
SU XU WANG

Appendix A. Omitted Proofs

A.1. Proof of Theorem 1

Proof Before we start our proof, we give the definition of LRS oracle and STATP(τ) oracle to
prepare the readers for the proof. LRS oracle is based on the local randomizer which is defined as
follows:

Definition 23 (ε-local randomizer) An ε-local randomizerR : Z →W is a randomized algorithm
that ∀z1, z2 ∈ Z and ∀w ∈W , it satisfies:

Pr[R(z1) = w] ≤ eε[R(z2) = w]

.

Definition 24 (LRS oracle Kasiviswanathan et al. (2011)) For a dataset S ∈ Zn, an LRS oracle
takes an index i and a local randomizer R as inputs and outputs a random value w obtained by
applyingR(zi).

And we recall the definition of statistical queries.

Definition 25 Let P be an distribution over a domain Z and τ > 0. A statistical query oracle
STATP(τ) is an oracle that given any function φ : Z → [−1, 1] as input, the statistical query oracle
returns some value v such that |v − Ez∼P [φ(z)]| ≤ τ .

Now we formally begin our proof. First, we prove that the algorithm given in Daniely and Feldman
(2019) uses the same number of private data and public data. The core idea of the algorithm in
Daniely and Feldman (2019) is that: when using the projected gradient descent to find a vector
w that satisfies Pr

(x,y)∼P
[y 6= sign(〈ŵ, x〉)] ≤ α, the objective function can be decomposed as

F (w) = F1(w) + F2(w), where the (sub-)gradient of F1(w) (namely ∇F1(w)) is just a function of
x while the gradient of F2(w) (namely ∇F2(w)) is independent of w. As a result, (sub)-gradient
∇F (w) can be computed non-interactively by calculating∇F1(w) with only public unlabeled data
and calculating∇F2(w) with non-interactive statistic queries because∇F2(w) doesn’t depend on w.
So to make this algorithm achieve the PAC learning error α, the sample complexity of the private
data and the public data should be the same. For more details, please refer to the proof of Lemma 4.3
in Daniely and Feldman (2019). So, to prove our theorem, we only have to prove that the sample
complexity of the private data is Õ(d

10 log(1/β)
ε2·γ12α6).

In the following, we give the private sample complexity of the algorithm in Daniely and Feldman
(2019), which can be directly derived from the following two lemmas.

The first Lemma states that a statistic query oracle STATP(τ) can be simulated with success
probability 1− β by ε-LDP algorithm using LRS oracle.

Lemma 26 Kasiviswanathan et al. (2011) Let ASQ be an algorithm that makes at most t queries to
STATP(τ) oracle. Then for any ε > 0 and β > 0, there is an ε-LDP algorithm Apriv that uses LRs

oracle for S containing n = O(
t log(t

β
)

(ετ)2
) i.i.d. samples from P and produces the same output asASQ

with probability at least 1− β. Further, if ASQ is non-interactive then Apriv is non-interactive.

The next lemma claims the existence a NLDP algorithm ASQ that achieves PAC learning error α for
any arbitrary α ∈ (0, 1).

Lemma 27 (Lemma 4.3 in Daniely and Feldman (2019)) Let P be a distribution on Bd2 × {±1}
such that there is a vector w∗ ∈ Bd2 satisfying Pr(x,y)∼P [y〈w∗, x〉 ≥ γ] = 1. Then there is a non-

interactive algorithm ASQ that for every α ∈ (0, 1), it uses O(d4

γ4α2) queries to STATP(Ω(γ
4α2

d3
))

and finds a vector ŵ such that Pr
(x,y)∼P

[y 6= sign(〈ŵ, x〉)] ≤ α.

Lemma 27 indicates that if we can find a non-interactive algorithm ASQ that makes at most t queries
to STATP(τ) oracle, then with probability 1 − β, the existence of an ε-NLDP algorithm Apriv is

guaranteed using n = O(
t log(t

β
)

(ετ)2
) private data. So, by substituting t = O(d4

γ4α2) and τ = Ω(γ
4α2

d3
) in

Lemma 26, the sample complexity of public data is straight forward.

A.2. Proof of Lemma 13

Proof To proof Lemma 13, we first study the excess empirical risk with the hinge loss `(w, (x, y)) =
max{0, 1 − y〈w, x〉} of the output wt of the algorithm Hpriv(1

32R , ε, δ, S̃t). First, we recall the
following result ofHpriv(α, ε, δ, S) if each ‖xi‖2 ≤ 1, |yi| ≤ 1.

Lemma 28 (Theorem 30 in Wang et al. (2020)) For any 0 < ε, δ < 1, if each ‖xi‖2 ≤ 1, |yi| ≤ 1
for all i ∈ [n], Hpriv(α, ε, δ, S) is (ε, δ)-NLDP. Moreover, for any error α ∈ (0, 1), if the size of
dataset n is sufficiently large such that n ≥ Ω̃(C

pp6pd
ε4p+4α

) with p = O(1
α3). Then the output wn satisfies

E[
1

n

n∑
i=1

max{0, 1

R
− y〈w, x〉}]− min

||w||2≤1

1

n

n∑
i=1

max{0, 1

R
− y〈w, x〉} ≤ α, (1)

where C > 0 is a constant3 and the expectation is taken over the internal randomness of the
algorithm.

Note that in we need to assume ‖xi‖2 ≤ 1 in Lemma 28 while in our setting ‖xi‖2 ≤ R. Thus, we
need to normalize the data to S̃t first and revokeHpriv(1

32R , ε, δ, S̃t). By Lemma 28 we have when
n
k ≥ Ω̃(dPoly(1

ε , log 1
δ))

E[L̂(wt, S̃t)]− min
||w||2≤1

L̂(w, S̃t) ≤
1

32R
, (2)

where L̂(wt, S̃t) = 1
|St|
∑

(xi,yi)∈St max{0, 1
R − yi〈w,

xi
R 〉}. Thus, we have the following result via

multiplying R in both side of (2).

Lemma 29 When n ≥ Ω̃(dkPoly(1
ε , log 1

δ)), each wt = Hpriv(1
32R , ε, δ, S̃t) for t ∈ [k] satisfies

E[L̂(wt, St)]− min
||w||2≤1

L̂(wt, St) ≤
1

32
, (3)

where L̂(wt, St) is the empirical risk of `(w, (x, y)) = max{0, 1− y〈w, x〉}, and the expectation is
taken over the internal randomness of the algorithm.

3. Note that Wang et al. (2020) only showed the case where R = 2. However, it is obvious to extend to the general R
with the same proof.

SU XU WANG

The following lemma transforms the excess empirical risk in Lemma 29 to classification error.

Lemma 30 Under the assumptions in Theorem 11, then for any t ∈ [k], β ∈ (0, 1), with probability
at least 1− β

2 , the following holds when n ≥ Ω̃(dkPoly(1
ε , log 1

δ)) with k = O(log 1
β).

E[errP (hwt)] ≤
1

8

where the expectation is taken over the random choice of the data in D and the internal randomness
ofHpriv.

Proof [Proof of Lemma 30] We need the following lemma for our proof.

Lemma 31 (Anthony and Bartlett (2009)) LetH be the set of {±1}-valued functions defined on
a set X and P is a probability distribution on Z = X ×{±1}. For η ∈ (0, 1), ζ > 0, Prz∼Pn [∃h ∈
H : errP(h) > (1 + ζ)errz(h) + η] ≤ 4τH(2n)e

− ηζn
4(ζ+1) , where errP(h) is the population error,

errz(h) is the empirical error on sample set z and τH(·) is the growth function of H. If H is the
hypothesis set of learning halfspaces, then τH(2n) ≤ (2n)d+1 + 1 with d being the dimension of set
X .

The following proof applies for any t ∈ [k]:
Based on our assumption, the halfspace is separable, so we know that min||w||2≤1 L̂(w, St) = 0.

Since hinge loss is a convex surrogate for 0− 1 loss, we can get that
E[errSt(hwt)] ≤ E[L̂(wt, St)]≤min||w||2≤1 L̂(w,D) + 1

32 = 1
32 , where the second inequality

comes from (3).
Setting η = 1

16 and ζ = 1, for any t ∈ [k], denoting nt = |St|, then according to Lemma 31, we
can get

Pr
St∼Pnt

{∃hwt ∈ H : E[errP(hwt)] > 2 · 1

32
+

1

16
} ≤ 4τH(2nt)e

− nt
128 . (4)

When nt = Ω̃(d log 1
βPoly(log 1

δ ,
1
ε)), we have 4τH(2nt)e

− nt
128 ≤ β

2k . Then (4) will become

Pr
St∼Pnt

{∃hwt ∈ H : E[errP(hwt)] >
1

8
} ≤ β

2k
.

Thus, take the union bound, we have with probability at least 1− β
2 for any t ∈ [k],

E[errP(hwt)] ≤
1

8
.

According to Lemma 30, for any t ∈ [k], with probability at least 1− β
2 , we have

ED,Hpriv [errP(hwt)] = ED,Hpriv{ Pr
(x,y)∼P

[hwt(x) 6= y]} ≤ 1

8
.

Applying Hoeffding inequality, we have

Pr{ Pr
(x,y)∼P

[f̂(x) 6= y]− 1

8
>

1

4
} ≤ Pr{1

k

k∑
t=1

Pr
(x,y)∼P

[hwt(x) 6= y]− 1

8
>

1

16
}

≤ Pr{|1
k

k∑
t=1

Pr
(x,y)∼P

[hwt(x) 6= y]− 1

8
| > 1

16
} ≤ 2e−

k
32

For the first inequality, denote the event E1 = { Pr
(x,y)∼P

[f̂(x) 6= y] − 1
8 > 1

4} and event E2 =

{ 1
k

k∑
t=1

Pr
(x,y)∼P

[hwt(x) 6= y] − 1
8 > 1

16}. Thus, the first inequality holds if E1 ⊆ E2. E1 claims

that with probability at least 3
8 the classifier f̂ will gives wrong prediction. That is more than half

of {wt}kt=1 give wrong predictions. Thus, 1
k

k∑
t=1

Pr
(x,y)∼P

[hwt(x) 6= y] ≥
k
2
× 3

8
k = 3

16 . The second

inequality is due to E{ 1
k

k∑
t=1

Pr
(x,y)∼P

[hwt(x) 6= y]} ≤ 1
8 .

When k = O(log(1
β)), we have

Pr{ Pr
(x,y)∼P

[f̂(x) 6= y] >
3

16
} ≤ β

2

Therefore, with probability at least 1− β
2 −

β
2 = 1− β, we have

Pr
(x,y)∼P

[f̂(x) 6= y] ≤ 3

16

A.3. Proof of Theorem 21

The proof of this theorem can be induced directly by the following two lemmas. The first lemma
claims that Logistic Loss-NLDP outputs a classifier wpriv which is NLP and achieves a constant
classification error Cerr using O(dPoly(1

ε)) private samples.

Lemma 32 Algorithm 3 is (ε, δ)-NLDP and wpriv satisfies the following when n = O(dPoly(1
ε))

errP(hwpriv) ≤
r2

144U
.

The second lemma claims that STWN (Algorithm 4) transforms a weak learner that achieves a
constant classification error to a strong learner that achieves a classification error arbitrarily close to
the Bayes-optimal error using only unlabeled samples.

Lemma 33 Frei et al. (2021) If (x, y) ∼ P is a mixture distribution with mean µ satisfying ||µ||2 =
Θ(1) and K,U, r > 0, assume ˜̀ is well behaved for some C˜̀ ≥ 1 and the temperature satisfies

SU XU WANG

σ ≥ R ∨ ||µ||2. Assume access to a pseudo labeler wpl which achieves classification error less than
R2

72C˜̀U , i.e., errP(hwpl) ≤ R2

72C˜̀U . Let α, β ∈ (0, 1), B = Ω

(
log(1

β
)

α

)
, T = Ω̃

(
d2(log(1

β
))

α

)
and

step size η = Θ̃

(
α

d(log(1
β

))2

)
, running STWN (Algorithm 4) with T × B unlabeled samples, then

with probability at least 1− β, there exists t∗ < T such that errP(hw(t∗)) ≤ errP(hµ) + α where
errP(hµ) is the error of Bayes-optimal classifier.

In particular, letB = O

(
log(1

β
)

α

)
, T = Õ

(
d(log(1

β
))2

α

)
, above conclusion holds using T×B =

Õ

(
d(log(1

β
))3

α

)
unlabeled data samples.

Proof of Theorem 21: Since in Algorithm 3 we use the logistic function as the well behaved loss,
we have C˜̀ = 2. Moreover, under our assumption, the Bayes-optimal classifier is just w∗ and thus
errP(hµ) = 0. Combing with Lemma 32 and Lemma 33 we finish the proof.
Proof [Proof of Lemma 32] To prove the lemma, we need the following lemma claiming the excess
population loss of the output of Logistic Loss-NLDP: Tpriv(α,R, ε, δ,D)

Lemma 34 (Theorem 6 in Zheng et al. (2017)) For any 0 < ε, δ ≤ 1, if each ‖xi‖2 ≤ R and
y ∈ {−1, 1} for all i ∈ [n], and W = {w : ‖w‖2 ≤ ρ}, Tpriv(α,R, ρ, ε, δ,D) is (ε, δ)-NLDP.
Moreover, for any given error α ∈ (0, 1), if the size of dataset n is sufficiently large such that

n ≥ Ω̃

((
8Rρ

α

)4Rρ ln ln 8Rρ
α
(

4Rρ

ε

)2cRρ ln 8Rρ
α

+2 1

α2ε2

)
.

Then the output wn satisfies E[L(wpriv)]−minw∈W L(w) ≤ α, where L(wpriv) is the population
risk of the logistic loss, i.e., L(w) = E(x,y)∼P [`(w;x, y)], where `(w;x, y) = log(1 + e−y〈x,w〉).

Apply the above Lemma 34 with α = Cerr log 2
2 = log 2r2

144U and ρ = ‖µ‖2. Then using n =

O
(
dPoly(1

ε)
)

private samples, wpriv achieves the excess population loss no more than log 2r2

144U , i.e.,
E[L(wpriv)]−min‖w‖2≤‖µ‖2

E[L(w)]≤Cerr log 2
2 . Since ‖µ‖2 ∈ W , thus,

E[L(wpriv)] ≤ E[L(µ)] +
Cerr log 2

2
.

For the term of E[L(µ)], recall the following lemma.

Lemma 35 (Lemma B.3 in Frei et al. (2021)) Consider the logistic function `(z) = log(1 + e−z).
Let (x, y) ∼ P be a mixture distribution with mean µ and parameters K,U,R = Θ(1) > 0. Then if
‖µ‖2 ≥ 64K2 we have

E(x,y)∼P [`(y〈w, x〉)] ≤ exp(−‖µ‖2
3K

). (5)

By using the previous lemma, we have

E[L(wpriv)] ≤ exp(−‖µ‖2
3K

) + Cerr log 2/2 ≤ Cerr log 2,

where the last inequality is due to the assumption of ‖µ‖2 ≥ 3K log(8/Cerr). Thus we have

Pr[y 6= sign(〈wpriv, x〉)] = Pr[y · 〈wpriv, x〉 < 0] = Pr[`(y · 〈wpriv, x〉) > `(0)]

≤ E[`(y · 〈wpriv, x〉)]
`(0)

=
E[L(wpriv)]

`(0)
≤ r2

144U

where we use the monotonicity of the loss function and Markov’s inequality.

Appendix B. Details of Hinge Loss-LDP and Logistic Loss-NLDP

Algorithm 5 Hinge Loss-NLDP:Hpriv(α, ε, δ, S)

Input: Private data S = {(xi, yi)}ni=1 ∈ Rd × {±1}, where ||xi||2 ≤ 1, ||yi||2 ≤ 1; Privacy
parameters ε, δ; Error α.

1: Denote Pp(x) =
∑p

j=0 ci
(
p
j

)
xj(1−x)p−j as the p-th order Bernstein polynomial for the function

f
′
β , where ci = f

′
β

(
i
p

)
and fβ(x) =

1
R
−x+

√
(1
R
−x)2+β2

2 with β = α
4 and p = 2

β2α
.

\\ The local user side:
2: for i ∈ [n] do
3: Set σi,0 ∼ N

(
0, 32 log(1.25/δ)

ε2
Id

)
and zi,0 ∼ N

(
0, 32 log(1.25/δ)

ε2

)
4: Set xi,0 = xi + σi,0 and yi,0 = yi + zi,0
5: for j ∈ [p(p+ 1)] do
6: xi,j = xi + σi,j , where σi,j ∼ N

(
0, 8 log(1.25/δ)p2(p+1)2

ε2
Id

)
7: yi,j = yi + zi,j , where zi,j ∼ N

(
0, 8 log(1.25/δ)p2(p+1)2

ε2

)
8: end for
9: Send {xi,j}p(p+1)

j=0 and {yi,j}p(p+1)
j=0 to the server.

10: end for
\\ The server side:

1: for t ∈ [n] do
2: Randomly sample i ∈ [n] uniformly and set ti,0 = 1
3: for j={0} ∪ [p] do
4: ti,j = Πjp+j

k=jp+1yi,k〈wt, xi,k〉 and ti,0 = 1

5: si,j = Πjp+p
k=jp+j+1(1− yi,k〈wt, xi,k〉) and si,p = 1

6: end for
7: Denote G(wt, i) = (

∑p
j=0 cj

(
p
j

)
ti,jsi,j)yi,0x

T
i,0

8: Update SIGM (Algorithm 7) by G(wt, i)
9: end for

10: Return wn

SU XU WANG

Algorithm 6 Logistic Loss-NLDP: Tpriv(α,R, ρ, ε, δ,D)

Input: Private data S = {(xi, yi)}ni=1 ∈ Rd × {±1}, where ||xi||2 ≤ R, ||yi||2 ≤ 1; Privacy param-
eters ε, δ; Error α; Constraint setW = {w : ‖w‖2 ≤ ρ}.

1: Denote the logistic loss with scaleRρ: `(w, x, y,R) = log(1+e−Rρy〈w,x〉) = −yh1(RρwTx)+
h2(RρwTx), where h1(z) = z

2 and h2(z) = z
2 + log(1 + e−z). For the function h′1(Rρ·) :

[−1, 1] 7→ R and h′2(Rρ·) : [−1, 1] 7→ R, denote the Chebyshev polynomial with degree p for
function h′1(Rρ·) and h′2(Rρ·) as

∑n
i=1 c1kx

k and
∑n

i=1 c2kx
k respectively, where the degree

p = O(R ln Rρ
α).

\\ The local user side:
2: for i ∈ [n] do
3: Normalize the data x′i = xi

R .

4: Set σi,0 ∼ N
(

0, 32 log(1.25/δ)
ε2

Id

)
and zi,0 ∼ N

(
0, 32 log(1.25/δ)

ε2

)
5: Set xi,0 = x′i + σi,0 and yi,0 = yi + zi,0
6: for j ∈ [p(p+ 1)] do
7: xi,j = x′i + σi,j , where σi,j ∼ N

(
0, 8 log(1.25/δ)p2(p+1)2

ε2
Id

)
8: end for
9: for j = p do

10: yi,j = yi + zi,j , where zi,j ∼ N
(

0, 8 log(1.25/δ)p2

ε2

)
11: end for
12: Send {xi,j}p(p+1)

j=0 and {yi,j}pj=0 to the server.
13: end for
\\ The server side:

1: for t ∈ [n] do
2: Randomly sample i ∈ [n] uniformly and set ti,0 = 1
3: for j={0} ∪ [p] do

4: tj = Π
j(j+1)

2

k=
j(j−1)

2
+1

(wTt xi,k)

5: end for
6: G̃(wt; i) =

(
p∑

k=0

(c2k − c1kyi,j)tk(Rρ)k+1

)
z0.

7: Update SIGM (Algorithm 7) by G̃(wt; i) to obtain wt+1.
8: end for
9: Return wn+1

Algorithm 7 Stochastic Intermediate Gradient Method (SIGM)

Input: The sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0 functions d(x) = ||x||2
2 , Bregman distance

V (x, z) = d(X)− d(Z)− 〈∇d(z), x− z〉.
1: Compute x0 = arg minx∈C{d(x)}.
2: Let ξ0 be a realization of the random variable ξ.
3: Compute y0 = arg minx∈C{β0d(x) + α0〈Gγ,β,σ(x0; ξ0), x− x0〉}
4: for k ∈ {0} ∪ [T − 1] do
5: Compute zk = arg minx∈C{βkd(x) +

∑k
i=0 αi〈Gγ,β,σ(xi; ξi), x− xi〉}

6: Let xk+1 = ηkzk + (1− ηk)yk
7: Let ξk+1 be a realization of the random variable ξ
8: Compute x̂k+1 = arg minx∈C{βkV (x, zk) + αk+1〈Gγ,β,σ(xk+1; ξk+1), x− zk〉}
9: Let wk+1 = ηx̂k+1 + (1− ηk)yk

10: yk+1 =
Ak+1−Bk+1

Ak+1
yk +

Bk+1

Ak+1
wk+1

11: end for
12: Return yT

	Omitted Proofs
	 Proof of Theorem 1
	Proof of Lemma 13
	Proof of Theorem 21

	Details of Hinge Loss-LDP and Logistic Loss-NLDP

