods in Table 1 and Figures 6
and 7 (Right). Aiming for surpassing
the previous state-of-the-art Nayman
et al. (2021) search methods, we use
its search space (Section 4.1.1) and of-
ficial supernetwork training. This way
we can show that the improved search
method (Section 5.4 and Figure 7 (Mid-
dle)) leads to superior results for the
same marginal search cost of 15 GPU
hours per additional generated model,
as shown in Figure 7 (Right).

Nayman Aflalo Noy Zelnik-Manor

For the purpose of comparing the generated architectures of other methods alone,
excluding the contribution of evolved pretraining techniques, for each model in Table 1 and
Figure 6, the official PyTorch implementation is trained from a scratch using the exact same
code and hyperparameters, as specified in appendix C. The maximum accuracy between
our training and the original paper is reported. The latency values presented are actual
time measurements of the models, running on a single thread with the exact same settings
and on the same hardware. We disabled optimizations, e.g., Intel MKL-DNN Intel (R),
hence the latency we report may differ from the one originally reported. It can be seen
that networks generated by our method meet the latency target closely, while at the same
time are comparable to or surpassing all the other methods on the top-1 Imagenet accuracy
with a reduced scalable search cost. The same results hold when comparing model size
and FLOPS, as shown in appendix D. The total search time consists of 435 GPU hours
computed only once as preprocessing and additional 8 GPU hours for fine-tuning each
generated network, while the search itself requires negligible several CPU minutes, see
appendix A for more details. Due to the negligible search cost, one can choose to train the
models longer (e.g. 15 GPU hours) to achieve better results with no larger marginal cost
than other methods.

5. Empirical Analysis of Key Components

In this section we analyze and discuss different aspects of the proposed method.

5.1. The Contribution of Different Terms of the Accuracy Estimator

The accuracy estimator in equation 3 aggregates the contributions of multiple architectural
decisions. In section 3.3, those decisions are grouped into two groups: (1) macroscopic
decisions about the depth of each stage are expressed by qβ and (2) microscopic decisions
about the configuration of each block are expressed by Qαβ .

Variant Kendall-Tau Spearman
qβ ≡ 0 0.29 0.42

Qαβ ≡ 0 0.66 0.85
ACC(α,β) 0.84 0.97

Table 2: Contribution of terms.

Table 2 quantifies the contribution of each
of those terms to the ranking correlations by
setting the corresponding terms to zero. We con-
clude that the depth of the network is very signif-
icant for estimating the accuracy of architectures,
as setting qβ to zero specifically decreases the
Kendall-Tau and Spearman’s correlation coefficients
from 0.84 and 0.97 to 0.29 and 0.42 respectively. The significance of microscopic decisions
about the configuration of blocks is also viable but not as much, as setting Qαβ to zero
decreases the Kendall-Tau and Spearman’s correlation to 0.66 and 0.85 respectively.

5.2. Comparison to Learning the Accuracy Predictors

While the purpose of this work is not to compare many accuracy predictors, as this has
been already done comprehensively by White et al. (2021), comparisons to certain learnt
predictors support the validity and benefits of the proposed accuracy estimator (section 3.3)
despite its simple functional form. Hence each of the following comparisons is chosen for a
reason: (1) Showing that it is more sample efficient than learning the parameters of a bilinear
predictor of the same functional form. (2) Comparing to a quadratic predictor shows that
reducing the functional form to bilinear by omitting the interactions between microscopic
decisions (α parameters) to each other and of macroscopic decisions (β parameters) to
each other does not cause much degradation. (3) Comparing to a parameter heavy MLP
predictor shows that the simple bilinear parametric form does not lack the expressive power
required for properly ranking architectures.

BINAS: Bilinear Interpretable Neural Architecture Search

Model Latency
(ms)

Top-1
(%)

Total Cost
(GPU hours)

MnasNetB1 39 74.5 40,000N
TFNAS-B 40 75.0 263N
SPNASNet 41 74.9 288 + 408N
OFA CPU 42 75.7 1200 + 25N
HardCoRe A 40 75.8 400 + 15N
BINAS(40) 40 76.1 435 + 8N
BINAS∗(40) 40 76.5 435 + 15N
MobileNetV3 45 75.2 180N
FBNet 47 75.7 576N
MnasNetA1 55 75.2 40,000N
HardCoRe B 44 76.4 400 + 15N
BINAS(45) 45 76.5 435 + 8N
BINAS∗(45) 45 77.0 435 + 15
MobileNetV2 70 76.5 150N
TFNAS-A 60 76.5 263N
HardCoRe C 50 77.1 400 + 15N
BINAS(50) 50 76.8 435 + 8N
BINAS∗(50) 50 77.6 435 + 15N
EfficientNetB0 85 77.3
HardCoRe D 55 77.6 400 + 15N
BINAS(55) 55 77.7 435 + 8N
BINAS∗(55) 55 77.8 435 + 15N
FairNAS-C 60 77.0 240N
HardCoRe E 61 78.0 400 + 15N
BINAS(60) 59 77.8 435 + 8N
BINAS∗(60) 59 78.0 435 + 15N

Model Latency
(ms)

Top-1
(%)

MobileNetV3 28 75.2
TFNAS-D 30 74.2
HardCoRe A 27 75.7
BINAS(25) 26 76.1
BINAS∗(25) 26 76.6
MnasNetA1 37 75.2
MnasNetB1 34 74.5
FBNet 41 75.7
SPNASNet 36 74.9
TFNAS-B 44 76.3
TFNAS-C 37 75.2
HardCoRe B 32 77.3
BINAS(30) 31 76.8
BINAS∗(30) 31 77.2
TFNAS-A 54 76.9
EfficientNetB0 48 77.3
MobileNetV2 50 76.5
HardCoRe C 41 77.9
BINAS(40) 40 77.6
BINAS∗(40) 40 77.7

Table 1: ImageNet top-1 accuracy, latency and cost comparison with other methods. The
total cost stands for the search and training cost of N networks. Latency is reported for (Left)
Intel Xeon CPU and (Right) NVIDIA P100 GPU with a batch size of 1 and 64 respectively.
In Appendix D we compare also size and FLOPS.

5.2.1. Learning Quadratic Accuracy Predictors

One can wonder whether setting the coefficients Qαβ , qβ and r of the bilinear form in
section 3.3 according to the estimates in section 3.2 yields the best predictions of the
accuracy of architectures. An alternative approach is to learn those coefficients by solving a
linear regression:

min
r̃,q̃α,q̃β ,Q̃αβ

n∑
i=1

||Br̃,q̃α,q̃β ,Q̃αβ
(αi,βi) − Acc(αi,βi)||22 (10)

Br̃,q̃α,q̃β ,Q̃αβ
(αi, βi) = r̃ + αT

i q̃α + βT
i q̃β + αT

i Q̃αββi (11)

where {αi,βi}n
i=1 and Acc(αi,βi) represent n uniformly sampled subnetworks and their

measured accuracy, respectively.

Nayman Aflalo Noy Zelnik-Manor

One can further unlock the full capacity of a quadratic predictor by coupling of all
components and solving the following linear regression problem:

min
r̃,q̃α,q̃β ,Q̃αβ ,Q̃α,Q̃β

n∑
i=1

||Qr̃,q̃α,q̃β ,Q̃αβ ,Q̃α,Q̃β
(αi,βi) − Acc(αi,βi)||22

Qr̃,q̃α,q̃β ,Q̃αβ ,Q̃α,Q̃β
(αi,βi) = Br̃,q̃α,q̃β ,Q̃αβ

(αi, βi) + αT
i Q̃ααi + βT

i Q̃ββi (12)

A closed form solution to these problems is derived in appendix F. While effective, this
solution requires avoiding memory issues associated with inverting N2 × N2 matrix and
also reducing overfitting by tuning regularization effects over train-val splits of the data
points. The data points for training all the accuracy predictors is composed of subnetworks
uniformly sampled from the supernetwork and their corresponding validation accuracy is
measured over the same 20% of the Imagenet train set split used in section 3.2.

Figure 7 (Left) presents the Kendall-Tau ranking correlation coefficients and mean square
error (MSE), measured over 500 test data points generated uniformly at random in the
same way, of different accuracy predictors versus the number of data points corresponding
to the number of epochs of the validation set required for obtaining their parameters. It is
noticable that the simple bilinear accuracy estimator (section 3.3) is more sample efficient,
as its parameters are efficiently estimated according to section 3.2 rather than learned.

5.2.2. Beyond Quadratic Accuracy Predictors

The reader might question the expressiveness of a simple bilinear parametric form and its
ability to capture the complexity of architectures. To alleviate such concerns we show in
Figure 7 (Left) that the proposed bilinear estimator of section 3.3 matches the performance of
the commonly used parameters heavy Multi-Layer-Perceptron (MLP) accuracy predictor Cai
et al. (2019); Lu et al. (2020). Moreover, the MLP predictor is more complex and requires
extensive hyperparameter tuning, e.g., of the depth, width, learning rate and its scheduling,
weight decay, optimizer etc. It is also less efficient, lacks interpretability, and of limited
utility as an objective function for NAS (Section 3.5).

256 1,280 2,560 3,840 6,400
5 · 10−2

0.1

0.15

0.2

0.25

0.3

R2 ∼ 0.9

M
ea

n
Sq

ua
re

Er
ro

r
(d

as
he

d)

256 1,280 2,560 3,840 6,400
0.6

0.65

0.7

0.75

0.8

0.85

Validation Epochs (Number of Samples)

K
en

da
ll-

Ta
u

C
oe

ffi
ci

en
t

(s
ol

id
)

Bilinear Predictor
Quadratic Predictor
MLP Predictor
Bilinear Estimator

40 45 50 55 60 65 70 75 80 85 90
74

74.5

75

75.5

76

76.5

Latency Formula (milliseconds)

O
ne

-s
ho

t
A

cc
ur

ac
y

(%
)

BCFW
Evolution
MIQCP

Supernework (HardCoRe)

37 39 41 43 45 47 49 51 53 55 57 59
75.5

76

76.5

77

77.5

78

Latency (milliseconds)

To
p-

1
A

cc
ur

ac
y

(%
)

BINAS∗

HardCoRe

Figure 7: (Left) Performance of predictors vs samples. Ours is comparable to complex
alternatives and sample efficient. (Middle) Comparing optimizers for solving the IQCQP
over 5 seeds. All surpass optimizing the supernetwork (HardCoreNAS) directly. (Right)
Surpassing State-of-the-Art. BINAS generates superior models than HardCoReNAS for the
same search space, supernetwork weights and marginal cost of 15 GPU hours.
5.3. Interpretability of the Accuracy Estimator

Given that the accuracy estimator in section 3.3 ranks architectures well, as demonstrated
in Figure 1 (Right), this accountability together with the way it is constructed bring insights
about the contribution of different design choices to the accuracy, as shown in Figure 8.

BINAS: Bilinear Interpretable Neural Architecture Search

The exact way that those insights are deduced is detailed in appendix J.
Deepen later stages: In the left figure ∆s

b−∆s
b−1 are presented for b = 3, 4 and s = 1, . . . , 5.

This graph shows that increasing the depth of deeper stages is more beneficial than doing
so for shallower stages. Showing also the latency cost for adding a block to each stage, we
see that there is a strong motivation to make later stages deeper.
Add width and S&E to later stages and shallower blocks: In the middle and right
figures, ∆s

b,c are averaged over different configurations and blocks or stages respectively for
showing the contribution of microscopic design choices. Those show that increasing the
expansion ratio and adding S&E are more significant in deeper stages and at sooner blocks
within each stage.
Prefer width and S&E over bigger kernels: Increasing the kernel size is relatively less
significant and is more effective at intermediate stages.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Stage Number

O
ne

-s
ho

t
A

cc
ur

ac
y

C
on

tr
ib

ut
io

n
(%

)

Adding a third block
Adding a forth block

1 2 3 4 5

1

2

3

4

5

6

Stage Number

La
te

nc
y

C
os

t
of

a
Bl

oc
k

(m
s)

Latency

1 2 3 4 5

5 · 10−2

0.1

0.15

0.2

Stage Number

O
ne

-s
ho

t
A

cc
ur

ac
y

C
on

tr
ib

ut
io

n
(%

)
Increase er from 3 to 4
Increase er from 4 to 6

Increase k from 3x3 to 5x5
Add S&E

1 2 3 4

5 · 10−2

0.1

0.15

0.2

Block Number

O
ne

-s
ho

t
A

cc
ur

ac
y

C
on

tr
ib

ut
io

n
(%

)

Figure 8: Design choices insights deduced from the accuracy estimator: The contribution of
(Left) depth for different stages, (Middle) expansion ration, kernel size and S&E for different
stages and (Right) for different blocks within a stage.

5.4. Comparison of Optimization Algorithms

Formulating the NAS problem as IQCQP affords the utilization of a variety of optimization
algorithms. Figure 7 (Middle) compares the one-shot accuracy and latency of networks
generated by utilizing the algorithms suggested in section 3.5 for solving problem 1 with the
bilinear estimator introduced in section 3.3 serving as the objective function. Error bars for
both accuracy and latency are presented for 5 different seeds. All algorithms satisfy the
latency constraints up to a reasonable error of less than 10%. While all of them surpass
the performance of BCSFW Nayman et al. (2021), given as reference, BCFW is superior at
low latency, evolutionary search does well over all and MIQCP is superior at high latency.
Hence, for practical purposes we apply the three of them for search and take the best one,
with negligible computational cost of less than three CPU minutes overall.

6. Conclusion
The problem of resource-aware NAS is formulated as an IQCQP optimization problem.
Bilinear constraints express resource requirements and a bilinear accuracy estimator serves
as the objective function. This estimator is constructed by measuring the individual
contribution of design choices, which makes it intuitive and interpretable. Indeed, its
interpretability brings several insights and design rules. Its performance is comparable to
complex predictors that are more expensive to acquire and harder to optimize. Efficient
optimization algorithms are proposed for solving the resulted IQCQP problem. BINAS
is a faster search method, scalable to many devices and requirements, while generating
comparable or better architectures than those of other state-of-the-art NAS methods.

Nayman Aflalo Noy Zelnik-Manor

References
Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding

and simplifying one-shot architecture search. In International Conference on Machine Learning,
pages 550–559. PMLR, 2018.

Alain Billionnet, Sourour Elloumi, and Amélie Lambert. Exact quadratic convex reformulations of
mixed-integer quadratically constrained problems. Mathematical Programming, 158(1):235–266,
2016.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1294–1303, 2019.

Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of
weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Giorgio Gallo and Aydin Ülkücü. Bilinear programming: an exact algorithm. Mathematical
Programming, 12(1):173–194, 1977.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision, pages 544–560. Springer, 2020.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In
International Conference on Machine Learning, pages 1263–1271. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.org/
abs/1503.02531.

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

BINAS: Bilinear Interpretable Neural Architecture Search

Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo Chen, Weijun
Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Searching
for mobilenetv3. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 1314–1324. IEEE, 2019. doi:
10.1109/ICCV.2019.00140. URL https://doi.org/10.1109/ICCV.2019.00140.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141, 2018.

Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three search freedoms of latency-constrained
differentiable neural architecture search. arXiv preprint arXiv:2008.05314, 2020.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. In Advances in neural information processing systems, pages
103–112, 2019.

IBM ILOG CPLEX. Ibm ilog cplex miqcp optimizer. https://www.ibm.com/docs/en/icos/12.7.
1.0?topic=smippqt-miqcp-mixed-integer-programs-quadratic-terms-in-constraints.

Intel(R). Intel(r) math kernel library for deep neural networks (intel(r) mkl-dnn), 2019. URL
https://github.com/rsdubtso/mkl-dnn.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. The Multiple-Choice Knapsack Problem, pages
317–347. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-24777-7. doi:
10.1007/978-3-540-24777-7 11. URL https://doi.org/10.1007/978-3-540-24777-7_11.

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954, 1960.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate frank-
wolfe optimization for structural svms. In International Conference on Machine Learning, pages
53–61. PMLR, 2013.

Eric Langford, Neil Schwertman, and Margaret Owens. Is the property of being positively correlated
transitive? The American Statistician, 55(4):322–325, 2001.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
NSGANetV2: Evolutionary multi-objective surrogate-assisted neural architecture search. In
European Conference on Computer Vision (ECCV), 2020.

Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, and Lihi Zelnik. Xnas: Neural
architecture search with expert advice. In Advances in Neural Information Processing Systems,
pages 1977–1987, 2019.

Niv Nayman, Yonathan Aflalo, Asaf Noy, and Lihi Zelnik. Hardcore-nas: hard constrained differ-
entiable neural architecture search. In International Conference on Machine Learning, pages
7979–7990. PMLR, 2021.

Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan Doveh, Itamar Friedman, Raja Giryes,
and Lihi Zelnik. Asap: Architecture search, anneal and prune. In International Conference on
Artificial Intelligence and Statistics, pages 493–503. PMLR, 2020.

https://doi.org/10.1109/ICCV.2019.00140
https://www.ibm.com/docs/en/icos/12.7.1.0?topic=smippqt-miqcp-mixed-integer-programs-quadratic-terms-in-constraints
https://www.ibm.com/docs/en/icos/12.7.1.0?topic=smippqt-miqcp-mixed-integer-programs-quadratic-terms-in-constraints
https://github.com/rsdubtso/mkl-dnn
https://doi.org/10.1007/978-3-540-24777-7_11

Nayman Aflalo Noy Zelnik-Manor

Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=j9Rv7qdXjd.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4 hours.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages
481–497. Springer, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pages 6105–6114. PMLR,
2019. URL http://proceedings.mlr.press/v97/tan19a.html.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable nas. arXiv preprint arXiv:2108.04392, 2021.

Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? arXiv preprint arXiv:2104.01177, 2021.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 10734–10742. Computer
Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01099.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

https://openreview.net/forum?id=j9Rv7qdXjd
http://proceedings.mlr.press/v97/tan19a.html

	Introduction
	Related Work
	Method
	The Search Space
	Estimating the Accuracy Contribution of Design Choices
	Constructing a Bilinear Accuracy Estimator
	The Integer Quadratic Constraints Quadratic Program
	Solving the Integer Quadratic Constraints Quadratic Program
	Utilizing the Block Coordinate Frank-Wolfe Algorithm

	Experimental Results
	Search for State-of-the-Art Architectures
	Search Space Specifications.
	Comparisons with Other Methods.

	Empirical Analysis of Key Components
	The Contribution of Different Terms of the Accuracy Estimator
	Comparison to Learning the Accuracy Predictors
	Learning Quadratic Accuracy Predictors
	Beyond Quadratic Accuracy Predictors

	Interpretability of the Accuracy Estimator
	Comparison of Optimization Algorithms

	Conclusion

