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Abstract
In many scientific problems such as video surveillance, modern genomics, and finance, data
are often collected from diverse measurements across time that exhibit time-dependent
heterogeneous properties. Thus, it is important to not only integrate data from multiple
sources (called multi-view data), but also to incorporate time dependency for deep under-
standing of the underlying system. We propose a generative model based on variational
autoencoder and a recurrent neural network to infer the latent dynamics for multi-view
temporal data. This approach allows us to identify the disentangled latent embeddings
across views while accounting for the time factor. We invoke our proposed model for ana-
lyzing three datasets on which we demonstrate the e↵ectiveness and the interpretability of
the model.
Keywords: temporal multi-view data; model interpretability; variational inference

1. Introduction

Multi-view data is prevalent in real-world applications. For instance, a photo can be taken
at di↵erent angles, the human motion can be described by di↵erent gestures, and medical
scenarios where each observed clinical outcome of a patient can correspond to a specific
medical test. These views often represent diverse and complementary information of the
same data. Integrating multi-view data has the potential to yield more generalizable rep-
resentations and is helpful in boosting the performance of data mining tasks.

Temporal multi-view data arise in a wide variety of fields, such as biomedical research,
sociology, finance, computer vision and many others (Yang et al., 2017) in which datasets
are collected repeatedly over time for each individual. Analyzing temporal multi-view data
in such studies, with the objective of delivering interpretable learning, is challenging.

Many popular multi-view learning methods have been developed based on group factor
analysis (Sridharan and Kakade, 2008; Klami et al., 2015; Zhao et al., 2016; Leppaaho
et al., 2017), where each group corresponds to a specific data view. The group factor
analysis generates a common linear mapping between the latent and observed groups of
variables (multiple views). In order to further extract interpretable information, most of
the methods exploit the idea of using sparse linear factor models. In particular, the resulting
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latent factor is restricted to contribute to variation in only a subset of the observed features.
For example, sparse factor loadings in gene expression data analysis can be interpreted as
non-disjoint clusters of co-regulated genes (Pournara and Wernisch, 2007; Lucas et al., 2010;
Gao et al., 2013). Limitations of those existing sparse methods for the application in real
data scenarios are scalability and the inability to handle nonlinear time-dependent complex
structures (Ainsworth et al., 2018).

The variational auotencoders (VAE) is a powerful deep generative learning technique
for e�cient inference (Kingma and Welling, 2014; Rezende et al., 2014). VAE learns a
lower dimensional representation of the data through an encoder, and then with a decoder
transforms the latent representation back to the original data space. VAE is flexible and can
account for any kind of data. However, the original VAE ignores the temporal correlations
across latent dimensions.

Contributions Our motivation lies in the study of high-dimensional temporal multi-
view data. We seek to infer trajectories of latent variables that provide insights into the
latent, lower-dimensional structure derived from the dynamics of the observed data space.
Motivated by the success of variational recurrent neural network (VRNN) for modeling
temporal sequence data, we propose a new modeling strategy that integrates VRNN into
sparse group factor analysis. We label this model as the interpretable representation learning
for temporal multi-view data (ITM-VAE). The resulting model, thus serves as a nonlinear
factor model for multi-view data observed across time. Our main contributions can be
summarized as follows:

• We build a novel interpretable model that can perform sensible disentanglement for
temporal multi-view data. The ability of ITM-VAE to perform sensible disentan-
glement is through the introduction of a view and time-specific transformation W

(introduced in Section 4) which is built on a sparsity inducing prior between the
time-specific latent representation and the view and time-specific neural generator.

• We derive an e�cient timestep-wise variational inference scheme for learning temporal
multi-view data.

• We show that ITM-VAE can learn dynamic dependency among views. This is an
appealing feature of ITM-VAE because most of the complex systems depend on a
temporal component, and such a component contributes to the development of variable
interactions gradually. The ability to access the dynamic relationship of groups of
variables will help us gain insight for downstream analysis of the complex data.

2. Related Work

A few extensions have been proposed for VAE to model the correlations in the latent space.
The conditional VAE (CVAE) (Sohn et al., 2015) is a graphical model, and its input obser-
vations modulate the prior on Gaussian latent variables that generate the outputs. How-
ever, CVAE cannot model the individual sample-specific temporal structure (Sohn et al.,
2015). GPPVAE (Casale et al., 2018) combines the VAE and the Gaussian process (GP)
prior over the latent space to model the temporal dependencies between samples. Due to
the restrictive nature of the view-object GP product kernel, GPPVAE cannot capture the
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individual-specific temporal structure. An extension of GPPVAE, GP-VAE (Fortuin et al.,
2020), is designed specifically for data imputation. GP-VAE places an independent GP
prior on each individual sample’s time-series to relax the inference technique. A limitation
of GP-VAE is that GP-VAE cannot capture the shared temporal structure across all data
points. DP-GP-LVM is a nonparametric Bayesian latent variable model that aims to learn
the dependency structures of multimodal data by the GP prior (Lawrence et al., 2019). GP
prior is shown to be well suited for time series modeling, however, it comes at the cost of
inverting the kernel matrix, which has a time complexity of O(d3), where d is the dimen-
sionality of the data. Moreover, it is often a challenge to design a kernel function that can
accurately capture both the correlation in feature space and in a temporal dimension.

The recurrent neural networks (RNNs) (Martens and Sutskever, 2011; Hermans and
Schrauwen, 2013; Pascanu et al., 2013; Graves, 2013) have shown good performance in
modeling sequence data, where the latent random variables in the RNN function serve as
“memory” of the past sequence. RNN can be further extended to integrate the dependencies
between the latent random variables at neighboring time steps, called variational recurrent
neural network (VRNN) (Chung et al., 2015) in the context of VAE. VRNN can handle
complex nonlinear and highly structured sequential data,

Output interpretable VAE (oi-VAE) is designed for non-temporal grouped data with
a structured VAE comprised of group-specific generators (Ainsworth et al., 2018). The
latent variables are shared across all groups and are assumed to be iid for each data point.
Because of the group design of oi-VAE, its model interpretation is limited to factor level. Our
proposed ITM-VAE is a temporal extension of oi-VAE with a feature level interpretation.

3. Background

Generative Model: In generative models as shown in Fig. 1, the class of VAEs are popular
for e�cient approximate inference and learning (Kingma and Welling, 2014). VAE approxi-
mates intractable posterior distributions over latent representations that are parameterized
by a deep neural network, which maps observations to a distribution over latent variables.

For non-sequential data, VAE has become one of the most popular approaches for e�-
ciently recovering complex multimodal distributions. Recently, VAE has been extended to
dynamic systems (Archer et al., 2015). Briefly, VAE provides a mapping from the observa-
tions to a distribution on their latent representation. The resulting simpler latent subspace
can be used to describe the underlying complex system. Mathematically, let x 2 R

d denote
a d-dimensional observation and z 2 R

k denote a vector of latent random variables of fixed
dimension k with k < d. The generative process of VAE can be represented as:

z ⇠ N (0, I),x ⇠ N (µx, D), (1)

where I is the identity matrix, D is a d⇥d diagonal matrix whose diagonals are the marginal
variances of each component of x, and µx is the mean of the Gaussian likelihood which is
produced by a neural network with parameters ✓ taking z as an input. Then the joint
distribution is defined as:

p(x, z; ✓) = p(x | z; ✓)p(z). (2)
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Figure 1: Generative Model. Left: The conditional probability p(x|z; ✓) parameterized by
a non-linear deep neural network through the latent variable z. Right: The
inference network q�(z|x).

Learning Inference: One unique feature of VAE is that it allows the conditional
distribution p(x | z) to be a potentially highly nonlinear mapping from z to x.

The likelihood is then parameterized with a generative network (called decoder). VAE
uses q(z|x) with an inference network (called encoder) to approximate the posterior dis-
tribution of z. For example, q(z|x) can be a Gaussian N (µ,�2I), where both µ and �2

are parameterized by a neural network: [µ, log �2] = f�(x), where f� is a neural net-
work with parameters �. The parameters for both generative and inference networks are
learned through variational inference, and Jensen’s inequality yields the evidence lower
bound (ELBO) on the marginal likelihood of the data:

log p✓(x) � Eq(z;�)[log p✓(x | z)]�KL(q(z;�) || p(z)),
| {z }

L(x;✓,�)
(3)

where KL(QkP ) is the Kullback-Leibler divergence between two distributions Q and P .
q(z;�) is a tractable variational distribution meant to approximate the intractable posterior
distribution p(z | x); it is controlled by some parameters �. We want to choose � that makes
the bound in Eq. (3) as tight as possible, �⇤ , argmax� L(x; ✓,�).

One can train a feedforward inference network to find good variational parameters �(x)
for a given x, where �(x) is the output of a neural network with parameters � that are
trained to maximize L(x; ✓,�(x)) (Kingma and Welling, 2014).

4. ITM-VAE model

Let x1:T = (x1, ...,xT ) denote the sequence data observed at T timesteps. We then rewrite
xt, which is the sequence data at timestep t, to incorporate the view information as xt =

[x(1)
t , ..., x(G)

t ] 2 R
d1+d2,...+dG , where x

(g)
t denote the data from the gth view at time t and

G is the number of views, each view has the dimension of dg.

4.1. Modeling Framework

Prior Given a temporal sequence of vectors x1:T = (x1, ...,xT ), xt 2 R
d, the conventional

VAEs assume an independent latent variable z for each timestep t: z ⇠ N (0, I). To encode
temporal variability, we propose to allow the latent variable zt at timestep t to depend on
the state variable ht�1 of an RNN though the following distribution:
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zt ⇠ N (µ0,t, diag(�
2
0,t)), [µ0,t,�0,t] = 'prior

⌧ (ht�1), (4)

where both µ0,t and �0,t are produced by a distinct neural network that approximates
the time-dependent prior distribution (Chung et al., 2015). More specifically, [µ0,t,�

2
0,t] =

'prior
⌧ (ht�1), and 'prior

⌧ (ht�1) denotes a neural network taking the previous hidden state
ht�1 as input.

Encoder Similar to the VAEs, we need to define an approximate posterior q(z|x). We
propose to let zt capture the shared variability among views at each timestep by allowing

q(z|x) as a function of both xt = [x(1)
t , ..., x(G)

t ] and ht�1 as:

zt|xt ⇠ N (µz,t,Dz,t), (5)

[µz,t, diag(Dz,t)] = 'enc
⌧ ('x

⌧ (xt),ht�1). (6)

Decoder The generation of xt will depend on both zt and ht�1. In addition, we propose
to model di↵erent views of data independently while allowing the latent variable zt to be
shared across G views at timestep t. The corresponding generative distribution will be:

x
(g)
t | zt ⇠ N (µ(g)

x,t,D
(g)
x,t), (7)

where D
(g)
x,t is a diagonal matrix. We then introduce a sequence of latent matrices W(g)

t 2

R
dg⇥k, for t = 1 : T, g = 1 : G. W will help with model interpretation by placing a

column-wise sparsity prior which will be introduced in section 4.1: Model Interpretability.

Both parameters µ(g)
x,t and D

(g)
x,t will be conditioned on W

(g)
t , zt and ht�1 through:

[µ(g)
x,t, diag(D

(g)
x,t))] = 'dec

✓t,g(W
(g)
t zt,ht�1), (8)

where 'dec
✓t,g

denotes a neural network with parameters ✓t,g, and diag(D) denotes the diagonal
elements of the matrix D.

Recurrence The hidden state ht is updated by conditioning on zt in a recurrent way:
ht = S✓ (xt, zt,ht�1), where S is the transition function which can be implemented with
gated activation functions such as long short-term memory or gated recurrent unit (Cho
et al., 2014; Hochreiter and Schmidhuber, 1997). VRNN demonstrates that including feature
extractors in the recurrent equation is important for learning complex data:

ht = S✓ ('
x
⌧ (xt),'

z
⌧ (zt),ht�1) , (9)

where 'x
⌧ and 'z

⌧ are two neural networks for feature extraction from xt and zt, respectively.
By the above model specifications, the generative distribution can be factorized as:

p(x1:T , z1:T ) =
TY

t=1

[
GY

g=1

p(x(g)
t |zt,x

(g)
t )]p(zt|xt, zt). (10)

The ITM-VAE model structure is depicted in Fig. 2.
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Figure 2: Graphical illustration of each operation in ITM-VAE model. Light blue color
represents the hidden states. Grey color represents data (in the box) and latent
variable. (a) Computing the conditional prior using Eq. (4); (b) Inference of
the approximate posterior using Eq. (5); (c) Updating RNN hidden states using
Eq. (9), and (d) Generating function using Eqs. (7) and (8).

Model Interpretability Similar to oi-VAE (Ainsworth et al., 2018), we use a spare
prior (Kyung et al., 2010) on the weight matrix to achieve interpretable results. We place

a column-wise sparsity prior for W(g)
t to ensure the interpretability of the model:

�2gjt ⇠ Gamma

✓
dg + 1

2
,�2/2

◆
, (11)

W
(g)
t:,j ⇠ N (0, �2gjtI), (12)

where dg denotes the number of features for each view g. Note that our prior specification is
di↵erent from oi-VAE, which assumes each view’s input dimensions are the same, and that is
the reason why oi-VAE is limited in factor level interpretation and cannot track the feature
sparsity for downstream analysis. The parameter � controls the model sparsity. More

specifically, a larger value of � implies more column-wise sparsity in W
(g)
t:,j . Marginalizing

over �2gjt induces group sparsity over the columns of W(g)
t:,j . Hence, the model automatically

tracks the sparse features among groups through time.

4.2. Timestep-wise Learning

The traditional VAEs are learned by optimizing the ELBO using stochastic gradient meth-

ods. We are more interested in the sparsity of the learned W
(g)
t:,j for model interpretability.

The sparsity inducing prior on W
(g)
t:,j is marginally equivalent to the convex group lasso

penalty. Hence, we propose to adapt the idea of collapsed variational inference (Ainsworth

et al., 2018) to obtain the true sparsity of the columns W(g)
t:,j , and apply the timestep-wise

variational lower bound.
Let W =

⇣
W

(1)
1:T , · · · ,W

(G)
1:T

⌘
, �2 =

⇣
�21:G,1:K,1:T

⌘
, x = x1:T , and z = z1:T .
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We can compute log p(x) by marginalizing out all �2gjt’s:

log p(x) = log

Z Z
p(x|z,W, ✓)p(z)p(W|�2)p(�2)p(✓) d�2 dz

= log

Z ✓Z
p(W, �2) d�2

◆
p(x|z,W, ✓)p(z)p(✓)

q�(z|x)/q�(z|x)
dz

� Eq�(zT |xT )

"
TX

t=1

�KL(q�(zt | xt, z<t)k

p(zt | x<t, z<t)) + log p(xt | zt,x<t)

#

+ log p(✓t)� �
TX

t=1

X

g,j

||W
(g)
t:,j ||2,

where �2gjt ⇠ Gamma
⇣
dg+1
2 ,�2/2

⌘
, W(g)

t:,j ⇠ N (0, �2gjtI), and �, ✓ are neural network pa-

rameters.

4.3. Optimization

Parikh and Boyd (2014) proposed the proximal gradient descent algorithms which are a
broad class of optimization techniques for separable objectives with both di↵erentiable and
potentially non-di↵erentiable components,

min
x

g(x) + h(x), (13)

where g(x) is di↵erentiable and h(x) is potentially non-smooth or non-di↵erentiable. oi-
VAE (Ainsworth et al., 2018) stated that collapsed variational inference with proximal
updates provided faster convergence and succeeded in identifying sparser models than other
techniques. We chose to use proximal gradient descent updates on our temporal latent-to-

group matrices W
(g)
t:,j for timestep-wise learning like oi-VAE did on their latent-to-group

matrices W(g)
.j .

In our scenario, we define

x
s+1 = prox�sg(x

s
� �srf(xs)), (14)

where s denotes the sth iteration, �s > 0 is a step size, and proxf (x) is the proximal operator
for the function f . Expanding the definition of prox�sg, we can show that the proximal step
corresponds to minimizing g(x) plus a quadratic approximation to g(x) centered on x

s. For
f : Rn

! R and g : Rn
! R[ {+1} are closed proper convex and f is di↵erentiable. For

g(W(g)
t:,j) = ⌘||W(g)

t:,j ||2, the proximal operator is given by

prox�sg(W
(g)
t:,j) =

W
(g)
t:,j

||W
(g)
t:,j ||2

⇣
||W

(g)
t:,j ||2 � �

s⌘
⌘

+
.
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Algorithm 1 Collapsed VI for ITM-VAE

Input: data x
(i), sparsity parameter �

Let L̃t be L(�t, ✓t,Wt) but without ��
P

g,j ||W
(g)
t:,j ||2.

repeat

For each time point t
Calculate r�tL̃t, r✓tL̃t, and rWtL̃t.
Update �t and ✓t with Adam optimizer.
Let Wt+1 = Wtt� ⌘rW L̃t.
for all groups g, j = 1 to K do

Set W(g)
t:,j  

W
(g)
t:,j

||W(g)
t:,j ||2

⇣
||W

(g)
t:,j ||2 � ⌘�

⌘

+

end for

until convergence in both
PT

t=1 L̂t and ��
PT

t=1

P
g,j ||W

(g)
t:,j ||2

Figure 3: Artificial data experiments. (a) The learned W
(g)
t:,j at time point t = 8 for di↵erent

� values, di↵erent rows represent di↵erent groups, yellow represents the dominant
factor; (b) The mean squared error on the test set (MSE[test]) calculated on the
concatenated time points on di↵erent � values (left); The loglikelihood value on
the test set for di↵erent � values (right).

( )+ , max(0, ) (Parikh and Boyd, 2014). This operator reduces the norm of W(g)
t:,j by

�s⌘, and shrink all W(g)
t:,j to zero with ||W

(g)
t:,j ||2  �

s⌘.
This operator is superior than other Bayesian shrinkage approaches (Shin, 2017) which

typically give small but non-zero valued estimates. We use Adam (Kingma and Ba, 2015)
for the remaining neural network parameters: ✓ and �. See Alg.1 for ITM-VAE pseudocode.
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Figure 4: Real artificial data and reconstructed images from ITM-VAE.

Table 1: MSE from testing on the artificial data, motion capture data, and metabolomic
data. The values are the means and respective standard errors.

Model Artificial Data Motion Capture Data Metabolomic Data
VAE 0.029± 0.002 0.090± 0.016 0.072± 0.048
CVAE 0.003± 0.001 0.053± 0.004 0.071± 0.046
oi-VAE 0.005± 0.001 0.057± 0.006 0.063± 0.027
VRNN 0.003± 0.001 0.052± 0.004 0.052± 0.032
GP-VAE 0.004± 0.001 0.045± 0.006 0.047± 0.042
ITM-VAE (ours) 0.002± 0.001 0.033± 0.006 0.026± 0.007

5. Experiments

5.1. Methods Considered

In addition to the ITM-VAE1, we also consider VAE (Kingma and Welling, 2014), adapted
conditional VAE (CVAE) (Sohn et al., 2015), oi-VAE (Ainsworth et al., 2018), VRNN (Chung
et al., 2015), and GP-VAE (Fortuin et al., 2020). VAE and oi-VAE: We concatenate data
across di↵erent timesteps and treat the concatenated data independent. CVAE: CVAE re-
quires the label information as input to both the encoder and decoder networks. For our
unsupervised problem, we assign di↵erent t for the data as its label information. More
specifically, the input for encoder is [Xt,t] and the input for decoder is [Zt,t].

Evaluation metrics To check and validate how well the disentanglement is achieved,

we propose to visualize the W(g)
t:,j matrix at di↵erent timesteps t and quantitatively compare

the MSE[test] (mean squared error on the test data) with alternative methods.
Selection on � and k The parameter � controls the model sparsity, larger � will imply

more column-wise sparsity in W
(g)
t:,j , we propose to select � based on the learned W

(g)
t:,j

(Fig. 3a) to check the sparsity and the MSE[test] (Fig. 3b). The latent dimension k is
chosen based on interpretation purpose.

1. Source code is available at https://github.com/lquvatexas/ITM-VAE
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5.2. Artificial Data

Setup In order to visualize the performance, we generate one-bar images. The row position
of the bar was taken as di↵erent time point labels, starting from the first row as time point
t = 1 to the last row as time point t = 8. Thus, there are in total T = 8 time points.

Dataset GenerationWe generate 2000 8⇥8 one-bar images and we add normal random
noises with mean 0 and standard deviation 0.05 to the entire image. We randomly select
80% (n=1600) of the image for training, 10% (n=200) for validation and 10% (n=200) for
testing. For each batch, we use batch size 64. Therefore, the data structure is of 8⇥64⇥64
for ITM-VAE. In order to associate each dimension of z with a unique row in the image,
we chose k = 8.

Results For ITM-VAE and CVAE, we calculate the MSE[test] on the concatenated
time points of test data which is the same for the rest of the experiments. The results are in
Fig. 4 and ITM-VAE yields the lowest MSE[test] comparing to other competitors Table. 1.
VRNN and CVAE perform similarly and close to ITM-VAE. However, GP-VAE and oi-VAE
do not perform very well. VAE has the largest MSE. These results indicate that ITM-VAE
can learn multivariate time series data and reconstruct them very well. Meanwhile, we
randomly select 64 images for each batch and replicate each image 20 times (T = 20) to
represent the perfect time series structure, the data structure is of 20⇥64⇥64. We showed

the learned W
(g)
t:,j at time point t = 8 for di↵erent � values in Fig. 3a. It is clear that under

� = 5 ITM-VAE can successfully disentangle each of the dimensions of z to correspond to
exactly one row (group) of the image at each time point.

5.3. Motion Capture Data

SetupWe consider the motion capture data obtained from CMU (http://mocap.cs.cmu.edu)
to evaluate ITM-VAE’s ability to handle complex longitudinal multivariate data. We use
subject 7 data, which contains 11 trials of standard walking and one brisk walking recordings
from the same person. For each trial, it contains di↵erent time frames of the person’s mov-
ing skeleton, and it measures 59 joint angles split across 29 distinct joints. In this setting,
we treat each distinct joint as a view, and each joint has 1 to 3 observed degrees of freedom
to represent the di↵erent group dimensions. The task is to evaluate the model’s ability for
sensible dynamic disentanglement, model interpretability and generalization ability.

Data For model training, we use the data from 1 to 10 trials. In total, the 10 trials
training data have 3776 frames. For testing, we use the 11th trial data which has 315
frames. We set T = 32 to train the model with batch size 32. For each batch, the data
structure is of 32⇥ 32⇥ 59 for ITM-VAE.

Results To check di↵erent latent dimensional e↵ects of z, we train ITM-VAE on k = 4, 8,
and 16. Fig. 5 shows the results for k = 8. ITM-VAE displays lower MSE[test] than all
the other competitors in Table. 1. From the MSE[test], we can see that CVAE, VRNN,
and oi-VAE perform very similarly with each other. This demonstrates that even oi-VAE
is not a temporal model, its model structure can still capture the complex variations and
our ITM-VAE is a temporal extension of oi-VAE.

To evaluate the generative ability of ITM-VAE, we show the reconstructed images of
trial 11 in Fig. 5 bottom row. The hidden dynamic information extracted from ITM-VAE
generates very natural poses of human walking. In fact, there is clearly a moving pattern
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Figure 5: Reconstructed images from motion capture data. All the models are trained on
the first 10 trial walking data. The generated images are from trial 11 (di↵erent
from training) at time point t = 1, 7, 15, 25, 32.

from the head to foot between neighboring timesteps. On the other hand, the results
obtained from oi-VAE, which treats each time frame data independently, are very similar
among each other, and there is no obvious trend in CVAE either. Since GP-VAE cannot
capture the shared temporal structure, it fails to capture some details of the trend in foot
and hand. We further compare the test-loglikehood between ITM-VAE and oi-VAE on trial
11 and trial 12, which is the brisk walk data. Table. 3 records the log-likelihood for both
ITM-VAE and oi-VAE models on two testing trials with k = 4, 8. ITM-VAE has higher
test log-likelihood and both methods achieve higher test log-likelihood when the latent
dimension k is larger. This indicates that ITM-VAE can achieve better generalization than
oi-VAE, because the brisk walking trial is very di↵erent from the training walking trials.

Fig. 6 shows that the factors change across di↵erent time points. For example, from
time point 1 to 3, the first factor (first column of the left and middle images) changes
from lfoot (left foot) to rfoot (right foot), factor 2 changes from rwrist (right wrist) to
thorax, and factor 7 changes from rwrist to rtibia (right tibia). These changes are indeed
reasonable because when we start to walk with the foot, the tibia and the thorax move
accordingly (Versichele et al., 2012). The above observation demonstrates that the learned
latent representation from ITM-VAE has an intuitive anatomical interpretation for di↵erent
time points. We also provided a detailed list of the joints per latent variable dimension that
are most strongly influenced by each factor in Table. 2. For example, factor 1 represents foot
and lower back, factor 2 represents wrist, thorax and upper back, and factor 8 represents
wrist, foot and hand. All these observations demonstrate that ITM-VAE can track the
dynamic latent embeddings and provide meaningful interpretation.
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Figure 6: Learned ITM-VAE W
(g)
t:,j at time points t = 1, 3, 7 under k = 8. Each row corre-

sponds to each group of the joints, columns represent di↵erent latent dimensions.
Specifically, the values of latent dimensions are color-coded from dark blue (zero)
to yellow (maximum non-zero value) to indicate the strength of the latent-to-

group mappings W(g)
t:,j .

Table 2: ITM-VAE results on motion capture data interpretation. Top 3 joints correspond-

ing to each latent dimension determined by W
(g)
·,j in Fig. 6. k represents the latent

dimension, T indicates the time points.

k T=1 T=3 T=7

1 left foot, right foot, right fingers right foot, lower neck, left wrist lower back, left fingers, head
2 right wrist, right radius, upper neck thorax, right humerus, right foot upper back, left radius, left wrist
3 lower neck, left femur, left tibia left thumb, right clavicle, right fingers upper neck, lower back, left femur
4 head, right humerus, left femur right foot, left thumb, left wrist left femur, right tibia, thorax
5 thorax, lower back, left tibia head, lower back, left tibia right femur, left thumb, left femur
6 left hand, right wrist, right toes left foot, right clavicle, left femur left foot, left tibia, left hand
7 right humerus, right femur, right hand head, right tibia, right hand upper neck, thorax, left tibia
8 right wrist, left clavicle, lower neck left foot, left radius, upper back left hand, right tibia, right femur

5.4. Metabolomic Data

Setup In this section, we propose to analyze the data obtained from a longitudinal study (Joze-
fczuk et al., 2010), where one of the objectives is to compare metabolic changes of E.coli
response to five di↵erent perturbations: cold, heat, oxidative stress, lactose diauxie, and
stationary phase. The task is to evaluate the model on limited sample size studies which is
common in the life sciences field.

Data The dataset contains 196 metabolite expression values measured for 8 subjects at
12 di↵erent time points under five stress conditions. We treat each condition as a group
and randomly select 6 subjects as the training set and the remaining 2 subjects as the test
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Table 3: Test log-likelihood for ITM-VAE and oi-VAE trained on the first 10 trials of walk-
ing data. Table includes results for a test walk (similar as training) and the brisk
walk trial (di↵erent from training).

Standard Walk Brisk Walk

ITM-VAE (k=4) �93,221 �30,056
oi-VAE (k=4) -1,006,120 -598,660
ITM-VAE (k=8) �17,667 �36,299
oi-VAE (k=8) -998,849 -492,411

Figure 7: Results on metabolomic data with k = 10. (a)-(b) Learned W
(g)
t:,j at time point

t = 3, 5 under cold, heat, lactose shift and oxidative stress from ITM-VAE (blue
represents dominant factor); (c) Absolute loading on factor 5 at t = 3 under heat
group; (d) Absolute loading on factor 10 at t = 5 under cold group.

set. We use batch size n = 2, and for each batch, the data structure is of 12⇥ 2⇥ 980 for
ITM-VAE.

Results ITM-VAE has the lowest MSE[test] in Table. 1 (last column). GP-VAE and
VRNN perform better than CVAE and other non-temporal competitors. This result further
demonstrates that the generative model structure of ITM-VAE and oi-VAE can handle the
limited sample size problems better than traditional VAEs, because oi-VAE is non-temporal

model so it performs worse than VRNN and GP-VAE. The learned group-weights W
(g)
t:,j

from ITM-VAE are shown in Fig. 7a-b. For ITM-VAE, it is clear that at time t = 3, most
of the factors’ variations are explained by cold and heat groups, at time t = 5, cold group
explains most of the variations. These results are consistent with the findings in the original
paper (Jozefczuk et al., 2010). Another important downstream analysis is the inspection of
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top features with largest weight: The loadings can give insights into the biological process
underlying the heterogeneity captured by a latent factor. There might be scale di↵erences
among groups, the weights of di↵erent views are not directly comparable. For simplicity,
we scale each weight vector by its absolute value. In Fig. 7c and d, we plotted the top
5 metabolites with largest absolute weight of two interesting factors. Like the top feature
Norvaline in Fig. 7c is known to promote tissue regeneration and muscle growth (Ming
et al., 2009), and to become a precursor in the penicillin biosynthetic pathway. We leave
more detailed interpretation for biological interest.

6. Discussion

We develop an interpretable nonlinear framework for temporal multi-view data, namely
ITM-VAE, with the goal of disentangling the dynamically shared latent embeddings for the
complex multi-view varations. One key feature of ITM-VAE is its ability to integrate the
VRNN to the shared latent variables among di↵erent groups in order to model the complex
sequence data and extract the dependency relationships.

Our empirical analyses on both motion capture and metabolomics data demonstrate
that ITM-VAE can successfully extract the hidden time dependence structures. More im-
portantly, the achieved model e�ciency and interpretability does not occur at the cost of
model generalization. Because ITM-VAE can model complex temporal multi-view data and
result in interpretable results, we believe ITM-VAE will have wide applications in di↵erent
fields.
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