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Abstract
In this paper, we study the problem of PAC learning halfspaces in the non-interactive local differential
privacy model (NLDP). To breach the barrier of exponential sample complexity, previous results
studied a relaxed setting where the server has access to some additional public but unlabeled
data. We continue in this direction. Specifically, we consider the problem under the standard
setting instead of the large margin setting studied before. Under different mild assumptions on the
underlying data distribution, we propose two approaches that are based on the Massart noise model
and self-supervised learning and show that it is possible to achieve sample complexities that are
only linear in the dimension and polynomial in other terms for both private and public data, which
significantly improve the previous results. Our methods could also be used for other private PAC
learning problems. 1

Keywords: Differential privacy; PAC learning; Learning halfspaces.

1. Introduction

A tremendous quantity of sensitive data is generated and gathered every day. Due to the sensitive
information of these data, how to enable the benefit of analyzing the data without exposing the
individual information has become an important issue. To address the issue, Differential Privacy
(DP) Dwork et al. (2006) has become as the de facto tool for privacy-preserving data analysis. There
are two well-studied models in DP- the central model and the local model. In the central model, the
raw data is collected by a central server and then processed by a DP algorithm while in the local
model Evfimievski et al. (2003), each individual applies a DP algorithm locally and sends only the
output of the algorithm to the server. Local model is used more often when learning in a distributed
system or when users do not trust the central data collector.

1. Part of the work was done when Jinyan Su was a research intern at KAUST.
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In the local differential privacy (LDP) model, the communication between the server and individ-
ual users could be either in one round or in multiple rounds, and these two communication protocols
of LDP are called non-interactive LDP (NLDP) or interactive LDP correspondingly. However, in
practice, NLDP is preferred over interactive LDP because of the latency and waiting for responses
takes a large amount of time, and thus it is necessary to limit the number of interactions. Moreover,
current deployments of LDP algorithms are all non-interactive protocols, such as Google and Apple
Cormode et al. (2018); Tang et al. (2017); Erlingsson et al. (2014); Near (2018).

Beginning from Kasiviswanathan et al. (2011), there is a long list of work studying the Valiant’s
probabilistically approximately correct (PAC) learning model Valiant (1984) under DP constraint and
what concepts we can learn privately, such as Blum et al. (2013); Bun et al. (2020). While private
PAC learning is well studied in the central DP model and interactive LDP model, its theoretical
behaviors in the NLDP model are much more challenging and are still far from well-understood
due to the restriction on the number of rounds of communication. Daniely and Feldman (2019)
provided the first study of the problem and proved that only classes that have polynomially small
margin complexity can be efficiently PAC learned by an NLDP algorithm. Recently, Dagan and
Feldman (2020) studied the PAC learning halfspaces in NLDP model. While halfspaces is PAC
learnable in the central DP model and interactive LDP model Lê Nguyên et al. (2020); Beimel et al.
(2019); Kasiviswanathan et al. (2011), unfortunately, Dagan and Feldman (2020) showed that even
for learning halfspaces under large-margin assumptions requires an exponential number of samples
in the NLDP model, which indicates that in general, halfspaces is unlearnable in NLDP model. To
breach the barrier of exponential sample complexity, Daniely and Feldman (2019) studied a relaxed
NLDP model where the server is allowed to access some public but unlabeled data. Specifically, they
considered the large margin setting and showed the following result (see Section 3 for the definitions
of large margin setting and NLDP Learner).2

Theorem 1 Daniely and Feldman (2019) Under the large margin setting, there is a computationally
efficient (ε, α, β, γ)-NLDP Learner with sample complexity n = Õ(d

10 log(1/β)
ε2·γ12α6 ) for private data

and m = Õ(d
10 log(1/β)
ε2·γ12α6 ) for public unlabeled data, where d is the dimension of the space, γ is the

margin, α is the target error and β is the failure probability.

However, there are two issues with the result. First, Theorem 1 only holds for the large margin
setting, which is stronger than the standard (non-large margin) setting. Secondly, compared with
the non-private case where the sample complexity is only linear on 1

γ and is independent on d
Shalev-Shwartz and Ben-David (2014), the dependencies on d, 1

γ in Theorem 1 are unsatisfactory.
In this paper, we revisit the problem and partially address these issues. Specifically, we consider
PAC learning halfspaces in the NLDP model under the standard setting and show that it is possible
to achieve a sample complexity that is only linear in d (and polynomial in other terms) for both
private and public data, if the underlying data distribution satisfies some mild assumptions. Our
contributions can be summarized as follows.

1. We first study the case where the data distribution satisfies the anti-anti-concentration and anti-
concentration properties. We propose an (ε, δ)-NLDP algorithm which is motivated by the Massart
noise learning model and show that its sample complexity to achieve the error α is Õ(dPoly(1

ε ,
1
α))

and O( d
α4 ) for private and public data respectively.

2. Since in Daniely and Feldman (2019) did not provide the explicit form of the sample complexities, in Theorem 1 we
rewrite their result, see Appendix for its proof.



Methods Sample Complexity Measure Loss Function With public data? Data

Smith et al. (2017) O(dε−2α−2) Excess Risk Linear Regression No `2-norm Bounded

Smith et al. (2017) Õ(2dα−(d+1)ε−2) Excess Risk Lipschitz and Convex No `2-norm Bounded

Wang et al. (2018) Õ(4d(d+1)D2
dε
−2α−4) Excess Risk (∞, T )-smooth No `2-norm Bounded

Wang et al. (2019, 2020) d ·
(
C
α3

)O(1/α3)
/ε
O( 1

α3) Excess Risk Lipschitz Convex GLM No `2-norm Bounded

Zheng et al. (2017) d( 8
α)O(log log( 1

α))(4
ε)
O(log( 1

α)) Excess Risk Convex∞-Smooth GLM No `2-norm Bounded

Wang et al. (2021) O(d3α−2ε−2) `2-norm Error Smooth GLM Yes, O( d
α2) Gaussian

Wang et al. (2021)
O(d2α−2ε−2)

for α ≥ Ω( 1√
d
)

`∞-norm Error Smooth GLM Yes, O( d
α2)

`1-norm Bounded
and Sub-Gaussian

Daniely and Feldman (2019) Õ( d10

ε2·γ12α6) Excess Risk 0-1 loss/large margin halfspace Yes, Õ( d10

ε2·γ12α6) `2-norm Bounded

This Paper Õ(dPoly(1
ε,

1
α)) Excess Risk 0-1 loss/ halfspace Yes, O( d

α4) Structured distribution

This Paper Õ(dPoly(1
ε,

1
α)) Excess Risk 0-1 loss/halfspace Yes, Õ( d

α2) Structured distribution

Table 1: Comparisons on the sample complexities for private and public unlabeled data to achieve
error α under different measurements and assumptions, where C is a constant and Dd

is a function of d, γ is the margin of the data. For bounded norm case we assume that
‖xi‖ ≤ R = O(1) for every i ∈ [n]. We also assume the loss functions are Lipschitz.

2. To further reduce the sample complexity of public data, we then study the case where the
underlying distribution follow a mixture distribution and show that it is possible to achieve sample
complexity of Õ(dPoly(1

ε ,
1
α)) and Õ( d

α2 ) for private and public data respectively. Instead of the
Massart noise model, our algorithm is motivated by self-supervised learning.

Due to the space limit, all proofs and omitted algorithms are included in Appendix.

2. Related Work

As mentioned, although there are numerous results on private PAC learning halfspaces, the problem
in the NLDP model with public unlabeled data has only been studied by Daniely and Feldman
(2019). However, it differs from our results in quite a few ways. Firstly, their algorithm considered
a large margin setting and can not be applied to the general setting which is studied in this paper.
Secondly, although both their work and ours used public unlabeled data, the usage of these data is
quite different. Daniely and Feldman (2019) used the public unlabeled data to compute the gradient
of the decomposed gradient while we use algorithms to label the public data and conduct the learning
process on the public data. Finally, Daniely and Feldman (2019) studied Data-Independent PAC
learning while we focus on Data-Dependent PAC learning. Thus, our sample complexities are lower
than theirs.

Besides PAC learning, recently there are several works studied the problem of Stochastic Convex
Optimization in NLDP model (without public data), such as Smith et al. (2017); Wang et al. (2018,
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2019, 2020); Zheng et al. (2017), see Table 1 for a summary. However, as we can see from Table 1,
all of these methods need to assume the loss function is smooth enough and the sample complexities
of these methods are exponential in d or the error α. Thus, these methods cannot be used for our
problem as our loss is 0− 1 loss and we aim to make the sample complexity to be polynomial. To
remedy the exponential sample complexity, Wang et al. (2021) studied the Generalized Linear Model
in NLDP model with public unlabeled data. However, they need to assume that the loss function
is smooth and the polynomial sample complexity only holds when the error α is not small enough.
While our results hold for any α ∈ (0, 1). Moreover, the usage of the public data is quite different.

3. Preliminaries

In this section, we will introduce some notations in PAC learning halfspaces and differential privacy.
Notations: Throughout the whole paper, we denote P as a probability distribution over X × {±1}
with marginal distribution Px over Rd, where X ⊆ Rd. We also denote Bd2(R) as the `2-norm ball in
Rd with center 0 and radiusR and Bd2 = Bd2(1) as the unit `2-norm ball. Given a convex constraint set
C ⊆ Rd and a loss function ` : C × (X ×{±1}), we denote the population risk function as LP(w) =
E(x,y)∼P [`(w;x, y)]. Moreover, given an n-size dataset D = {(x1, y1), · · · , (xn, yn)} ∼ Pn we

denote the empirical risk function of the loss over D, L̂(·, D), as L̂(w,D) = 1
n

n∑
i=1

`(w;xi, yi).

3.1. PAC Learning Halfspaces

In this paper we mainly focus on PAC (probably approximately correct) learning model Valiant
(1984) for halfspaces in the realizable setting. That is, for any sample (x, y) ∼ P we assume that
y = sign(〈w∗, x〉+ θ∗) (almost surely) for some unknown vector w∗ ∈ Rd and θ∗ ∈ R. Without loss
of generality we assume that θ∗ = 0 so y = sign(〈w∗, x〉). A linear threshold function is defined as
fw(x) = sign(〈w, x〉) where x,w ∈ Rd and we call the vector w a hypothesis, and the classification
error of hypothesis w is

errP(fw) = Pr
(x,y)∼P

[fw(x) 6= y] = Pr
(x,y)∼P

[sign(〈w, x〉) 6= y]

= Pr
(x,y)∼P

[y · 〈w, x〉 < 0].

Given α, β ∈ (0, 1), the goal of PAC learning halfspaces is to find a hypothesis w ∈ Rd such that
errP(fw) ≤ α with probability at least 1− β with low sample complexity. In the following we will
introduce both the standard setting and the large margin setting.

Standard setting: Here we assume without loss of generality that X ⊂ Bd2(R) with some constant
R = O(1) and w∗ ∈ Rd2. Formally, we aim to design an (α, β)-PAC learner.

Definition 2 ((α, β)-PAC learner) Let P be a distribution over Bd2(R) × {±1} such that there
exists w∗ ∈ Bd2 which satisfies Pr(x,y)∼P [y〈w∗, x〉 ≥ 0] = 1. We say an algorithm A an (α, β)-PAC
learner with sample complexity n if using a dataset D ∼ Pn, the output classifier ŵ = A(D) ∈ Bd2
satisfies Pr

(x,y)∼P
[y 6= sign(〈ŵ, x〉)] ≤ α with probability at least 1− β.



Large margin setting: Compared with the standard setting, in the large margin setting we addi-
tionally assume there is no example that falls too close to the boundary of the halfspace. Specifically,
we assume that X ⊂ Bd2(R) with some constant R = O(1) and w∗ ∈ Rd2. Moreover, we assume that
w∗ maximizes the margin γ = min(x,y)∼P

|〈w∗,x〉|
||w∗||2·||x||2 > 0, which is known in advance. Under this

setting we want to design an (α, β, γ)-PAC learner.

Definition 3 ((α, β, γ)-PAC learner) Let P be a distribution over Bd2(R)× {±1} such that there
exists w∗ ∈ Bd2 which satisfies Pr(x,y)∼P [y〈w∗, x〉 ≥ γ] = 1, then we call P a distribution with
margin γ. We say an algorithm A an (α, β, γ)-PAC learner with margin γ and sample complexity
n if using a dataset D ∼ Pn with margin γ, the output classifier ŵ = A(D) ∈ Bd2 satisfies the
Pr

(x,y)∼P
[y 6= sign(〈ŵ, x〉)] ≤ α with probability at least 1− β.

3.2. Differential Privacy

Definition 4 (Differential Privacy Dwork et al. (2006)) Given a data universe D, we say that two
datasets D,D′ ⊆ Dn are neighbors if they differ by only one entry, which is denoted as D ∼ D′. A
randomized algorithm A is (ε, δ)-differentially private (DP) if for all neighboring datasets D,D′

and all output event E of algorithm A, we have Pr(A(D) ∈ E) ≤ eεPr(A(D′) ∈ E) + δ. If δ = 0,
we say that algorithm A is ε-DP.

Differential privacy in the local model. In LDP, we have a data universe D, n players with each
holding a private data record xi ∈ D, and a server coordinating the protocol. An LDP protocol
executes a total of T rounds. In each round, the server sends a message, which is also called a query,
to a subset of the players requesting them to run a particular algorithm. Based on the query, each
player i in the subset selects an algorithm Ai, runs it on her own data, and sends the output back to
the server.

In NLDP model, we consider the distributed setting with star network. And each user has only
one data sample. He/she needs to privatize his/her message before sending to the sever, and then
the server aggregate these private information to perform analysis. Unlike the federated setting,
since each user only has one sample, he/she cannot compute the target locally. And this is the main
difficulty of learning in the NLDP model.

Definition 5 (Dwork et al. (2006)) An algorithm A is (ε, δ)-locally differentially private (LDP) if
for all pairs x, x′ ∈ D, and for all events E in the output space of A, we have Pr[A(x) ∈ E] ≤
eεPr[A(x′) ∈ E] + δ. A multi-player protocol is (ε, δ)-LDP if for all possible inputs and runs of the
protocol, the transcript of player i’s interaction with the server is (ε, δ)-LDP. If T = 1, we say that
the protocol is ε non-interactive LDP (NLDP). When δ = 0, we call it ε-NLDP.

As we mentioned previously, PAC learning halfspaces in the NLDP model requires the sample
complexity which is at least exponential in the dimension d even in the large margin setting Dagan
and Feldman (2020). Thus, inspired by this, instead of the NLDP model, in this paper we will mainly
focus on a relaxed NLDP model.

Our Model: Different from the above classical NLDP model where only one private dataset
D = {(xi, yi)}ni=1 exists, the NLDP model in our setting allows the server to have an additional
public unlabeled dataset D′ = {qj}mj=1 ⊂ Xm, where each qj is sampled from Px, which is the
marginal distribution of P .
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Thus, we aim to design some private (α, β) or (α, β, γ)-PAC learner in the NLDP model with
public but unlabeled data. Moreover, we want the sample complexity of private data and public data
to be as low as possible.

Definition 6 ((ε, δ, α, β)-NLDP Learner) Let P be a distribution over Bd2(R) × {±1} such that
there exists w∗ ∈ Bd2 which satisfies Pr(x,y)∼P [y〈w∗, x〉 ≥ 0] = 1. We call an algorithm A an
(ε, δ, α, β)-NLDP PAC learner with sample complexity (n,m) if using a (private) dataset D ∼ Pn
and a public but unlabeled dataset D′ ∼ Pmx , the output classifier ŵ = A(D,D′) ∈ Bd2 satisfies the
following with probability at least 1− β, Pr

(x,y)∼P
[y 6= sign(〈ŵ, x〉)] ≤ α. Moreover, the algorithm A

is (ε, δ)-NLDP w.r.t the private dataset.

Definition 7 ((ε, δ, α, β, γ)-NLDP Learner) Let P be a distribution over Bd2(R)× {±1} such that
there exists w∗ ∈ Bd2 which satisfies Pr(x,y)∼P [y〈w∗, x〉 ≥ γ] = 1. We call an algorithm A an
(ε, δ, α, β)-NLDP PAC learner with sample complexity (n,m) if using a (private) dataset D ∼ Pn
and a public but unlabeled dataset D′ ∼ Pmx , the output classifier ŵ = A(D,D′) ∈ Bd2 satisfies the
following with probability at least 1− β, Pr

(x,y)∼P
[y 6= sign(〈ŵ, x〉)] ≤ α. Moreover, the algorithm A

is (ε, δ)-NLDP w.r.t the private dataset.

Since any (ε, δ)-NLDP algorithm can be transformed to an ε-NLDP algorithm with almost the same
accuracy Bun et al. (2019), here we only focus on (ε, δ)-NLDP for simplicity.

4. NLDP Algorithm via Massart noise model

Before showing our algorithm, we first introduce the Massart noise model in PAC learning:

Definition 8 (Massart noise example oracle Massart and Nédélec (2006)) Let S be a concept class
of Boolean functions over Rd, F be a known family of structured distributions on Rd, and let f be an
unknown target function in S . Assume 0 < λ < 1

2 , a Massart noise example oracle EXMas(f,F , λ)
is an oracle that each invoke returns a labeled example (x, y) such that:

1. x ∼ Px, where Px is a fixed distribution in F .

2. With probability 1− λ(x), the oracle returns the correct label y = f(x) and with probability

λ(x), the oracle returns a misleading label y = −f(x), i.e., y =

{
f(x), w.p. 1− λ(x)

−f(x), w.p. λ(x)
,

where λ(x) is unknown and satisfies λ(x) ≤ λ.

We can think of the Massart noise model as an adversary who flips each sample label independently
with probability at most λ < 1

2 and the target of PAC learner is to reconstruct the classifier to
arbitrarily high accuracy.

Definition 9 (PAC Learning with Massart Noise) Denote P the joint distribution on (x, y) gener-
ated by a Massart noise example oracle. The goal of PAC Learning with Massart Noise is to design
an algorithm such that given i.i.d. samples from P , the algorithm outputs a hypothesis h such that
Prx∼Px [h(x) 6= f(x)] ≤ α with probability at least 1− β.



Algorithm 1 NLDP based on Massart noise model
1: Input: Private data D = {(xi, yi)}ni=1 with each xi ∈ Rd satisfying ||xi||2 ≤ R and yi ∈ {±1};

Unlabeled public data D′ = {qi}mi=1; private parameters ε, δ; oracle access to Hinge Loss-LDP
Hpriv (Algorithm 5); error bound α; failure probability β.

2: Randomly divide n private data record into k groups: {S1, · · · , Sk}, where |Si| = bnk c, k =
O(log 1

β ).
3: for t ∈ [k] do
4: Denote S̃t as the normalized version of St, i.e., S̃t = {( xR , y)|(x, y) ∈ St}.
5: Set wt = Hpriv( 1

32R , ε, δ, S̃t).
6: Set hwt(x) = sign(wTt x)
7: end for
8: Get the Massart Noise example oracle by majority voting: f̂(x) =

arg miny∈{±1}
k∑
t=1

I(hwt(x) 6= y) = arg miny∈{±1}
k∑
t=1

I(sign(wTt x) 6= y)

9: for i ∈ [m] do
10: Label public dataset {qi}mi=1 using Massart Noise example oracle f̂(x) to obtain the noisy

dataset D̂ = {(qi, f̂i)}mi=1, where f̂i = f̂(qi).
11: end for
12: Run the subroutine LHMN(α, β, (U, r,R)) with dataset D̂ to get ŵ =LHMN(α, β, (U, r,R)).
13: Return ŵ and hŵ = sign(ŵTx).

Massart noise model lies in between the Random Classification Noise Angluin and Laird (1988)
(where each label is independently flipped with probability exactly λ ≤ 1

2 ) and the agnostic model
Kearns et al. (1994) (where an adversary can flip any small constant fraction of the sample labels)
and has attracted much attention in recent years. Many algorithms for computing accurate hypothesis
in the distribution-specific PAC learning has been promoted, such as Awasthi et al. (2015, 2016);
Zhang et al. (2017). Recently, an efficient and simple algorithm has been proposed in Diakonikolas
et al. (2020), which succeeds under more general distributional assumptions.

Definition 10 (Diakonikolas et al. (2020)) Fix U, r > 0. An isotropic (i.e., zero mean and identity
covariance) distribution Px on Rd satisfies U -anti-concentration (2-dim) if for any projection (Px)V
of Px onto a 2-dimensional subspace V , the corresponding probability density function γV on R2

satisfies that for all x ∈ V , γV (x) ≤ U . Moreover, we say (U, r)-anti-anti-concentration holds if for
all x ∈ V such that ||x||2 ≤ r, γV (x) ≥ 1

U .

Anti-anti-concentration and anti-concentration are mild distributional conditions about the probability
density function on the projected 2-dimensional subspace. The former guarantees that at least a
constant probability mass is assigned to the points near the origin of the projected 2-dimensional
subspace while the latter states that the probability mass along the 2-dimensional projection is upper
bounded.

In fact, several reasonable distribution families satisfy the previous two conditions. For example,
the class of isotropic log-concave distribution satisfies (U, r)-anti-anti-concentration and U -anti-
concentration with U, r = Θ(1) (See Fact A.4 in Diakonikolas et al. (2020)). Moreover, any
isotropic s-concave distribution on Rd with s ≥ − 1

2d+3 satisfies (U, r)-anti-anti-concentration and
U -anti-concentration with U, r = Θ(1) (See Appendix A.4 in Diakonikolas et al. (2020)).
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Next we will present our Non-interactive LDP algorithm via the Massart noise model (Algorithm
1). Generally, the algorithm consists of two parts:

(1) First, we use private data to construct a Massart noise example oracle with rate λ = 3
16 .

To get the oracle, in Algorithm 1 we first randomly divide the private data into k = O(log 1
β )

disjoint groups. Then, on each group of data Si, we consider the Empirical Risk Minimization
problem with the hinge loss `(w;x, y) = max{0, 1 − y〈w, x〉} with C = Bd2 . Specifically, when

n = Õ
(
kd log( 1

β )Poly(log 1
δ ,

1
ε )
)

, we can use an (ε, δ)-NLDP algorithmHpriv given by Wang et al.
(2020) to get private estimator wi such that

E[L̂(wi, Si)]− min
||w||2≤1

L̂(w, Si) ≤
1

32
,

where L̂(w, S) = 1
|S|
∑

(x,y)∈S `(w;x, y). After getting private estimators {wi}ki=1, we then boost
the classification accuracy using the majority voting mechanism. We can show that the new classifier
f̂ via voting is a Massart noise example oracle (λ = 3

16 ) with probability at least 1− β.
(2) We then label m = O(U

12

r12
· d
α4 ) public unlabeled data samples D′ = {qi}mi=1 with the learned

Massart noise example oracle f̂ and denote the labels as {f̂i}mi=1, where U, r are the parameters of
anti-anti-concentration and anti-concentration in Definition 10. Then, we can invoke efficient and
non-private algorithm LHMN designed for leaning halfspaces with Massart noise (Algorithm 2) on
dataset D̂ = {(qi, f̂i)}mi=1 to finally learn a classifier with any desired classification error α with
probability at least 1− β. Formally, Algorithm 1 has the following theoretical guarantee.

Algorithm 2 Learning Halfspaces with Massart Noise : LHMN (α, β, (U, r,R))
Input: The designed estimation error α; parameters about the distribution: U, r,R; fail-
ure probability β; loss function g(w; (x, y)) = Sσ(−y 〈w,x〉||w||2 ), where Sσ(t) = (1 +

e−
t
σ )−1, dataset D̂ = {(x(i), y(i))}mi=1 labeled by Massart noise example oracle with λ =

3
16 .

1: Set C1 = Θ(U
12

r12
), C2 = Θ( r

U2 ), T = Θ(
C1dR8 log( 1

β
)

α4 ), σ = C2α√
2R2

2: Set step size η =
C2

2dα
2

8R4T 1/2 .
3: Set w(0) = e1 with e1 being the unit vector whose first component is 1, and other components

are 0.
4: for i = 1, · · · , T do
5: v(i) = w(i−1) − η∇wg(w(i−1); (x(i), y(i)))

6: w(i) = v(i)

||v(i)||2
7: end for
8: Set the list of candidate vector L = {±w(i)}i∈[T ]

9: Draw N = O(
log(T

β
)

α2 ) fresh samples from D̂

10: w̄ = arg minw∈L
T+N∑
j=T+1

I{sign(〈w, x(j)〉) 6= y(j)}.

11: Return w̄



Theorem 11 Let P be a distribution on Rd × {±1} such that its marginal distribution Px on
Rd satisfies that (U, r)-anti-anti-concentration and U -anti-concentration with U, r = Θ(1), and
‖x‖2 ≤ R = O(1) for x ∼ Px. Then for any α, β, ε, δ ∈ (0, 1), Algorithm 1 is a computationally
efficient (ε, δ, α, β)-NLDP Learner with sample complexity m = O( d

α4 ) for public unlabeled data

and n = Õ
(
d log2( 1

β )Poly(log 1
δ ,

1
ε )
)

for private data, where the Big-Õ omits other logarithmic
terms.

Remark 12 Firstly, we can see that the sample complexity of private data is independent of the
error α. This is due to that we only need the private data to construct a Massart noise oracle with
λ = O(1). Moreover, the classifier f̂ is a Massart noise oracle for any distribution as long as
‖xi‖2 ≤ R and the assumption of anti-concentration and anti-anti-concentration is only used for
Algorithm 2, which indicates that the idea of our algorithm could be used to PAC learning halfspaces
with other structured distributions, as long as there is an efficient PAC learning algorithm with
Massart noise.

4.1. Proof of Theorem 11

The proof of Theorem 11 requires the following two lemmas. The first lemma suggests that f̂ is a
Massart Noise example oracle with high probability and the second lemma indicates the performance
guarantee of LHMN (Algorithm 2).

Lemma 13 Under the standard setting, for β ∈ (0, 1), setting k = O(log( 1
β )) in Algorithm 1. Then

with sample size n ≥ Ω̃(kd log( 1
β )Poly(log 1

δ ,
1
ε )), we have the following with probability at least

1− β,

Pr
(x,y)∼P

[f̂(x) 6= y] ≤ 3

16
.

Lemma 13 suggests that for any (x, y) ∼ P , with probability no more than 3
16 , f̂(x) is adversary

and returns the wrong label f̂(x) = −y while with probability at least 13
16 , it returns the correct label

f̂(x) = y. So, f̂(x) is in fact a Massart noise example oracle with λ = 3
16 . Before that we recall the

definition of bounded distribution in Diakonikolas et al. (2020).

Definition 14 (Bounded Distribution Diakonikolas et al. (2020)) Fix U,R > 0 and t : (0, 1) 7→
R+. An isotropic (i.e., zero mean and identity covariance) distributionPx onRd is called (U,R, t(·))-
bounded if for any projection (Px)V of Px onto a 2-dimensional subspace V , the corresponding
pdf γV on Rd satisfies (U,R)-anti-anti-concentration, U -anti-concentration and for any α ∈ (0, 1),
Prx∼γV (‖x‖2 ≥ t(α)) ≤ α.

Note that since we assume ‖x‖2 ≤ R. Thus, we always have t(α) = R. That is, under the
assumption in Theorem 11. The marginal distribution Px is (U, r,R)-bounded. The next lemma
about the performance guarantee of LHMN (Algorithm 2) for (U, r,R)-bounded distributions follows
directly from Theorem 4.1 in Diakonikolas et al. (2020) by substituting Massart noise rate with
λ = 3

16 .

Lemma 15 Let P be a distribution on Rd × {±1} such that the marginal distribution Px on Rd
is (U, r,R)-bounded. Let λ = 3

16 be the upper bound on Massart noise rate. Algorithm 2 draws
m = O((Ur )12 ·R8 · d

α4 ) examples labeled by Massart noise example oracle and outputs a hypothesis
w̄ that satisfies errP(hw̄) ≤ α with probability at least 1− β.
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With the above lemmas, the proof of Theorem 11 is straight forward.
Proof [Proof of Theorem 11] According to Lemma 13 and the definition of Massart noise example
oracle, with probability at least 1−β, D̂ = {(qi, f̂i)}mi=1 can be seen as the data returned by a Massart
noise example oracle with λ = 3

16 . Then, applying lemma 15, it follows directly that errP(hŵ) ≤ α
with probability at least 1− β − β = 1− 2β.

5. NLDP Algorithm via Self-supervised Learning

In the previous section, we showed that if the marginal distribution Px satisfies some mild assump-
tions, there is an NLDP algorithm using Õ(dPoly(1

ε )) private data and O( d
α4 ) public unlabeled data

to achieve an error of α. However, as we mentioned earlier, for smooth Generalized Linear Models
with Gaussian data, there is an NLDP algorithm with sample complexity of only O( d

α2 ) for public
data Wang et al. (2021). Thus, our question is, can we further reduce the sample complexity of public
data (for other structured distributions)? In this section, we will focus on a class of distributions
namely mixture distribution, which is proposed by Frei et al. (2021). We develop an (ε, δ)-NLDP
algorithm that achieves an arbitrary classification error α using only Õ(dPoly(1

ε )) private data and
O( d

α2 ) public unlabeled data. We begin by introducing the mixture distribution model in Frei et al.
(2021).

Algorithm 3 NLDP for Mixture distributions
1: Input: Private data D = {(xi, yi)}ni=1 with each xi ∈ Rd satisfying ||xi||2 ≤ R and yi ∈ {±1};

Unlabeled public data D′ = {qi}mi=1; private parameters ε, δ; oracle access to Logistic Loss-
NLDP Tpriv (Algorithm 6); error bound α; failure probability β; failure probability β; privacy
parameters ε, δ; a constant upper bounded of ‖µ‖2, ρ, where µ is the mean of the distribution of
x; parameters r, U about distribution of x.

2: Run Tpriv(Cerr log 2/2, R, ρ, ε, δ,D) and denote its output as wpriv, where Cerr = r2

144U .

3: Invoke {w(t)}Tt=0 =STWN({qi}T×Bi=1 , wpriv), where B = O

(
log( 1

β
)

α

)
, T = Õ

(
d(log( 1

β
))2

α

)
.

4: Return {w(t)}Tt=0

Informally, a mixture distribution model is an isotropic model generating data (x, y) ∈ Rd ×
{±1} as follows: for labels y ∈ {±1} and mean parameter µ ∈ Rd, x|y (conditioned on y) is a
random variable with mean yµ and identity covariance matrix. Additionally, mixture distribution
model requires that x− yµ to satisfy anti-anti-concentration, anti-concentration (1-dim) and k-sub-
exponential properties. Note that we have already introduced the definitions of anti-anti-concentration
and anti-concentration (2-dim) in Definition 10. The definition of anti-concentration (1-dim) is almost
the same as anti-concentration (2-dim) given in definition 10, except substituting the subspace V to a
1-dimensional subspace, which declares that the distribution assigns bounded probability mass along
one-dimensional projections.

Definition 16 (U-anti-concentration (1-dim)) Fix U > 0, we say an isotropic distribution Px on
Rd satisfies U -anti-concentration (1-dim) if for any projection (Px)V of Px into a 1 dimensional
subspace V and all x ∈ V , it holds that γV (x) ≤ U , where γV the probability density function on R.



Definition 17 (K-sub-exponential distributions Frei et al. (2021)) We say a distribution Px is K-
sub-exponential if every x ∼ Px is a sub-exponential random vector with sub-exponential norm at
most K. In particular, if for any v with ||v|| = 1, Pr

x∼Px
[|〈v, x〉| ≥ t] ≤ e−

t
K , then we say Px is

K-sub-exponential.

Now we formally define the mixture distribution model considered in this section.

Definition 18 (Mixture distribution Frei et al. (2021)) Letµ ∈ Rd. Let y = 1 with the probability
1
2 and y = −1 with probability 1

2 , and we generate x|y ∼ z + yµ, where z is an isotropic K-sub-
exponential distribution satisfying (U, r)-anti-anti-concentration and the U -anti-concentration (1-
dim), then we say (x, y) ∼ P is a mixture distribution with mean µ and parameters K,U, r = Θ(1).

Log-concave isotropic distributions such as the standard Gaussian are K-sub-exponential and
satisfy U -anti-concentration (1-dim) as well as (U, r)-anti-anti-concentration (2-dim) with K,U, r =
Θ(1) Frei et al. (2021). Thus, the above mixture distribution is a natural generalization of the
Gaussian mixture model and can accommodate a broader class of distributions.

Similar to our previous algorithm which is based on the Massart noise model, the main idea of
our NLDP algorithm for mixture distribution also consists of two parts.

(1) We first use an (ε, δ)-NLDP algorithm named Logistic Loss-NLDP (Algorithm 6), which is
proposed by Zheng et al. (2017)), to get a private estimatorwpriv which could achieve the error at most
Cerr log 2/2 for the expected excess population risk with logistic loss by using Õ(dPoly(1

ε , log 1
δ ))

private data, i.e.,

E[L(wpriv, D)]− min
‖w‖2≤‖µ‖2

E[L(w,D)] ≤ Cerr log 2

2
,

whereCerr = r2

144U > 0,U, r are parameters of the mixture distribution, andL(w,D) = E(x,y)∼P`(y〈w, x〉)
with `(z) = log(1 + e−z). Based on this result, we show that wpriv could be thought as a pseudo
labeler which achieves a sufficiently small but constant classification error at most Cerr.

Remark 19 The intuition of using logistic loss is that logistic loss is closely connected to 0-1 loss.
Generally, logistic loss could be considered as a surrogate function of 0-1 loss. Moreover, under PAC
halfspace learning setting, for any model w, its classification error could be bounded by a constant
times the population risk of its logistic loss.

(2) With the pseudo labeler, next, we use a self-training algorithm STWN in Frei et al. (2021)
(Algorithm 4) to convert the weak learner (pseudo labeler) to a strong learner. The self-training
algorithm can ensure that, for data coming from an isotropic mixture distribution and if there is an
initial pseudo labeler wpl that has small classification error, then the algorithms yield a classifier
with classification error arbitrarily close to the optimal one using only unlabeled examples. In each
iteration of the STWN algorithm, we first use the pseudo labeler to label a batch of unlabeled data.
Then we use the gradient descent with loss function ˜̀on the pseudo labeled data to update the pseudo
labeler. Note that the loss functions used in this self-training algorithm have to be "well-behaved",
which is defined as follows:

Definition 20 (Well behaved loss function Frei et al. (2021)) If the loss `(z) is 1-Lipschitz, de-
creasing on the interval [0,∞) and for some constant C` ≥ 1, `

′
(z) ≥ 1

C`
e−z holds when z > 0,

then we say the loss function is well behaved.
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Many loss functions are well behaved. For example, the exponential loss ˜̀(z) = e−z and the
logistic loss ˜̀(z) = log(1 + e−z) satisfies the above "well behaved" definition with C` = 1 and 2
respectively. In this paper, we will use the logistic function.

Algorithm 4 Self-training using weight normalization: STWN({qi}T×Bi=1 , wpl)

1: Input: The designed estimation error α; parameters about the distribution: K,U, r; failure
probability β; temperature σ > 0, batch size B and iteration T ; T × B unlabeled public data
{qi}T×Bi=1 ; pseudo labeler wpl.

2: Set step size η = Θ̃

(
α

d(log( 1
β

))2

)
3: Let w(0) =

wpl
||wpl||2

4: for t = 0, · · · , T − 1 do
5: for i = 1 · · · , B do
6: Generate pseudo labels ŷB×t+i = sign(〈qi, w(t)〉)
7: end for

8: v(t+1) = w(t) − η
B

B×(t+1)∑
i=t×B+1

∇˜̀( ŷi·〈qi,w(t)〉
σ

)
9: w(t+1) = v(t+1)

||v(t+1)||
10: end for
11: Return {w(t)}Tt=0

The whole picture of our NLDP algorithm for mixture distributions is given in Algorithm 3, and
its theoretical guarantee is provided by the following theorem:

Theorem 21 Assume that (x, y) ∼ P follows a mixture distribution with ||µ||2 = Θ(1) and
known parameters K,U, r = Θ(1), and ‖x‖2 ≤ R = O(1) for x ∼ Px. Then if ‖µ‖2 ≥
3K max{log 8

Cerr
, 22K}, for any α, β, ε, δ ∈ (0, 1), there exist w ∈ {w(t)}Tt=0 which is (ε, δ, α, β)-

NLDP Learner with sample complexity m = Õ(
d log3 1

δ
α2 ) for public unlabeled data and n =

Õ
(
dPoly(log 1

δ ,
1
ε )
)

for private data, where the Big-Õ omits other logarithmic terms.

Remark 22 Although the general idea of Algorithm 1 and 3 are almost the same, i.e., use private
data to build a weak learner or a pseudo labeler and use it to transform to a strong learner. There
are still several critical differences. First, in Algorithm 1 we need the weak learner wpriv to have a
constant classification error λ < 1

2 , while in Algorithm 3 we aim to make the classification error of
wpriv be Cerr which needs to depend on the underlying distribution. Thus, we cannot use wpriv in
Algorithm 1 to Algorithm 3. Second, the procedure of transforming is different, while in Algorithm 3
the labeling is adaptive, Algorithm 1 is non-adaptive. Thus, the idea of Algorithm 3 is more similar
to self-supervised learning and therefore needs less public data than Algorithm 1. Thirdly, while we
can guarantee that the output of Algorithm 1 is an NLDP learner, we can only ensure the existence
of NLDP learner among {w(t)}Tt=0 in Algorithm 3. Finding out such a learner needs an additional
one round. We leave it as an open problem for improving the algorithm.



6. Conclusion

We studied the problem of PAC learning halfspaces in the non-interactive local differential privacy
model (NLDP). Previous results either have either exponential sample complexities or they need
the large margin assumption of the data. Here we considered a relaxed setting where the server has
access to some additional public but unlabeled data. Specifically, under different mild assumptions
on the underlying data distribution, we proposed two approaches that are based on the Massart noise
model and self-supervised learning and showed that it is possible to achieve sample complexities
that are only linear in the dimension and polynomial in other terms for both private and public data,
which significantly improve the previous results.
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