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Abstract

With the continuous increase of deep learning applications in safety critical systems, the
need for an interpretable decision-making process has become a priority within the research
community. While there are many existing explainable artificial intelligence algorithms, a
systematic assessment of the suitability of global explanation methods for different applica-
tions is not available. In this paper, we respond to this demand by systematically comparing
two existing global concept-based explanation methods with our proposed global, model-
agnostic concept-based explanation method for time-series data. This method is based
on an autoencoder structure and derives abstract global explanations called ”prototypes”.
The results of a human user study and a quantitative analysis show a superior performance
of the proposed method, but also highlight the necessity of tailoring explanation methods
to the target audience of machine learning models.

Keywords: Explainable AI, Concept Explanations, Time-Series.

1. Introduction

Deep learning methods have conquered nearly every aspect of machine learning applications
due to their flexibility and predictive power. However, they did not yet gain the same
interest in safety-critical applications, due to their ”black box” behavior (Béıtez et al.
(1997)). Especially in safety critical applications, wrong decisions can have severe impact
on human health, e.g. in medical diagnosis (Reardon (2019); Weng et al. (2017)) or financial
assets and reputation of large scale projects such as particle accelerators (Obermair et al.
(2022)). In these cases, experts cannot simply rely on automatically generated predictions
and are often legally obliged to state reasons for their decisions (Goodman and Flaxman
(2017)). Therefore, the demand for methods that allow for the interpretation of black box
models has been increasing and a wide variety of eXplainable Artificial Intelligence (XAI)
algorithms were proposed in recent years.
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The currently most popular XAI algorithms (Ribeiro et al. (2016); Bach et al. (2015);
Shrikumar et al. (2016); Lundberg and Lee (2017); Simonyan et al. (2013); Chattopadhay
et al. (2018)) are relevance-based methods capable of highlighting the parts of the data
which are important for model predictions. Considering a handwritten digit classification
problem using the MNIST dataset (Deng (2012)), for example, highlighting relevant pixels
representing a particular number is an intuitive interpretation for humans.

Concept-based explanations (Kim et al. (2018); Yeh et al. (2020)) represent an alter-
native to highlighting important parts of the data. While there exist multiple definitions
of concepts across the literature, we define a concept as explanatory data containing all
relevant properties that allow humans to make the same decisions as the black box model.
Typically, concepts are provided by (1) data examples, i.e. explanation-by-example, or (2)
artificial data containing the most relevant information, i.e. prototypes. In the example of
handwritten digit classification, showing the image of a typical digit ’one’ from the available
data would be an explanation-by-example, while showing an artificially created example of
the digit ’one’ with its main properties, e.g. the straight vertical line, would be a prototype.

In a recent empirical study conducted within a group of non-machine-learning experts,
(Jeyakumar et al. (2020)) showed superior performance of a concept-based explanation
method compared to relevance-based methods for time-series data. Explaining the non-
intuitive nature of time-series data to non-machine-learning experts is a common task in
safety critical applications, e.g. when explaining heart beat signals to medical professionals
and patients. Consequently, concept-based explanations are an important tool in this do-
main. However, explanation-by-example and prototypes have not been compared in detail
yet, although they belong to the main types of existing concept-based explanation methods.

Contribution. In this work, we investigate the advantages and disadvantages of explanation-
by-example or prototypes for time-series explanations, depending on whether the target
audience is users or model developers. Initially, we define a concept mathematically and
denote concept properties to increase the explanation confidence. Consequently, we pro-
pose a model-agnostic concept-based XAI method1, relying on an autoencoder using proto-
types. We then compare our model-agnostic prototype (MAP) method to an explanation-
by-example (EBE) (Jeyakumar et al. (2020)) and a model-specific prototype (MSP) (Gee
et al. (2019)) explanation method with a human user study and a quantitative analysis.

Human User Study Details. For the conducted human user study, we utilized the
ECG200 (Olszewski (2001)) dataset containing heartbeat signals and an artificial dataset
reproducing signals from machine sensors in a noisy environment. Participants were asked
to classify the time-series signals from the dataset, using the concept explanations which we
provided. In total, 75 participants classified 3480 time-series signals based on explanation-
by-example or prototypes derived from the different methods. The survey shows that our
method is preferred, but also highlights the importance to distinguish between target audi-
ences when comparing XAI methods.

Paper Structure. We first give an overview of related XAI work, followed by a formal
definition of a concept and its properties. We then introduce our XAI method and our

1. https://github.com/cobermai/concep_based_explanations
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study details. Finally, we discuss the results, and present future work in the domain of
particle accelerators.

2. Related Work

In this section, we highlight the need for concept explanations, which are model-agnostic,
applicable to time-series data, and tested and optimized for their target audience. With
the increasing amount of time-series data available, hundreds of time-series classification
methods have been recently proposed. Different methods are frequently based on nearest
neighbors (Bagnall et al. (2017)), ensemble classifiers (Lines et al. (2018)), or convolutional
neural networks (Fawaz et al. (2019)).

Many of the recently proposed XAI methods target the interpretation of such time-series
classification methods (Rojat et al. (2021)). This is especially relevant for safety critical
applications, where time-series data is a common data format. Tjoa and Guan (2020)
provide a list of different XAI methods for medical applications as an example for safety
critical applications. A recent summary from AlRegib and Prabhushankar (2022) highlights
the small amount of model-agnostic XAI approaches and underlines the importance of
human evaluation of such approaches. Amazons Mechanical Turk enables a relatively fast
way to derive human non-expert evaluations without a bias, and is commonly used in XAI
studies as in Jeyakumar et al. (2020), Lundberg and Lee (2017), Ribeiro et al. (2016), and
Kim et al. (2018). It is more difficult to choose an intentional bias. For example, a bias
towards the characteristics of the research community in safety-critical applications.

In the following subsections, we provide an overview of relevant concept explanation
methods, distinguishing between methods using explanation-by-example and methods using
prototypes to visualize their concepts. For each method, we emphasize whether the model
is model-specific and whether the explanations are local or global. Local explanations,
analyze the black-box predictions of each data sample, i.e. an instance, separately, while
global explanations investigate all predictions at once.

2.1. Concept visualization with explanation-by-example

Kim et al. (2018); Yeh et al. (2020) describe concepts as a set of implicit vectors. To
visualize a concept, the instance/example closest to the vector is extracted from the model
specific architecture. Jeyakumar et al. (2020) cluster instances with similar activations
in the last layer of a deep neural network. They use the cosine similarity as a similarity
measure. The access of the activations makes this method model-specific. Explanation-by-
example is frequently extended to show only relevant segments of examples. Chen et al.
(2019); Das et al. (2020) show image patches like the ear of cat as examples. Guidotti et al.
(2020) propose a model-agnosic method, which generates relevant example segments, using
decision trees. These segments are frequently called shapelets. In Mochaourab et al. (2022)
global explanations are derived from relevance-based explanation using Sobol’s indices, i.e.
a variance-based sensitivity analysis.
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2.2. Concept visualization with prototypes

Prototype based methods aim at defining representative concept prototypes for model ex-
planation (Bien and Tibshirani (2011)). Li et al. (2017); Gee et al. (2019) train prototypes
with an autoencoder. A classifier is trained in parallel. This classifier utilizes the euclidean
distance of the prototypes and the latent space of the autoencoder as an input. Here, clas-
sification and explanation are combined in the same model, which makes it model specific.
In a similar way Zhang et al. (2020) derive one prototype per class with a model specific
attention prototype network. Tang et al. (2020) generate time-series shapelets by combining
concept-based and relevance-based methods.

The presented list of state-of-the-art methods, highlights the frequent use of prototypes
and examples for visualization. For these methods, it has not been evaluated, which visu-
alization technique is best in helping humans to reach similar accuracy as the black box
model. This topic will be mathematically approached in the next section.

3. Concept Definition and Properties

Consider a training set of N instances X = {x1, ...,xN}, where each instance xn ∈ Rp

has a corresponding label yn ∈ Nt, and a black box model f(·), e.g. a pretrained deep
neural network, which approximates these labels ŷn = f(xn). An explainer model is then
used to derive a set of M concept explanations X̂ = {x̂1, ..., x̂M} with predictions Ŷ =
{f(x̂1), ..., f(x̂M )}, where each explanation m = 1, ...,M corresponds to a reconstructed
concept x̂m.

XAI methods are often evaluated through dedicated questionnaires (Holzinger et al.
(2020)), asking its users to state their subjective assessment of the given explanation. To
provide an objective evaluation of XAI methods, a human perceiver s(·) of an explanation
should be able to find the correct label for unseen instances on their own. Showing all
concept explanations X̂ and their corresponding labels Ŷ to users in the target audience,
the concept receptivity is measured by the accuracy of the users when labeling new instances
xn.

Definition 1 (Concept Receptivity) A human perceiver s(·) has a concept receptivity
r, which is the ability to find the label ŷn for random instances xn given the reconstructed
concepts X̂ with labels Ŷ

r(X̂, Ŷ) =
1

N

N∑
n=1

1ŷn=s(xn,X̂,Ŷ), (1)

where 1 is an indicator function.
Human evaluations of explanations are labor-intensive. To this end, we further propose a

quantitative evaluation method. Explainer models frequently use a transformation function
to derive lower dimensional features zi = g(xi) , where zi ∈ Rq,xi ∈ Rp, and q < p. In
order for this latent space to faithfully represent the input space, the relation of instances
in the latent space, should be similar to the instances in the input space.
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Definition 2 (Representability) We specify the similarity of two instances xj and xn

with the conditional probability

p(xj |xn) =
exp(−||xn − xj ||2/2σ2

n)∑
k ̸=n exp(−||xn − xk||2σ2

n)
, (2)

assuming a Gaussian distribution of data points with standard deviation σ (Van der Maaten
and Hinton (2008)). With this definition, we compare the conditional probabilities Pn =
p(xj |xn) and Qn = p(zj |zn), between input instances xj and their latent space activa-
tions zj. We, therefore, determine the Kullback-Leibler (KL) divergence between condi-
tional probabilities of one instance n, to all other N instances in the dataset. Notably,
KLPn=Qn(Pn||Qn) = 0 indicates that distribution Pn equals Qn. The sum of all KL diver-
gences is the concept representability

ϕc =

N∑
n

KL(p(xj |xn) ∥ p(zj |zn)) =
N∑
n

N∑
j

p(xj |xn) log
p(xj |xn)

p(zj |zn)
. (3)

Similarly, we determine how well the reconstructed concepts represent the input. In order
to make the M concepts comparable to the N input instances, we look for the nearest concept
of each input instance in the latent space in terms of the L2-Norm, argminx̂m

||g(xn) −
g(x̂m)||2. Hence, we obtain the reconstructed concepts in the input space, X̂ = {x̂1, ..., x̂N}.
We define the reconstructed concept representability as the sum of all KL divergences,

ϕcr =
N∑
n

KL(p(xj |xn) ∥ p(x̂j |x̂n)). (4)

Fig. 1 depicts the concept representability ϕc and the reconstructed concept repre-
sentability ϕcr. The input xn consist of two blue signals of class one and one red signal
of class two. Two concepts c1, c2 are derived from the latent space zn with k-means. The
red signal is reconstructed with c2. The two blue signals are closest to c1, and their re-
constructed concept is therefore equal. Hence, the similarity of the input signals is well
reflected by the concepts.

Figure 1: Example with three instances of two classes in red and blue. Two concepts have
been reconstructed from the latent space.
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4. Model-Agnostic Prototype Method

Our proposed method uses an autoencoder architecture, shown in Fig. 2, consisting of an
encoder function g(·) that maps each instance n onto a latent space zn ∈ Rq, and a decoder
function h(·) that transforms the latent space back to the original input space Rp. Using
the latent space of the training set, we infer the concepts C = {c1, ..., cM} with k-means
(k = M), where concepts are considered to be prototypes. A prototype enables the inference
of M reconstructed concepts through x̂m = h(cm), using cm within the latent space of the
model.

Our method is trained independently of the black box model and is therefore model-
agnostic. This not only enables to use any existing model without modifications, it also
enables to derive explanations for already trained models. Furthermore, we argue that
model-specific explanation methods, that access the activations of a hidden layer from a
trained black box model, infer worse reconstructions, as detailed information necessary for
the reconstruction is lost in the process of optimizing the weights for classification. Unlike
other autoencoder methods (Gee et al. (2019); Li et al. (2017)), we derive our concepts
directly from the latent space, i.e. the activations of the last encoder layer, instead of
optimizing the concepts during training. We also employ a similarity loss for the latent
space to diversify the concepts in Eq.7. In practice, this leads to more robust training,
faster convergence, and more meaningful concepts.

Figure 2: Model architecture used for the MAP explainer. Given a trained black box model,
we fit an autoencoder to reconstruct the input data and to recreate the output of the black
box model. The concepts are derived from the autoencoder latent space and are optimized
to be diverse.

During optimization of the autoencoder weights, we maximize the ability to reconstruct
both the input, and the exact prediction in terms of softmax outputs of the black box
model. To regularize the concepts, we also employ a similarity loss during training. For the
reconstruction loss, we use the mean-squared-error,

R(g, h,X) =
1

N

N∑
n=1

(xn − h (g(xn)))
2 . (5)
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For classification tasks the ability to reconstruct the model prediction, is measured via the
categorical-cross-entropy loss,

C(g, h, f,X) = −
N∑

n=1

(
argmax

ŷ
f(xn)

)
logf (h (g(xn))) . (6)

Diverse concepts are obtained by penalizing non-orthogonality between two different con-
cepts ci, cj ∈ C. Specifically, we define the similarity loss as the scaled sum of their inner
products (Yeh et al. (2020))

S(C) =

∑
i ̸=j c

T
i cj

M(M − 1)
, (7)

where the concepts are the cluster centers of the latent space, derived with k-means2. The
complete learning objective is given as follows. Notably yn is not required, which enables
an unsupervised training of model-agnostic prototypes,

L(g, h,X) = R(g, h,X) + λCC(g, h, f,X) + λSS(C). (8)

4.1. Model Structure

We use two different autoencoder structures (for full details, see appended code1), based
on an extensive sensitivity analysis, and relevant literature from Agarap (2018) and O’Shea
and Nash (2015). In this section, we first validate our model and show the effect of the
hyperparameters λC and λS in Section 4.2. For this task we use a three layer convolutional
autoencoder architecture with a 3x3 kernel and a filter size of 32, 64, and 1 for both the
encoder and the decoder. Additionally, both the encoder and decoder, use ReLU activations
in the first two layers, and a sigmoid activation in the last layer.

For the explanation of time-series classification, in Section 5 and 6, we use a one layer
encoder, L1-activity regularization and a normalized output. This means that our method
finds a linear mapping of the input signal to the concepts. Multivariate time-series are
flattened before the encoder. We set the hyperparameters to λC = 1 and λS = 1, and
monitor that all loss terms converge. Furthermore, we used a three layer neural network,
with 300 neurons per layer and a sigmoid activation in the second layer as a decoder.

For both autoencoders, we set the latent space size to five times the number of concepts
and use the ADAM optimizer. This enables all loss terms to converge, while keeping the
latent space small.

4.2. Model Validation

We validate our method by explaining a classifier, trained to predict whether an instance
of the MNIST dataset of handwritten digits (Deng (2012)) contains the digit ’three’. As a
classifier, we use a four layer neural network. Specifically, it consists of two convolutional
layers of size 32 and 64, followed by two fully connected layers of size 128 and 10. All layers
but the last use ReLU activations, where a softmax activation is used. In addition, we use
max pooling after the second layer, and 0.2 and 0.4 dropout after the last two layers. The
classifier is trained with the ADAM optimizer, achieving an accuracy of 99.8%.

2. In practice, this means that k-means is applied on each batch during training.
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Ten model-agnostic prototypes (M = 10) were reconstructed, shown in Fig. 3, with
different hyperparameters λC and λS . These prototypes, were manually sorted. The pro-
totypes, calculated with λC = 1 and λS = 1, manage to represent all digits in the dataset,
except for an overlap of digits ’four’ and ’nine’. Without similarity loss (λS = 0), there are
two concepts for the digit ’one’, an overlap in the digits ’five’ and ’nine’, and digit ’four’
is missing. Without classification loss (λC = 0), all numbers are represented with lower
reconstruction performance compared to the first row. Finally, the effect of setting both
hyperparameters to 0 is shown (λC = 0 and λS = 0). This means the reconstructions are
blurry, the number ’eight’ is missing, and the number ’one’ occurs twice. With this simple
example, we demonstrate the effectiveness of our model on an easily interpretable and well
known dataset. The same approach will be applied to time-series classification problems,
which are harder to interpret for humans.

Figure 3: Validation of our MAP method using MNIST with and without similarity and
classification losses, with M=10. The black box model was trained to classify whether an
image contains the digit ’three’.

class 1 class 2

λS=1
λC=1

λS=0
λC=1

λS=1
λC=0

λS=0
λC=0

5. Methodology

5.1. Modeling Methodology

We conduct a quantitative analysis on 12 datasets and a human user study, where we assess
two of the datasets qualitatively. The selection of the datasets is based on signals frequently
used in safety critical applications. We derive 11 of the datasets from the UCR archive Dau
et al. (2019) and create one artificial dataset on our own. We address details for the human
user study and the experimental methods in Section 5.2. The results of the quantitative
analysis and a human user study, are reported in Section 6.1 and Section 6.2, respectively.
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5.2. Human User Study3

We analyze the suitability of the three different methods in the context of safety critical
applications empirically, with one survey1 per method. For each survey, participants labeled
15 instances from two different datasets. These 15 instances were drawn randomly from
the dataset to ensure fair comparison. To choose the right label, participants were given
the concept explanations for each class in the dataset. Out of all correct answers, we then
calculated the concept receptivity, as described in Eq. 1.

Participants. Our study was distributed within our research community, collecting a
total of 3480 answers from 75 students and research staff working in the field of safety
critical applications. The bias, introduced due to sampling in this research community, is
intentional in order to optimize the models towards their future users. In the beginning of
the survey, participants were asked to indicate whether they have prior knowledge in the
field of machine learning. People who answered positively to this question were classified
as typical developers of ML methods, and people who answered negatively to this question
were classified as potential users of explanations in safety-critical system application.

Validating Responses. We applied two filtering criteria to eliminate non-reliable or biased
answers. While people were allowed to fill in more than one survey, we only took into account
the first survey for each person for the main results. This is to remove positively skewed
responses resulting from familiarizing with the datasets, further discussed in the results.
Additionally, we eliminated participants scoring worse than random, i.e. with less than 15
out of 30 correct answers. In total, 2190 answers from 73 participants were analyzed.

Datasets. For the survey, we selected two distinct datasets containing scaled signals of
electrical activity and sensor data measured in Volt.

1. ECG200: We use the ECG200 (Olszewski (2001)) dataset from the UCR archive (Dau
et al. (2019)) containing data of electrical activity measured during one heartbeat. Specif-
ically, the latter part of a heart beat is shown in the signal, starting after the peak point
R. The characteristic properties of a normal heart beat (class 1) compared to an ischemic
heart beat (class 2) are the high peak point R and the limited recovery time from its
minimum S to T. We show a scaled reconstruction of the ground truth in Fig. 4 together
with the characteristic points R, S, T, and U.

2. Artificial Dataset: Furthermore, we created an artificial dataset, reproducing signals
from machine sensors in a noisy environment.In particular, we used four basic time-series
shapes, shown in the ground truth signals Fig. 5, and added multiplicative and additive
noise with an amplitude of 0 to 1.1, drawn from a uniform distribution.

Black Box Model. We used a Fully Convolutional neural Network (FCN) (Fawaz et al.
(2019)) to classify the signals. It consists of three convolutional layers with 128, 256, and
128 filters of kernel size 8, 5, and 3. The first two layers use ReLU activation and batch
normalization. The last layer’s output is globally averaged and fed into a softmax activation.

3. The study was conducted in compliance with the CERN (2022) Data Privacy Protection Policy and the
CERN (2010) Code of Conduct.
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Explanation Methods. We compare our MAP explanation method, described in Sec-
tion 4, with two addition concepts explanation methods. Their implementation details are
stated below. The number of concepts is set to two times the number of classes in all
datasets M = 4, which allows all loss terms to converge. We also tried to keep the number
of concepts low and even to improve the simplicity of our survey.

1. Explanation-By-Example (EBE): First, we used the idea of instance explanation-by-
example methods (Jeyakumar et al. (2020); Papernot and McDaniel (2018)) to implement
a global explanation method. Namely, we split the FCN into an encoder g(·) and a
predictor, at the last convolutional layer. We then calculate the k-means cluster centers
of the activations g(xn). The instance with the closest euclidean distance to each cluster
center was then used as a global explanation-by-example.

2. Model-Specific Prototypes (MSP): We implemented the model-specific prototype
method from Gee et al. (2019). This method also learns prototypes from the output
of an encoder. A softmax classifier then uses the distance of the encoder output to all
prototypes for classification. Finally, the learned prototypes are reconstructed with a
decoder. In addition to the cross-entropy loss and the reconstruction loss, the authors
introduce a prototype diversity loss as a learning objective. As the method is model-
specific, we used the convolutional layers of the FCN as an encoder on top of a fully
connected layer with 20 neurons as an encoder g(·). Similar to our MAP model we used
a three layer fully connected neural network, with 300 neurons per layer and a sigmoid
activation function in the second layer as a decoder h(·). Similarly to the paper (Gee
et al. (2019)), the predictor consists of a softmax layer, where decisions are inferred from
the distance of input instances to the learned prototypes. All hyperparameters were
taken from the original paper, after performing a detailed sensitivity analysis.

Training Stability. While the training of the FCN already converged after 200 epochs,
we trained both autoencoder methods for 1500 epochs to ensure convergence of all regular-
ization terms. We ensured that none of the models was stuck in local minimum, by training
each model five times and selecting the one with the lowest overall loss.

Study Significance. Confidence intervals are calculated using the binomial
proportion (Brown et al. (2001)) p̂ ± z

√
(p̂(1− p̂))/n, where p̂ is the proportion of suc-

cesses in a binomial trial, i.e. the amount of all correctly classified instances divided by the
amount of all classification samples n. Here, z is the quantile of a standard normal distri-
bution 1 − α/2, where α is the target error rate. This means that for our 95% confidence
interval α = 0.5 and z = 1.96.

6. Results

6.1. Modeling Results

The quantitative modeling results of EBE, MSP, and MAP are shown in Table 1. Based
on the definitions given in Section 3, the classification accuracy, the concept representabil-
ity, and the reconstructed concept representability are shown by the mean and standard
deviation (in brackets) over five training runs.

The EBE & MAP methods, use the same FCN classifier for the prediction of the classes.
This FCN classifier is trained only with the cross-entropy loss, without a specific loss for
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Table 1: Concept properties of EBE, MSP and our MAP. The model accuracy (higher
scores are better), the representabilities (lower scores are better) are given by the mean of
five independent training runs with standard deviation in brackets. The accuracy of EBE
and MAP is equal, as they use the same FCN classifier for prediction.

Dataset Model Accuracy [%] Concept Representability Reconstructed Concept Representability
FCN(ours) MSP EBE MSP MAP(ours) EBE MSP MAP(ours)

ECG200 84.0(0.8) 79.7(10.8) 2.3(0.1) 2.1(1.1) 0.2(0.1) 8.1(4.6) 5.8(2.4) 0.6(0.1)
Artificial data 99.9(0.1) 93.6(17.7) 15.7(0.7) 15.7(4.8) 7.8(0.8) 4.7(2.7) 4.7(0.9) 4.3(1.8)

ACSF1 85.9(2.5) 85.9(3.1) 1.0(0.2) 1.4(0.1) 0.5(0.1) 1.8(0.9) 2.8(1.9) 1.2(0.2)
Computers 83.5(2.0) 73.8(11.0) 6.0(0.9) 12.0(4.8) 1.5(0.2) 2.1(0.0) 13.2(0.5) 9.3(1.0)
ECG5000 92.9(0.2) 92.7(0.7) 3.9(0.2) 13.0(1.5) 2.0(0.3) 8.9(0.3) 5.6(1.3) 6.3(0.5)
LargeKitchenAppliances 86.9(0.6) 89.4(1.2) 9.5(0.5) 15.5(0.3) 1.3(0.5) 15.5(1.2) 11.8(2.5) 9.1(0.4)
PowerCons 91.9(0.8) 78.7(19.1) 2.7(0.1) 4.7(2.2) 1.2(0.2) 9.6(1.5) 5.3(2.6) 7.4(1.7)
RefrigerationDevices 50.1(1.8) 50.3(3.1) 5.4(0.3) 11.5(0.7) 4.1(1.0) 12.6(0.6) 14.2(1.0) 18.3(1.4)
ScreenType 61.8(1.8) 62.1(2.4) 5.0(0.2) 10.9(0.9) 1.8(0.2) 7.2(0.8) 14.7(2.9) 12.4(1.1)
SmallKitchenAppliances 78.5(1.2) 74.7(3.3) 8.8(0.3) 14.9(1.0) 1.5(0.7) 13.3(0.1) 18.6(0.8) 15.5(0.6)
Plane 99.4(1.1) 95.6(7.7) 0.4(0.1) 0.9(0.8) 0.2(0.1) 1.0(0.3) 2.8(1.9) 0.9(0.5)
Trace 100.0(0.0) 100.0(0.0) 1.2(0.0) 1.9(0.1) 0.1(0.0) 2.6(0.9) 2.0(0.2) 0.9(0.2)

Win 9 5 0 0 12 4 2 6

explanation. The MSP method is trained to classify and explain at the same time. As a
result of this combined objective, the model does not always converge to the global minimum
of the cost function. This effect is also observed in the Artificial data, the Computers, the
PowerCons, and the Plane dataset, where the standard deviation of the MSP is much
higher compared to the standard deviation of the FCN. If the MSP does converge, then it
reaches similar results compared to the FCN. In case of the LargeKitchenAppliances, the
ScreenType, and the SmallKitchenAppliances datasets, the mean accuracies of MSP are
even higher compared to the FCN mean accuracy.

The MAP reaches the highest concept representability in all cases. This shows that the
distribution of the latent space is representing the input distribution most accurately for the
MAP. While the MAP derives the latent space with a linear transformation, the decoder
is still able to identify the correct concepts. This can be seen in the high reconstructed
concept representability, where the MAP achieves best results for six datasets. The recon-
structed concept representability of EBE is highest in four datasets. The similarity between
input instances and explanation-by-example concepts is more similar for EBE compared to
prototypes of MSP and MAP, where unimportant information, e.g. noise, is filtered out.

We further obtained the true reconstructed concept representability on the artificial
dataset, where the ground truth is available. Here, we used the ground truth signal of each
input instance as a concept. For this case we obtain a reconstructed concept representability
of 3.7, while MSP and EBE reaches 4.7, and MAP reaches 4.3. Looking at Figure 5,
the prototypes of MAP are closest to the ground truth, which validates the performance
measure.

6.2. Human User Study Results

The results of the study including 73 Participants which classified a total of 2190 instances
are presented in Table 2. Analyzing the answers of all participants from both datasets, our
MAP method, showed the best results with 79.3% correct answers. This observation is valid
also when taking into account the non-overlapping confidence intervals. When looking at
the same quantity for individual datasets, one can observe a similar trend.
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Figure 4: Ground truth and explanation of the ECG200 (Olszewski (2001)) dataset, showing
the latter part of a heart beat, starting before the peak R. For each class, two concepts were
extracted with different explanation methods.
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Figure 5: Explanations of artificially created dataset with two concepts per class, extracted
from different explanation methods. The ground truth signal shows the four shapes within
the dataset, to which multiplicative and additive noise with an amplitude of 0 to 1.1, drawn
from a uniform distribution, was added.
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In the artificial dataset, EBE was preferred by users over other methods. When con-
sidering Fig. 5, one would not expect this, as it seems that EBE is the most distinct from
the ground truth signal. However, possibly participants not familiar with machine learning,
were not able to establish the link between the pattern in the abstract concepts and the
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Table 2: Results of the study comparing global EBE, MSP and our MAP. 73 Participants
classified a total of 2190 instances, given the reconstructed concepts x̂ and their labels ŷ.
The classification accuracy denotes their receptivity r (see Eq. 1) for the calculated concepts
and is shown with the 95% confidence interval for a binomial proportion.

Participants Method ECG200 [%] Artificial data [%] Total [%]

EBE 65.6 ± 6.7 79.0 ± 5.7 72.3 ± 4.4
Developer MSP 64.4 ± 8.1 74.1 ± 7.4 69.3 ± 5.5

MAP (ours) 74.8 ± 5.2 84.8 ± 4.3 79.8 ± 3.4

EBE 71.3 ± 7.3 80.0 ± 6.4 75.7 ± 4.9
User MSP 64.3 ± 6.5 67.6 ± 6.3 66.0 ± 4.5

MAP (ours) 77.8 ± 7.0 78.5 ± 6.9 78.1 ± 5.0

EBE 68.1 ± 4.1 79.4 ± 3.1 73.8 ± 2.4
All participants MSP 64.3 ± 4.0 70.1 ± 3.2 67.2 ± 2.4

MAP (ours) 75.8 ± 3.6 82.7 ± 2.9 79.3 ± 2.2

time-series instances. Looking at the performance of the MAP method on the artificial
dataset, prototypes that did not fit the shape of the ground truth, appear to be confusing
for the users.

For the ECG200 dataset, developers and users were able to generalize best using our
method with 74.8% and 77.8% correct answers, respectively. Looking at the class 2 signal
in Fig. 4, the characteristic features of ischemic heartbeat signals are represented well by
the derived concept. Specifically, the low amplitude in the spike R and the long recovery
time from the points S to T is visualized, while showing much less noise than the other
methods. A trend of developers giving worse results than users is visible, suggesting that
developers are not necessarily able to generalize better than users utilizing concept-based
explanations.

We further evaluated the effect of our filtering criteria (see Section 5.2), by looking at the
results of the 1170 dropped answers from 39 participants who filled out more than one survey.
Here, the learning effect outweighed the decision fatigue, as the performance increased on
average by 6.8% for ECG200 and 5.1% for the artificial dataset in later attempts.

7. Conclusion

The quality of global, and model-agnostic concept explanation techniques is a key factor
to help experts in safety critical domains gaining trust in predictions made by machine
learning models. We demonstrated that our provided model-agnostic method fulfills these
requirements by providing accurate and complete explanations, independent of the weight
initialization or the concept numbers. We assessed the quality of our explanations quanti-
tatively with 12 datasets, containing data common in safety critical applications. On two
datasets, we further performed a human user study across 75 participants with, 2190 vali-
dated answers. The conducted survey showed that our proposed method helped participants
to generalize explanations for classification tasks on time-series data across all datasets and
target audiences. Specifically, participants reached 79.3% correct answers on average us-
ing our method, while reaching only 73.8% with explanation-by-example and 67.2% with
model-specific prototypes. In the case of the artificial dataset, the prototype explanations
show a significant visual discrepancy with respect to the signals presented in the survey,
possibly leading to better results of the explanation-by-example method. In our domain,
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i.e. predicting failures in particle accelerators, explanations are expected to be interpreted
by domain experts. This makes the explanation by model-agnostic prototypes the preferred
option in general, with explanation-by-example representing a valid alternative if prototypes
become too abstract.

8. Future Work

Our future work will focus on the application of the proposed method to predict failures
in superconducting electrical circuits in CERN’s Large Hadron Collider (LHC Wenninger
(2016)). The circuit data collected during several years of successful operation enables the
use of data-driven methods to help experts find anomalies in the behavior of superconduct-
ing circuits and potentially also of protection systems. Our model-agnostic explanation
technique will help in explaining existing deep learning models to system experts with no
machine learning background. This will enable faster and more accurate fault diagnostics
and optimized maintenance actions, further increasing safety and availability of the LHC. In
addition, improvements of our method will aim at making more tailored variants of our ex-
planation. Particularly, we plan to use Fourier analysis to correctly address the complexity
of the behavior of superconducting circuits in the frequency domain.
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