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Abstract

Anomaly detection on time series is an important research topic in data mining, which has
a wide range of applications in financial markets, biological data, information technology,
manufacturing system, etc. However, the existing time series anomaly detection meth-
ods mainly capture temporal features from a single-scale viewpoint, which cannot detect
multi-scale anomalies effectively. In this paper, we propose a novel approach of Multi-scale
Anomaly Detection for Time Series (MAD-TS) with an attention-based recurrent autoen-
coder model to solve the above problem. The proposed method adopts a hierarchically
connected recurrent encoder to extract the features of a time series from different levels.
The multi-scale features are then fused by a hierarchical decoder with attention mechanism
to reconstruct the original sequence at different scales. Based on the reconstruction errors
at multiple scales, anomaly scores can be learned for different data points, which can be
used to infer the anomaly status of the time series. Extensive experiments based on five
open time series datasets show that the proposed MAD-TS method achieves significant
performance improvement on anomaly detection compared to the state-of-the-arts.

Keywords: Anomaly detection; Multi-Scale; Time Series.

1. Introduction

Nowadays modern information systems typically generate a large amount of data in the
form of time series, which include the continuous measurement of key performance indica-
tors (KPIs), the reports from stock markets, the sensors’ records from the cyber-physical
systems (CPSs), etc. Time series anomaly detection tends to identify abnormal status in
each time step from the time series data, which has become an important topic in data
mining Chalapathy and Chawla (2019). Time series anomaly detection has a wide range
of applications in the fields of risk assessment in financial markets, automatic operation
in IT systems, failure detection in complex industrial systems, etc. Due to the fact that
anomalies are often rare in real-world time series and labeling anomalies from time series
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(a) Isolated noise and contextual anomalies in time series.
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(b) Seasonal patterns in time series.

Figure 1: Time series anomalies from different scale’s viewpoints.

is time-consuming and expensive in practice, time series anomaly detection is typically
formulated in the unsupervised learning setting Su et al. (2019); Zhang et al. (2019).

In the past decades, a large amount of work has been performed in the area of unsu-
pervised time series anomaly detection, which can be categorized as discrimination-based,
forecasting-based, and reconstruction-based methods. Discrimination-based methods mea-
sure the similarity between two sequences and distinguish abnormal patterns from normal
ones using statistical methods or early machine learning models such as Local Outlier Fac-
tor Breunig et al. (2000), one-class SVM Ma and Perkins (2003), EM Pan et al. (2010), etc.
Forecasting-based methods build a predictive model based on historical values and decide
whether an observed value is abnormal by calculating its prediction error, which typically
includes ARMA Wold (1938), LSTM Hochreiter and Schmidhuber (1997), HTM Ahmad
et al. (2017), etc. Reconstruction-based methods learn a compact representation of normal
data by minimizing the difference between reconstruction and the input series, which are
popularly applied with the modern deep learning models such as AutoEncoder (AE) Zong
et al. (2018), LSTM-VAE Park et al. (2018), Generative Adversarial Network (GAN) Au-
dibert et al. (2020), etc.

Despite the great efforts of unsupervised methods for time series, it is still challenging for
them to model the complex nonlinear temporal dynamics from a comprehensive viewpoint.
While most existing unsupervised methods either capture temporal features of time series
from a fixed time window or tend to reconstruct a whole time series session unfocusedly and
indiscriminately, they mainly extract single-scale features and may not be able to detect
anomalies effectively from the following scenarios. (1) Isolated noise. As the time series
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data illustrated in Fig. 1(a)subfigure, if observed from a small scale S1, point P1 could
be considered as an anomaly by most unsupervised methods since its value is significantly
different from that of the other points. However, if observed from a larger scale S2, P1
probably is an isolated noise since the time series has normal values before and after that
point. (2) Contextual anomalies. As shown in Fig. 1(a)subfigure, if observed from the scale
S3, point P2 could be considered normal by some fixed time-window methods since it has
similar value as its nearby points. However, if observed from scale S4, P2 and all points
in S3 should be contextual anomalies. (3) Seasonal patterns. Time series data typically
have seasonal patterns occurring at regular intervals. As illustrated in Fig. 1(b)subfigure,
the time series has periodical patterns and some peaks indicated by green dots occur in
every period regularly which should not be considered abnormal. However, the recurrent
neural networks (RNN) based methods Kieu et al. (2019); Shen et al. (2021) fail to capture
such seasonal patterns if their lookback length is too short. (4) Error accumulation. While
deep generative models are popular for time series in recent years, they used reconstruction
error to compute anomaly scores and perform poorly on long time series due to error
accumulation in reconstructing a long sequence. Since the calculation of each step in the
decoding process depends on the result of the previous step, it will cause accumulative
errors in the final results.

In this paper, we propose a novel Multi-scale Anomaly Detection method for Time
Series called MAD-TS to address the above issues. It introduces a hierarchically connected
recurrent encoder to project the input time series into latent feature representations from
different temporal scales. Then the multi-scale features are fused by a hierarchical decoder
with attention mechanism to reconstruct the original sequence at different scales. Based on
the reconstruction errors, anomaly scores can be learned for different data points to infer
the anomaly status of the time series. The performance of the proposed method is verified
by extensive experiments.

The contributions of this paper are summarized as follows.

• We propose the novel idea of detecting time series anomalies from a multi-scale view-
point, which was rarely studied in the literature.

• We introduce a recurrent autoencoder-decoder structure with attention mechanism to
capture comprehensive temporal features from different scales, which can effectively
detect anomalies and alleviate error accumulation for long time series.

• We conduct extensive experiments based on five open time series datasets, which show
that the proposed MAD-TS method achieves significant performance improvement on
time series anomaly detection compared to the state-of-the-arts.

2. Related Work

Time series anomaly detection has been extensively studied in the past decades. We sum-
marize the existing works into three categories: discrimination-based methods, forecasting-
based methods, and reconstruction-based methods. In addition, we surveyed the existing
works that consider multi-scale features for anomaly detection and discussed their short-
comings.
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2.1. Discrimination-based Methods

Earlier time series anomaly detection works were usually based on statistical methods,
which assumed most of the time series are normal while a few are anomalous. Measuring the
similarity between two sequences and further distinguishing abnormal patterns were the key
problems. Solutions include clustering: k-Means Nairac et al. (1999), EM Pan et al. (2010),
one-class SVM Ma and Perkins (2003), etc. Local Outlier Factor Breunig et al. (2000)
was an algorithm for finding anomalous data points by measuring the local deviation of a
given data point with respect to its neighbours. Ruff et al. (2018) introduced Deep Support
Vector Data Description (Deep SVDD) which was trained on an anomaly detection based
objective. Shen et al. (2020) proposed Temporal Hierarchical One-Class (THOC) network
which utilized multiple hyperspheres obtained with a hierarchical clustering process for
anomaly detection.

2.2. Forecasting-based Methods

The forecasting-based methods build a predictive model based on historical values and de-
termine whether an observed value is abnormal by calculating its prediction error. Autore-
gressive moving average (ARMA) Wold (1938) built a parametric model of the time series,
which was widely used in a number of fields. Autoregressive integrated moving averaged
(ARIMA) Moayedi and Masnadi-Shirazi (2008) allowed for the management of nonstation-
arity by adding a number of differencing steps during the processing phase to move the
data toward a more stationary distribution. Ahmad et al. (2017) proposed a streaming
data anomaly detection algorithm based on Hierarchical Temporal Memory (HTM). In re-
cent years, deep learning methods such as Long Short-Term Memory (LSTM) Hochreiter
and Schmidhuber (1997) have shown good performance on time series prediction. Malhotra
et al. (2015) used stacked LSTM networks for anomaly detection in time series by training
on non-anomalous data and using the multi-step prediction errors to evaluate the likelihood
of anomalous behavior. Hundman et al. (2018) proposed a complementary unsupervised
and nonparametric anomaly thresholding approach for detecting spacecraft anomalies.

2.3. Reconstruction-based Methods

The reconstruction-based methods learn a compact representation of normal data by mini-
mizing the difference between reconstruction and the input series. AutoEncoder (AE) is the
most commonly used reconstruction model. Zong et al. (2018) presented a Deep Autoencod-
ing Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection which utilized
a deep autoencoder to generate a low-dimensional representation and reconstruction error
for each input data point and further fed into a Gaussian mixture model. Xu et al. (2018)
proposed Donut, an unsupervised anomaly detection algorithm based on variational autoen-
coder in order to perform seasonal KPIs with various patterns and data quality. Audibert
et al. (2020) proposed a fast and stable method called UnSupervised Anomaly Detection
for multivariate time series (USAD) based on adversely trained autoencoders. Park et al.
(2018) introduced a long short-term memory based variational autoencoder (LSTM-VAE)
that fused signals and reconstructs their expected distribution. Malhotra et al. (2016) pro-
posed a LSTM-based Encoder-Decoder scheme for Anomaly Detection (EncDec-AD) that
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learned to reconstruct normal time-series behavior, and thereafter used reconstruction er-
ror to detect anomalies. Su et al. (2019) proposed OmniAnomaly, a stochastic recurrent
neural network for multivariate time series anomaly detection that worked well robustly for
various devices. Zhang et al. (2019) proposed Multi-Scale Convolutional Recurrent Encoder-
Decoder (MSCRED), which constructed multi-resolution signature matrices and fed them
into a convolutional LSTM network. Kieu et al. (2019) exploited autoencoders built using
sparsely-connected recurrent neural networks aiming to reduce the effects of some autoen-
coders being overfitted to outliers. Shen et al. (2021) propose a recurrent network ensemble
called Recurrent Autoencoder with Multiresolution Ensemble Decoding (RAMED) that
used decoders with different decoding lengths and a coarse-to-fine fusion mechanism. Li
et al. (2021) proposed InterFusion, an unsupervised method that simultaneously modeled
the inter-metric and temporal dependency for multivariate time series.

2.4. Multi-Scale Features for Anomaly Detection

Previous works on time series anomaly detection had rarely considered multi-scale features
of time series. Zhang et al. (2019) simply concatenated signature matrices of different look-
back lengths together as input of the convolutional encoder without feature fusion in the
encoding-decoding process. Shen et al. (2021) used decoders of different lengths with the
encoding process using an ensemble method. The ensemble method filtered out some noises
but did not effectively extract multi-scale features. Shen et al. (2020) used multi-resolution
encoders and fused them with a multi-level one-class neural network. Wang et al. (2021)
used two independent RNN modules to model global and local features and used a weighted
loss for balancing, which can capture different levels of sequential patterns simultaneously
in discrete event sequences. There is still lack of works on multi-scale time series feature
extraction and fusion for unsupervised anomaly detection, which is the major focus of this
paper.

3. Problem Formulation

Given a time series X = [x1, ...,xN ] of length N , where xt ∈ RM (1 ≤ t ≤ N) is a
M -dimensional vector, and each dimension represents the observed value of a metric at
time step t. X is called univariate time series when M = 1, otherwise multivariate time
series. A time series sequence can be divided into a number of sub sequences using a
sliding window with lookback length T , which is represented by [XT , ...,XN−1,XN ], where
Xt = [xt−T+1, ...,xt−1,xt] is a subsequence with length T.

For unsupervised time series anomaly detection, X is used as the input for model train-
ing, which is assumed to contain only normal patterns. Given an unseen observation value
xt, the goal of anomaly detection is to assign a label y ∈ {0, 1} according to how far it
deviates from historical normal patterns (usually referred to as the anomaly score), where
y = 1 means that the observation is anomalous, otherwise it is normal.
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Figure 2: The proposed architecture of Multi-scale Anomaly Detection for Time Series
(MAD-TS).

4. Proposed Method

4.1. Architecture

In this section, we propose a Multi-scale Anomaly Detection method for Time Series (MAD-
TS), which employs a multi-scale recurrent encoder-decoder structure with attention mech-
anism to capture non-linear features of time series at multiple scales for anomaly detection.
The proposed model is shown in Figure 2. On the left, the input time series is connected to a
hierarchical recurrent neural network (RNN) encoder to extract multi-scale features, which
are fused from lower-layer to higher-layer to form latent representations. On the right, the
multi-scale features are fed to a hierarchical RNN-decoder, which fuses the features from
higher-layer to lower-layer with attention mechanism to obtain the reconstruction results at
different scales of the original sequence. The model is trained with normal historical time
series and then applied for anomaly detection online. When an unseen sequence is fed to
the model, the mean reconstruction error is computed, which is used as the anomaly score
for anomaly detection. We introduce the detailed mechanisms of the encoder and decoder
in the following.

4.2. Multi-Scale RNN Encoder for Feature Fusion

In order to better capture multi-scale features in time series, we adopt a hierarchically
connected recurrent neural network (RNN) structure as the encoder. As illustrated in Fig.
2, the encoder consists of L layers, with the lowest layer E1 using the original time series
as input, and the other layers [E2, ..., EL] use the output of s corresponding units’ hidden
states from the lower layer as input, where s is called the fusion stride of the hierarchical
model. At a given time step t, for a particular encoding layer Ei with index i, the hidden
state of the RNN unit is denoted by:
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h
(Ei)
t =

f (Ei)([xt;h
(Ei)
t−1 ]), if i = 1

f (Ei)([ĥ
(Ei)
t ;h

(Ei)
t−1 ]), o/w

(1)

where f (Ei) is a RNN cell, such as LSTM or GRU, and ĥ
(Ei)
t is the multi-scale feature

fusion input, which is defined as the average of the hidden states of s units in the lower
layer:

ĥ
(Ei)
t =

1

s

s−1∑
j=0

h
(Ei−1)
s×t−j . (2)

The intuition of using a hierarchical multi-scale RNN encoder for feature fusion is that
the higher-level RNN units can capture macro-scale temporal features, while the lower-level
RNN units can capture micro-scale temporal features. For the origin time series of length T ,
the encoding length of a certain layer is s times that of the previous layer. After multi-scale
fusion encoding, L hidden representations of different scales of the original time series are
learned by the encoder.

4.3. Attention-based Hierarchical RNN Decoder

Compared with the bottom-up encoding process, the multi-scale feature fusion in the de-
coding process is a top-down approach. As illustrated in Fig. 2, the ith layer of the decoder
f (Di) reconstructs a sequence of length Ti = T/si−1. For fusing coarse-grained features, we
concatenate the hidden state of the previous time step and the corresponding hidden state
of the previous layer together to calculate the reconstruction at the current time step. Then

the reconstruction yi
t and the hidden state h

(Di)
t are used to obtain the next hidden state

h
(Di)
t−1 , which is computed by

h
(Di)
t−1 = f (Di)([yi

t;h
(Di)
t ]). (3)

To deal with the problem of error accumulation during the decoding process, we intro-
duce an attention-based mechanism Vaswani et al. (2017) for feature fusion. As shown in
Fig. 2, the latent representation of each layer of the decoder is attached with an attention
mechanism, which learns the attention weights to fuse the latent features from different
scales with different fusion stride. The attention weights can urge the model to focus on
important features and effectively alleviate error accumulation from unimportant subse-
quences of long time series. The reconstructed time series [yi

1,y
i
2, ...,y

i
Ti

] can be computed
by

yi
t =


Wi(concat[h

(Di)
t ;Attni

t]) + bi, if i = L

Wi(concat[h
(Di)
t ;h

(Di+1)
⌈t/s⌉ ;Attni

t]) + bi. o/w
(4)
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Note that there are many ways to implement the attention mechanism, and we adopt the
scaled dot-product, which can directly establish the relationship between the hidden states
of the current decoding step and that of each step in the encoding process. In addition,
we adopt matrix multiplication without introducing additional neural networks that can
effectively reduce the amount of calculation and facilitate training. The proposed attention
mechanism can be computed by

Attni
t =

Ti∑
j=1

h
(Di)
t

T
h
(Ei)
j√

h
(Ei)
j

h
(Ei)
j . (5)

Each layer of the decoder can generate a reconstructed time series of different scales. In
order to make these reconstructed time series as close to the original time series as possible,
we downsample the original time series to obtain L time series of different scales, and calcu-
late the reconstruction errors between the downsampled sequences and the reconstruction
results.

The goal of training the model is to minimize the mean reconstruction error (MRE)
represented by the following loss function:

LMRE =
1

L

L∑
i=1

Li
MSE , (6)

where Li
MSE =

Ti∑
t=1

||yi
t − xi

t||2. (7)

4.4. Anomaly Score and Detection

After training the model, when an unseen time series X = [x1, ...,xT ] is input to the model,
it detects anomaly as follows. Firstly it applies the model to reconstruct the time series
at different scales to form the reconstruction series [Y1, ...,YL]. Then it downsamples the
original time series with stride s to form downsampling subsequences [X1, ...,XL] at the
same scale of reconstruction accordingly.

With the reconstruction series and downsampling series, the mean reconstruction error
eT can be obtained by calculating LMRE in Eq. (6). For the whole time series, we can
obtain a series of mean reconstruction errors E = [eT , ...eN ].

We then fit the calculated E in the validation set to a standard normal distribution
N (µ,Σ) to obtain normalized anomaly scores which are calculated by

a(xt) = (et − µ)TΣ−1(et − µ). (8)

In the inference stage, a data point xt is considered as anomalous if its corresponding
anomaly score a(xt) is greater than a predefined threshold.
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5. Experiment

5.1. Experimental Setup

Datasets

The experiments are performed based on five real-world univariate and multivariate time
series datasets, which are described in the following:

• ECG (electrocardiogram): This is a set of six datasets that contains anomalous beats
from electrocardiograms.

• 2D-gesture (video surveilance): This dataset records the X-Y coordinates of an actor’s
right hand in the video.

• Power demand: This dataset contains one year’s power demand at a Dutch research
facility.

• WADI (water distribution): This dataset is collected from 123 sensors and actuators
from an extension of the SWaT testbed. It consists of 14 days under normal operation
and 2 days with attack scenarios.

• KDD99: This is a classical network anomaly detection dataset that records different
types of attacks and normal connections.

The statistics of these datasets1 are summarized in Table 1.

Dataset # dim # length Anomaly (%)

ECG 2 33998 3.04
2D-gesture 2 11251 24.63
power demand 1 32931 10.39
WADI 127 957374 5.77
KDD99 34 1056408 30

Table 1: Statistics of the datasets.

Baseline Algorithms

We compare the proposed method with six competing anomaly detection baselines:

• Local Outlier Factor (LOF) Breunig et al. (2000), a density-based outlier detection
method.

• Isolation Forest (IF) Liu et al. (2008), an unsupervised anomaly detection algorithm
conducted by random partitioning.

1. The ECG, 2D-gesture, and power demand datasets are downloaded from https://www.cs.ucr.edu/

~eamonn/discords/, WADI is from https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_

info/#wadi, and KDD99 is from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

https://www.cs.ucr.edu/~eamonn/discords/
https://www.cs.ucr.edu/~eamonn/discords/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#wadi
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#wadi
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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• EncDec-AD Malhotra et al. (2016), it utilizes an RNN structure to reconstruct the
original sequence.

• OmniAnomaly Su et al. (2019), a state-of-the-art stochastic recurrent neural net-
work for multivariate time series anomaly detection.

• MSCRED Zhang et al. (2019), it constructs multi-resolution signature matrices and
further feeds them into a convolutional LSTM network to capture temporal features.

• USAD Audibert et al. (2020), it learns feature representations based on adversely
trained autoencoders. Source codes of these baselines are downloaded from the In-
ternet, except that USAD method was reproduced by us according to Audibert et al.
(2020).

Performance Metrics

By setting a threshold on the anomaly score, we can get Precision (P), Recall (R), and F1
score of each compared algorithm:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2 × P ×R

P + R
, (9)

where TP is the True Positives; FP is the False Positives; FN is the False Negatives. We
search for the threshold in the feasible interval and report the result corresponding to the
highest F1 score.

Implementation Details

We implemented the proposed MAD-TS2 model with the deep learning python library
PyTorch. All the experiments are performed on a machine with Intel(R) Core(TM) i7-9700
CPU @ 3.00GHz 8 cores, NVIDIA GeForce RTX 2070 SUPER, 16 GB RAM.

For all deep learning based methods, we use Adam as the optimizer with a learning rate
0.001. Time series window length T is 64 for ECG and 2D-gesture, 512 for power demand,
and 80 for the others with stride 1. For the proposed model, we use LSTM as RNN unit
with hidden size 10. The number of hierarchical layers L in the encoder-decoder model is
set to 3, and the multi-scale fusion stride s is set to 3 by default, except that s = 4 for
power demand. We give equal weight to the reconstruction results of each layer, which
means αi = 1. In order to allow hyperparameter tuning, we use 10% of the training set as
the validation set. We apply min-max scaling within each metric on all the datasets.

5.2. Performance Comparison

Table 2 shows the results on the ECG dataset, and Table 3 shows the results on the re-
maining four datasets. As can be seen, LOF and IF generally perform worse than methods
based on deep learning, due to the reason that they fail to capture the non-linear temporal
dependencies in the sequence. OmniAnomaly tends to achieve extreme results on ECG,
while MSCRED performs roughly well on most of the datasets. USAD generally performs
better than the above-mentioned methods, which obtain a sub-optimal result.

2. Source code is available at https://github.com/AlumLuther/MAD-TS.

https://github.com/AlumLuther/MAD-TS
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Methods
ECG1 ECG2 ECG3

P R F1 P R F1 P R F1

LOF 45.18 38.29 41.45 94.74 45.28 61.28 62.07 12.08 20.22
IF 32.67 48.70 39.10 58.51 34.59 43.48 13.26 30.87 18.55
EncDec-AD 98.02 36.80 53.51 97.14 64.15 77.27 83.21 76.51 79.72
OmniAnomaly 31.65 32.71 32.17 49.23 60.37 54.23 18.11 32.21 23.18
MSCRED 76.19 59.26 66.67 100.0 62.50 76.92 84.62 73.33 78.57
USAD 88.24 39.03 54.12 100.0 67.03 80.45 84.34 46.98 60.34
MAD-TS 87.23 45.72 60.00 100.0 68.55 81.34 91.80 75.17 82.66

Methods
ECG4 ECG5 ECG6

P R F1 P R F1 P R F1

LOF 11.54 96.90 20.63 64.71 47.48 54.77 8.24 91.53 15.12
IF 21.23 29.46 24.68 24.41 37.41 29.55 8.37 99.47 15.44
EncDec-AD 19.89 85.27 32.26 42.91 89.21 57.94 15.82 28.04 20.23
OmniAnomaly 12.19 100.0 21.73 21.15 39.56 27.56 8.62 100.0 15.87
MSCRED 23.26 76.92 35.71 37.93 78.57 51.16 11.11 78.95 19.48
USAD 20.71 95.35 34.02 36.39 91.37 52.05 15.07 29.10 19.86
MAD-TS 24.51 68.22 36.07 52.36 71.94 60.61 14.52 37.57 20.94

Table 2: Performance on the ECG dataset. The best results are marked with bold.

Methods
2D-gesture power demand WADI KDD99

P R F1 P R F1 P R F1 P R F1

LOF 27.82 87.21 42.18 15.29 28.13 19.81 10.46 49.94 17.29 95.38 99.55 97.42
IF 28.84 68.04 40.22 7.85 89.77 14.44 29.92 15.83 20.71 96.52 99.29 97.88
EncDec-AD 48.81 58.46 53.20 13.98 54.20 22.22 24.11 26.48 25.24 97.84 97.60 97.72
OmniAnomaly 27.70 79.67 41.11 37.11 48.60 42.08 99.47 12.98 22.96 98.49 98.85 98.67
MSCRED 61.26 59.11 60.17 55.80 34.32 42.50 19.73 29.59 23.67 97.31 99.43 98.36
USAD 56.18 55.35 55.76 53.43 42.09 47.09 26.58 26.08 26.33 98.34 99.42 98.88
MAD-TS 67.11 61.30 64.07 55.82 49.64 52.55 54.35 18.15 27.22 99.92 98.24 99.07

Table 3: Performance on four datasets: 2D-gesture, power demand, WADI and KDD99.
The best results are marked with bold.

In general, MAD-TS outperforms the other methods on all datasets (except ECG1 in
Table 2). This indicates that multi-scale feature with attention mechanism can effectively
improve the anomaly detection results. Overall, improvements on univariate dataset (power
demand) and bivariate datasets (ECG and 2D-gesture) are more significant than that on
multivariate datasets (WADI and KDD99), with a 6.8% higher average F1 score on ECG
dataset than that of USAD, the state-of-the-art method.

Visualization of Anomaly Scores

For a better understanding of the diverse performance of different algorithms, Figure 3
shows the original time series and the visualized anomaly scores of different algorithms
on the 2D-gesture dataset, where red points indicate ground truth anomalies and blue
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Figure 3: Visualization of anomaly scores of different algorithms on 2D-gesture dataset.

points indicate normal points. An ideal anomaly detection algorithm should make all red
points above the threshold while all blue points below the threshold. Although most of the
methods detect many anomalies, there are still a number of false positives which influence
their overall performance in terms of F1 score. MAD-TS obtains both fewer false negatives
and false positives, thus leading to better performance.

5.3. Ablation Study

Next, we conduct experiments to show the effectiveness of the proposed multi-scale feature
fusion and attention mechanism. We remove the corresponding component individually
and retrain the model to test the performance. The results on 2D-gesture dataset are
illustrated in Table 4. It is shown that both the multi-scale feature fusion and the attention
mechanism significantly improved the performance of the model by more than 5%. The
combination of both can capture temporal features at different scales and effectively reduce
the accumulative error during the decoding process.
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w/ multi-scale
feature fusion

w/ attention
mechanism

P R F1

× × 48.81 58.46 53.20
× ✓ 61.80 56.70 59.14
✓ × 59.43 61.84 60.61
✓ ✓ 67.11 61.30 64.07

Table 4: Comparisons of variants using different network structures.
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Figure 4: Visualization of latent representations learned by different algorithms.

Visualization of Latent Representations

To demonstrate the effectiveness of MAD-TS, we visualize the latent representations of
different deep learning algorithms. Figure 4 shows the 3-dimensional hidden space learned
by different algorithms on the ECG dataset. The red points represent features corresponding
to ground truth anomalies, while the blue points represent those corresponding to normal
points. As can be seen, the latent representations of anomalies learned by MAD-TS are
significantly different from those of the normal points. By using a hierarchical multi-scale
RNN encoder, MAD-TS can capture features of the origin time series at multiple scales.
After training, the latent representations of normal data are as similar as possible and can
be interpreted as a compact cluster in the hidden space.

5.4. Hyperparameter Analysis

We analyze the influence of two hyperparameters: the time series window length T and the
multi-scale feature fusion stride s in the proposed framework. Experiments are carried out
on one of the ECG datasets, with T varying from {8, 16, 32, 64, 128, 256} and s varying
from {1, 2, 3, 4, 6, 8}. The results are shown in Figure 5.
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Figure 5: Sensitivities of hyperparameters on ECG.

Figure 5(a)subfigure shows the influence of window length T . As can be seen, a larger
window can improve the performance effectively, especially in terms of recall. However, as
T continues to increase, the precision has experienced a significant drop. Furthermore, the
complexity of training and inference also increases linearly. For the purpose of balancing
precision and recall, a window length sufficient to capture larger-scale features while not
too large is necessary. Figure 5(b)subfigure shows the influence of fusion stride s. There
is no feature fusion of different scales when s = 1, which naturally leads to a bad result.
The performance begins to decline when s exceeds 4. This is because an excessively large s
will cause the topmost decoding step to be too small and fail to provide effective large-scale
features. This suggests that we need to choose a suitable s for a particular dataset.

6. Conclusion

This paper addresses the challenges of detecting multi-scale anomalies for time series and
proposes a novel approach called MAD-TS to solve the problem. The proposed method
adopted a hierarchically connected recurrent encoder to extract comprehensive features
of a time series from different scales, and applied a hierarchical decoder with attention
mechanism to fuse the multi-layer features and reconstruct the original sequence at different
scales. The weighted reconstruction errors could be used as anomaly scores to infer the
anomaly status of the time series. Extensive experiments based on five open time series
datasets showed that the MAD-TS significantly outperforms the state-of-the-arts.
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