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Abstract

Multi-source domain adaptation has been intensively studied. The distribution shift in fea-
tures inherent to specific domains causes the negative transfer problem, degrading a model’s
generality to unseen tasks. In Federated Learning (FL), learned model parameters are
shared to train a global model that leverages the underlying knowledge across client mod-
els trained on separate data domains. Nonetheless, the data confidentiality of FL hinders
the effectiveness of traditional domain adaptation methods that require prior knowledge of
different domain data. We propose a new federated domain generalization method called
Federated Knowledge Alignment (FedKA). FedKA leverages feature distribution matching
in a global workspace such that the global model can learn domain-invariant client features
under the constraint of unknown client data. FedKA employs a federated voting mecha-
nism that generates target domain pseudo-labels based on the consensus from clients to
facilitate global model fine-tuning. We performed extensive experiments, including an ab-
lation study, to evaluate the effectiveness of the proposed method in both image and text
classification tasks using different model architectures. The empirical results show that
FedKA achieves performance gains of 8.8% and 3.5% in Digit-Five and Office-Caltech10,
respectively, and a gain of 0.7% in Amazon Review with extremely limited training data.
Moreover, we studied the effectiveness of FedKA in alleviating the negative transfer of FL
based on a new criterion called Group Effect. The results show that FedKA can reduce
negative transfer, improving the performance gain via model aggregation by 4 times.

Keywords: Domain generalization; Multi-party computation; Federated learning; Knowl-
edge transfer.

1. Introduction

Federated learning (FL) (McMahan et al., 2017; Kairouz et al., 2021) has been accelerating
the collaboration among different institutions with a shared interest in machine learning
applications such as privacy-preserving diagnosis of hospitals (Thapa et al., 2022) and de-
centralized network intrusion detection (Sun et al., 2020). One of the most challenging
problems in FL is to improve the generality in tackling client data from different domains.
These different domains are usually used for the same classification task but with particular
sample features under varying data collection conditions of clients. A naive averaging of all
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clients’ model updates cannot guarantee the global model’s performance in different tasks
due to the problem of negative transfer(Pan and Yang, 2010). In this regard, the learned
knowledge from a client might not facilitate the learning of others. The effectiveness of
model sharing in FL regarding knowledge transferability to an unseen task is of great im-
portance to real-life application. For example, in medical diagnosis, images collected by
different medical machines can vary in sample quality. Client models learned on such di-
verse samples can diverge in the parameter space. Simply aggregating these models will not
guarantee a better global model. Another example is connected autonomous vehicles based
on FL. The multi-agent systems learn to tackle different driving situations in different cities
and FL allows these agents to share the experience of driving in a new city.

Feature disentanglement is a common approach to alleviating problems of domain shift
and negative transfer when encountering different domains, by separating domain-invariant
features and domain-specific features from training samples (Bengio et al., 2013; Csurka,
2017; Wilson and Cook, 2020; Kouw and Loog, 2021). Nevertheless, such a practice neces-
sitates that different domain data are centrally located at the same place for computation.
In the above hospital and vehicle cases, feature disentanglement is unfeasible or impractical
due to either privacy concerns or communication overheads in data sharing. The difficulty
in federated domain generalization is that the source domain data of clients and the target
domain data of a new task are usually separately located, which hinders effective knowledge
sharing in FL. Moreover, the traditional model aggregation in approaches such as Feder-
ated Averaging (FedAvg)(McMahan et al., 2017) cannot guarantee the improvement in the
global model’s performance by sharing local models trained on various client domains.

To this end, we propose Federated Knowledge Alignment (FedKA) (see Fig. 1) that
alleviates negative transfer in FL improving the global model’s generality to unseen tasks.

Overall, our main contributions are three-fold:
1) We proposed a novel domain generalization method FedKA in federated learning

under the constraint of unknown client data, mainly due to data confidentiality. FedKA
learns to reduce feature discrepancy between clients improving the global model’s generality
to tackle unseen tasks. (Section 3.2).

2) This work studied a new criterion for measuring negative transfer in federated learning
(FL) called Group Effect, which throws light on the ineffectiveness of model aggregation
in FL when training on different client domains. This work provided detailed formulations
(Section 3.3) and evaluation of Group Effect in FL (Section 4.5).

3) We performed extensive experiments on three different datasets, i.e., Digit-Five,
Office-Caltech10, and Amazon Review. We compared two different neural network archi-
tectures for model sharing including a lightweight two-layer model and a Resnet18 model.
We demonstrated our method’s effectiveness in improving the global model’s prediction for
various target tasks. (Section 4).

The remainder of this paper is structured as follows. Section 2 provides an overview of
federated learning and domain adaptation and presents relevant work on the intersection
of the two fields. Section 3 presents essential definitions and technical underpinnings of
the proposed method. Section 4 presents the results of the empirical evaluation and the
discussion of our main findings. Section 5 concludes the paper and provides future directions.
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Figure 1: The framework of Federated Knowledge Alignment (FedKA) consists of three
building blocks, i.e., Global Feature Disentangler, Embedding Matching, and Federated
Voting. FedKA leverages distributed data domains based on feature distribution matching
in a global workspace. The negative transfer is alleviated by 1○ local model representation
learning on client domains and 2○ global model fine-tuning on the unlabeled cloud domain.

2. Related Work

2.1. Federated Learning

A distributed framework for machine learning (ML) (Smola et al., 2010) was introduced
due to the proliferation of ML applications in academia and industry. The parameter
server framework was further extended to a versatile and high-performance implementation
for distributed ML based on local training data (Li et al., 2014). Moreover, Federated
Learning (FL) (McMahan et al., 2017) aims to train a model that learns a global probability
distribution leveraging local model training on distributed data sources and trained model
parameter sharing. Nevertheless, it usually bears a degraded global model performance
when training on diversified client data (Sun et al., 2021). There have been many works
studying imbalanced Non-IID data in FL (Li et al., 2020; Sattler et al., 2020). For instance,
federated group knowledge transfer (FedGKT)(He et al., 2020) leveraged Kullback Leibler
(KL) Divergence to measure the prediction loss between an edge model and a cloud model,
thus aligning knowledge of client models trained on Non-IID samples and the global model.
Unfortunately, there are still not many efforts on the domain shift problem in FL, where each
client owns data with domain-specific features due to different data collection environments.

2.2. Domain Adaptation

Domain adaptation (Xu et al., 2018; Cui et al., 2020; Wei et al., 2021) is one type of transfer
learning to perform knowledge transfer from the source domain to the target domain. In
this regard, a reconstruction-based method with an encoder-decoder architecture aims to
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learn a discriminative mapping of target samples to the source feature space, thus improving
generalization performance (Tzeng et al., 2017; Han et al., 2021). However, the generative
approach is usually resource-consuming relying on computational capability. It is incompat-
ible with resource-constrained clients in FL, such as mobile devices. In contrast, the method
of feature disentanglement aims to distill features consistent across different domains thus
improving the transferability of learned features. Therefore, the output of a model will
remain unaffected despite several domain-specific feature changes. Deep Adaptation Net-
works (DAN)(Long et al., 2015) trains two neural network models on the source and target
domains, respectively. Then, DAN applies the multi-kernel Maximum Mean Discrepancy
(MK-MMD) loss (Borgwardt et al., 2006) to align features extracted from different layers of
the two models. A variant of this method (Long et al., 2017) aligns the joint distributions
of multiple domain-specific layers across domains using a Joint Maximum Mean Discrep-
ancy (JMMD) criterion. Furthermore, Domain Adversarial Neural Network (DANN)(Ganin
et al., 2015) leverages the domain confusion loss and the classification loss. DANN trains
a classifier that distinguishes between source domain features and target domain features
with encoders that distills representations indistinguishable by the domain classifier.

2.3. Domain Generalization for Federated Learning

The line of work in domain generalization for Federated Learning (Xu et al., 2018; Zhang
et al., 2021) has been studied recently. For example, Federated Adversarial Domain Adap-
tation (FADA)(Peng et al., 2020) aims to tackle domain shift in FL through adversarial
learning of domain-invariant features. Moreover, Yao et al. (2021) presented a reversed
scenario of FADA, where they tackled a multi-target domain adaptation problem for trans-
ferring knowledge learned from a labeled cloud dataset to different client tasks.

Unlike the studies mentioned above, FedKA leverages interactive learning between
clients and the cloud thus overcoming the challenge of data confidentiality in FL. To im-
prove the representation transferability, a client’s encoder learns to align its output with the
global embedding provided by the cloud. Simultaneously, the global model learns a better
representation of the target task via fine-tuning based on the strategy of federated vot-
ing. Furthermore, to our best knowledge, there are no existing efforts to measure negative
transfer in FL. Therefore, we propose Group Effect as an effective criterion.

3. Method

In this section, we first define the multi-source domain adaptation problem in Federated
Learning (FL). Then, we present the technical underpinnings of Federated Knowledge Align-
ment (FedKA). Finally, we introduce our criteria for measuring the effectiveness of domain
generalization methods in FL.

3.1. Multi-Source Domain Adaptation in Federated Learning

We specifically consider a classification task with C categories. Let x ∈ RV = X be a
sample and y ∈ {1, 2, ..., C} = Y be a label. D consists of a collection of N samples as
D = {(xi, yi)}Ni=1. In unsupervised domain adaptation(Ganin et al., 2017; Iscen et al., 2019),
given a source domain DS = (XS , YS) and a target domain DT = (XT , YT ) where the labels
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YT are not provided, the goal is to learn the target conditional probability distribution
P (YT |XT ) in DT with the information gained from DS . The source domain DS and target
domain DT usually share the same support of the input and output space X ×Y , but their
data have domain discrepancies with specified styles, i.e., P (XS) ̸= P (XT ).

A federated learning (FL) framework consists of the parameter server (PS) andK clients.

We suppose that each client k has a different source domain D
(k)
S = (X

(k)
S , Y

(k)
S ) and the

PS has the unlabeled target domain DT = (XT ). Let f be a neural network classifier that
takes an input xi and outputs a C-dimensional probability vector where the jth element of
the vector represents the probability that xi is recognized as class j. Then, the prediction
is given by ŷ = argmaxj f(x)j where f(x)j denotes the jth element of f(x).

A client usually cannot share D
(k)
S with the PS nor other clients mainly due to data

confidentiality. Instead, FL learns a global probability distribution by updating a global

model Gt based on the local models L
(k)
t shared by different clients where t denotes the

time step. The model aggregation allows FL to train over the entire data without disclosing
distributed training samples. Notably, FL proceeds by iterating the following steps: (1) the
PS that controls the entire process of FL, initializes the global model G0 and delivers it
to all clients, (2) each client k updates the model using N (k) samples from the local data

D
(k)
S , and sends back its model update L

(k)
t+1 − Gt to the PS, (3) then, PS aggregates all

local model updates based on methods such as Federated Averaging (FedAvg), updates the
global model, and sends the global model to all clients. Then, the model aggregation based
on FedAvg can be formulated by the following

Gt+1 = Gt +
∑
k∈K

N (k)∑
k∈K N (k)

(L
(k)
t+1 −Gt). (1)

The goal of the multi-source domain adaptation in FL is to learn a global model that
predicts the target conditional probability distribution P (YT |XT ) ofDT using the knowledge

from the K client models learned on different source domains {D(1)
S , D

(2)
S , ..., D

(K)
S }.

3.2. Federated Knowledge Alignment

3.2.1. Motivation

Effective knowledge transfer in multi-source domain adaptation of Federated Learning (FL)
is critical to the success of distributed machine learning via model sharing. The challenge
is to alleviate the negative transfer of FL such that the global model’s generality to unseen
tasks can be improved.

We demonstrate a global workspace where different latent representations and encoder
models of clients are organized in a way that they can be leveraged to perform various tasks
improving the global model’s generality (Figure 1). This is inspired by Global Workspace
Theory(Baars, 1988; Bengio, 2017) which enables multiple network models to cooperate
and compete in solving problems via a shared feature space for common knowledge shar-
ing. To this end, we propose Federated Knowledge Alignment (FedKA) that leverages the
representation learning of client local models and the global model by feature distribution
matching in the global workspace, facilitating effective knowledge transfer between clients.
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3.2.2. Global Feature Disentangler

Let f
(k)
e : RV → RU be the encoder of a client model L(k). Let f

(k)
c : RU → RC be the class

classifier of L(k). Then, given an input sample x, the client model outputs ŷ = f
(k)
c f

(k)
e (x).

Similarly, the global model consists of an encoder fG
e and a class classifier fG

c .

To learn an encoder f
(k)
e that disentangles the domain-invariant features from X

(k)
S , we

devise the global features disentangler by introducing a domain classifier in the PS. Notably,
let fd be the domain classifier that takes the feature representations H as the input and
outputs a binary variable (domain label) q for each input sample h, which indicates whether

h comes from the client k (h ∈ H(k) = f
(k)
e (X

(k)
S ) if q = 0) or from the target domain in the

PS (h ∈ HG = fG
e (XT ) if q = 1). The goal of the features disentangler is to learn a neural

network that distinguishes between H(k) and HG for different clients k ∈ K. The model

learning of the features disentangler with respect to client k’s source domain D
(k)
S can be

formulated by the following

J
(k)

disentangler
= J(0, fdf

(k)
e (X

(k)
S )) + J(1, fdf

G
e (XT )) (2)

f̂d = arg min
fd

J
(k)

disentangler
(fd,

ˆ
f
(k)
e , f̂G

e ), (3)

where J is the negative log likelihood loss for the domain classification to identify be-
tween the representations of the source domain and the target domain.

Moreover, to learn an encoder f
(k)
e that extracts domain-invariant features from client

k’s data, f
(k)
e is updated by maximizing the above classification loss J

(k)

disentangler
of the

features disentangler. When the features disentangler cannot distinguish whether an input

representation is from the client domain or the cloud domain, f
(k)
e outputs feature vectors

that are close to the ones from the target domain. Then, each client k sends the feature

representations f
(k)
e,t (X

(k)
S ) to the PS every round t. In particular, the update of client k’s

encoder based on the features disentangler’s classification loss can be formulated by

ˆ
f
(k)
e = arg max

f
(k)
e

J
(k)

disentangler
(f̂d, f

(k)
e , f̂G

e ). (4)

3.2.3. Embedding Matching

The global disentangler encourages a local model to learn features that are domain-invariant.
We further enhance the disentanglement of features by measuring the high-dimensional
distribution difference between feature representations from a client and the target domain
in the parameter server (PS). In particular, we employ the Multiple Kernel variant of
Maximum Mean Discrepancy (MK-MMD) to perform embedding matching between the

two distributions H
(k)
S = f

(k)
e (X

(k)
S ) and HT = fG

e (XT ), using different Gaussian kernel
er, r ∈ {1, 2, ..., R} where R is the number of kernels. Then, for each kernel er:

MMD2
er(H

(k)
S , HT ) =

∥∥∥∥∥ 1

N (k)

N(k)∑
i=1

Φ(hi)−
1

NT

NT∑
j=1

Φ(hj)

∥∥∥∥∥
2

Her

(5)
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=
1

N (k)

N(k)∑
i=1

er(hi, h
′
i) +

1

NT

NT∑
j=1

er(hj , h
′
j)− 2

1

N (k)

1

NT

N(k)∑
i=1

NT∑
j=1

er(hi, hj),

whereH is the reproducing kernel Hilbert space (RKHS) and Φ is a feature mapH → H.
Furthermore, we consider as the embedding matching loss the distance between the mean

embeddings of Φer(H
(k)
S ) and Φer(HT ) with five different Gaussian kernels (a bandwidth µ

of two). Then, the local model of client k can be updated based on the embedding matching
loss by the following

J
(k)

mmd
=

1

5

5∑
r=1

MMD2
er(f

(k)
e (X

(k)
S ), fG

e (XT )) (6)

ˆ
f
(k)
e = arg min

f
(k)
e

J
(k)

mmd
(f (k)

e , f̂G
e ). (7)

3.2.4. Local Model Representation Learning

For each round in FL, the PS sends back the computed gradients from the global feature

disentangler
∂J

(k)

disentangler
∂f

(k)
e

and the MK-MMD loss J
(k)

mmd
to client k to update the local

encoder f
(k)
e . Then, for each client k, the local model is updated based on three different

losses, i.e., the empirical loss J (k) = J(Y
(k)
S , f

(k)
c f

(k)
e (X

(k)
S )), the features disentangler loss

J
(k)

disentangler
(f̂d, f

(k)
e , f̂G

e ), and the MK-MMD loss J
(k)

mmd
(f

(k)
e , f̂G

e )). To alleviate the effect

of noisy representations at early stages of the training, we adopt a coefficient λp that
gradually changes from 0 to 1 with the learning progress of FL. Let b be the batch number,
B be the number of total batches, r be the round number, and R be the number of total
rounds in FL. λp is defined by λp = 2

1+exp(−γ·p) − 1, where p = b+r×B
R×B and γ is set as five.

Notably, we devise the local model representation learning as follows

E(f (k)
c , f (k)

e ) = J (k) − λp(J
(k)

disentangler
(f̂d, f

(k)
e , f̂G

e )− J
(k)

mmd
(f (k)

e , f̂G
e )) (8)

(
ˆ

f
(k)
c ,

ˆ
f
(k)
e ) = arg min

f
(k)
c ,f

(k)
e

E(f (k)
c , f (k)

e ). (9)

Then, each client k ∈ K with the source domain D
(k)
S performs model learning every

round t by the following L
(k)
t+1 = L

(k)
t − η ·∇E(f

(k)
c , f

(k)
e ), where η denotes the learning rate.

3.2.5. Global Model Fine-Tuning Based on Federated Voting

We propose a fine-tuning method called federated voting to update the global model every
round without ground truth labels of the target domain samples. In particular, Federated
voting fine-tunes the global model based on the pseudo-labels generated by the consensus
from learned client local models. This strategy allows the global model to learn representa-
tions of the target domain data without ground truth labels thus improving the effectiveness
of the feature distribution matching.
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Let y
(k)
i = argmaxj fk(xi)j represents the prediction class of client k’s local model L(k)

with the input xi. In FL, at each time step t, all client model updates {L(1)
t −Gt−1, L

(2)
t −

Gt−1, ..., L
(K)
t −Gt−1} are uploaded to the PS. Given an unlabeled input sample xi from the

target domain DT , the federated voting method aims to attain the optimized classification
label y∗i by the following

y∗i = arg maxc∈{1,2,...,C}

K∑
k=1

1{y(k)i = c}. (10)

Note that this method could result in multiple y∗i candidates that receive the same
number of votes, especially when the total client number K is low while the total class
number C is high. In such a case, we randomly select one class from the candidate pool as
the label y∗i of xi.

Furthermore, the fine-tuning of the global model Gt+1 is performed every round after the
model aggregation with NT samples from the target domain data XT and the generated
labels Y ∗ = {y∗i }N

T

i=1 using Eq. 10. We devise the global model fine-tuning as follows

G∗
t+1 = Gt+1 − λpη · ∇J(Y ∗, Gt+1({xi}N

T

i=1)), where λp is the coefficient to alleviate noisy
voting results at early stages of FL.

3.3. Criteria

We present two different criteria for measuring the effectiveness of a multi-source domain
adaptation method, i.e., target task accuracy (TTA) and Group Effect (GE).

The performance of the global model Gt at time step t in the target task is measured
by the target task accuracy (TTA) defined in the following

TTAf (Gt) =

∑
(x,y)∈DT

1{arg maxjf(x;Gt)j = y}
|DT |

, (11)

where | · | denotes the size of the target domain dataset.
Moreover, we define a novel criterion for measuring negative transfer in FL, called Group

Effect (GE). In particular, GE throws light on negative transfer of FL, due to inefficient
model aggregation in the PS, which has not yet been studied to our best knowledge. We aim
to measure to what extent the difference in clients’ training data causes diverse local model
updates that eventually cancel out in the parameter space leading to negative transfer.
Intuitively, FedKA matches feature distributions of separate client domains with the target
domain in the parameter server, such that we can alleviate the information loss from the
model aggregation in FL. Given K local updates at the time step t, the group effect exists

if TTAf (Gt+1) < 1
K

∑
k∈{1,2,...,K}TTAf (Gt + ∆

(k)
t ) where Gt+1 is attained by Eq. 1. To

this end, we propose GE based on TTAf in Eq. 11 as follows

GEt =
1

K

∑
k∈{1,2,...,K}

TTAf (Gt +∆
(k)
t )− TTAf (Gt+1). (12)
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4. Experiments

In this section, we first describe three benchmark datasets and detailed experiment settings.
Next, we demonstrate the empirical evaluation results of our method using the metric of
TTAf (Gt) in Eq.11, followed by a discussion. Then, we compare the evaluation results
based on different backbone encoder models. Furthermore, we show the effectiveness of our
method in alleviating the Group Effect in Eq.12 of federated learning with both numerical
results and the visualization of t-SNE features. We use PyTorch (Paszke et al., 2019) to
implement the models in this study.

4.1. Dataset

We employed three domain adaptation datasets, i.e., Digit-Five and Office-Caltech10 for the
image classification tasks and Amazon Review for the text classification task, respectively.

Digit-Five is a collection of five most popular digit datasets, MNIST (mt) (LeCun et al.,
2010) (55000 samples), MNIST-M (mm) (55000 samples), Synthetic Digits (syn) (Ganin
et al., 2015) (25000 samples), SVHN (sv)(73257 samples), and USPS (up) (7438 samples).
Each digit dataset includes a different style of 0-9 digit images.

Office-Caltech10 (Gong et al., 2012) contains images of 10 categories in four domains:
Caltech (C) (1123 samples), Amazon (A) (958 samples), Webcam (W) (295 samples), and
DSLR (D) (157 samples). The 10 categories in the dataset consist of objects in office
settings, such as keyboards, monitors, and headphones.

Amazon Review (Blitzer et al., 2007) tackles the task of identifying the sentiment of
a product review (positive or negative). This dataset includes reviews from four different
merchandise categories: Books (B) (2834 samples), DVDs (D) (1199 samples), Electronics
(E) (1883 samples), and Kitchen & housewares (K) (1755 samples).

4.2. Model Architecture and Hyperparameters

We consider different transfer learning tasks in the aforementioned datasets. Notably, we
adopt each data domain in the applied dataset as a client domain. In this regard, besides
the target domain of the cloud, there are four different client domains in Digit-Five and
three different client domains in both Office-Caltech10 and Amazon Review, respectively.
We conducted experiments using the following model architectures and hyperparameters.

4.2.1. Image Classification Tasks

Images in Digit-Five and Office-Caltech10 are converted to three-channel color images with
a size of 28× 28. Then, as the backbone model, we adopt a two-layer convolutional neural
network (64 and 50 channels for each layer) with batch normalization and max pooling
as the encoder and two independent two-layer fully connected neural networks (100 hidden
units) with batch normalization as the class classifier and the domain classifier, respectively.
Moreover, to perform the local model representation learning, we apply as a learning func-
tion Adam with a learning rate of 0.0003 and a batch size of 16 based on the grid search.
Every round of FL, a client performs training for one epoch using 512 random samples (32
batches) drawn from its source domain. Furthermore, to compute the features disentangler
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loss, 512 random samples from the target domain are applied every round. The learning
of the domain classifier neural network is performed during the client model representation
learning based on a gradient reversal layer.

To attain a more accurate measurement of differences in feature representation dis-
tributions using embedding matching, we apply a lager batch size of 128 with the same
samples in the client model representation learning. In Digit-Five, we employ two variants
of the federated voting strategy, i.e., Voting-S and Voting-L, using 512 and 2048 random
target domain samples, respectively. Moreover, since Office-Caltech10 is a relatively small
dataset, we use all available samples in the target domain for federated voting. The learning
hyperparameters of the global model are the same with the local models.

4.2.2. Text Sentiment Classification Task

To process text data of product reviews, we apply the pretrained Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2018) to convert the reviews
into 768-dimensional embeddings. We set the longest embedding length to 256, cutting
the excess and padding with zero vectors. Moreover, we apply a two-layer fully connected
neural network (500 hidden units) with batch normalization as the encoder using the flatten
embeddings as the input. The features disentangler and class classifier share the same
architectures as those in the image classification tasks, but with different input and output
shapes (binary classification). We apply Adam with a learning rate of 0.0003, a batch size
of 16, and 128 random training samples every round. A lower training sample number is
because Amazon Review has much fewer samples compared to Digit-Five. Similarly, we
employ 128 random target domain samples every round for federated voting. In addition,
in embedding matching, we apply a batch size of 16.

4.3. Ablation Study

To understand different components’ effectiveness in FedKA, we performed an ablation
study by evaluating maxGtTTAf (Gt) during 200 rounds of FL. We considered different
combinations of the three building blocks of FedKA and evaluated their effectiveness in
different datasets. As a comparison model, the FedAvg method applies the averaged local
updates to update the global model. Moreover, the f-DANN method extends Domain
Adversarial Neural Network (DANN) to the specific task of federated learning, where each
client has an individual DANN model for training. Similarly, for the f-DAN method, we
adapted Deep Adaptation Network (DAN) to the specific task of federated learning. We
discuss the evaluation results of the ablation study in the following.

Table 1 demonstrates the evaluation results in Digit-Five. Though f-DANN improved
the model performance in the tasks of mt, sv, sy, up → mm and mt,mm, sv, up → sy, f-
DANN resulted in a decreased maxGtTTAf (Gt) in the other three tasks. Furthermore, for
the two variants of federated voting, the results suggest that federated voting can improve
the model performance, especially, combined with the global feature disentangler and em-
bedding matching. In the experiment on the Digit-Five dataset, FedKA achieves the best
accuracy improving model performance by 6.7% on average.

Table 2 demonstrates the evaluation results in Office-Caltech10. The proposed method
also outperforms the other comparison models. In addition, the effectiveness of federated
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Table 1: maxGtTTAf (Gt) (%) on the Digit-Five dataset based on different methods. The
highest reported accuracy under each task is in bold.

Models/Tasks →mt →mm →up →sv →sy Avg

FedAvg 93.5±0.15 62.5±0.72 90.2±0.37 12.6±0.31 40.9±0.50 59.9

f-DANN 89.7±0.23 70.4±0.69 88.0±0.23 11.9±0.50 43.8±1.04 60.8

f-DAN 93.5±0.26 62.1±0.45 90.2±0.13 12.1±0.56 41.5±0.76 59.9

Voting-S 93.7±0.18 63.4±0.28 92.6±0.25 14.2±0.99 45.3±0.34 61.8

Voting-L 93.5±0.18 64.8±1.01 92.3±0.21 14.3±0.42 45.6±0.57 62.1

Disentangler + Voting-S 91.8±0.20 71.2±0.40 91.0±0.58 14.4±1.09 48.7±1.19 63.4

Disentangler + Voting-L 92.1±0.16 71.8±0.48 90.9±0.36 15.1±0.91 49.1±1.03 63.8

Disentangler + MK-MMD 90.0±0.49 70.4±0.86 87.5±0.25 12.2±0.70 44.3±1.18 60.9

FedKA-S 91.8±0.19 72.5±0.91 90.6±0.14 15.2±0.46 48.9±0.48 63.8

FedKA-L 92.0±0.26 72.6±1.03 91.1±0.24 14.8±0.41 49.2±0.78 63.9

Table 2: maxGtTTAf (Gt) (%) on the Office-Caltech10 dataset based on different methods.
The highest reported accuracy under each task is in bold.

Models/Tasks C,D,W→A A,D,W→C C,A,W→D C,D,A→W Avg

FedAvg 52.9 ±0.56 37.5 ±0.50 28.7±1.80 22.4±1.38 35.4

f-DANN 52.8 ±0.40 37.3 ±0.84 28.8±2.07 23.3±0.51 35.5

f-DAN 52.7±0.64 36.8±0.49 28.4±1.43 22.9±0.76 35.2

Voting 53.3 ±0.80 37.3 ±0.58 27.8±2.37 23.3±1.92 35.4

Disentangler + Voting 52.5±0.65 37.3 ±0.84 29.9 ±2.70 23.4 ±1.72 35.8

Disentangler + MK-MMD 52.7±0.41 36.4±0.93 31.1 ±1.91 24.3 ±1.69 36.1

FedKA 52.8 ±0.57 37.2±0.29 29.3 ±1.51 23.7 ±1.15 35.8

Table 3: maxGtTTAf (Gt) (%) on the Amazon Review dataset based on different methods.
The highest reported accuracy under each task is in bold.

Models/Tasks D,E,K→B B,E,K→D B,D,K→E B,D,E→K Avg

FedAvg 62.6±0.58 75.1±0.53 78.0±0.39 80.3±0.34 74

f-DANN 62.7±0.35 75.3±0.34 78.7±0.29 80.4±0.21 74.3

f-DAN 62.3±0.55 73.8±0.29 77.8±0.29 80.1±0.38 73.5

Voting 62.1±0.20 74.6±0.58 77.8±0.70 79.6±0.33 73.5

Disentangler + Voting 62.7±0.37 75.1±0.60 78.4±0.29 80.8±0.52 74.3

Disentangler + MK-MMD 62.9±0.32 75.3±0.33 78.5±0.23 80.2±0.12 74.2

FedKA 62.8±0.23 75.8±0.52 78.8±0.65 80.7±0.28 74.5

voting appears to smaller compared to the case of Digit-Five. This is due to the less available
target data in Office-Caltech10 for fine-tuning the global model.

Table 3 demonstrates the evaluation results in Amazon Review. FedKA improved the
global model’s performance in all target tasks outperforming the other approaches, by
leveraging the global feature disentangler, embedding matching, and federated voting.

4.4. Effectiveness of Model Architecture Complexity

To further study the effectiveness of Federated Knowledge Alignment (FedKA) when apply-
ing different encoder models, we employed Resnet18 (He et al., 2015) without pretraining
to perform feature extraction. Based on the same hyperparameter setting, we evaluate the
model performance in Digit-Five (Table 4) and Office-Caltech10 (Table 5). As a result,
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Table 4: maxGtTTAf (Gt) (%) on the Digit-Five dataset using Resnet18 as the backbone.
The highest reported accuracy under each task is in bold.

Models/Tasks →mt →mm →up →sv →sy Avg

FedAvg 97.9±0.07 71.3±0.79 96.9±0.05 11.9±0.62 55.8±1.60 66.8

f-DANN 97.5±0.07 77.1±0.29 96.8±0.38 12.1±1.01 79.5±0.37 72.6

f-DAN 97.9±0.09 71.7±1.22 96.7±0.18 11.3±0.68 55.5±1.00 66.5

Voting 96.5±0.20 72.1±1.24 96.9±0.17 14.0±0.74 61.1±0.28 68.1

Disentangler + Voting 96.5±0.21 76.5±0.53 96.8±0.42 13.7±0.45 79.4±0.61 72.6

Disentangler + MK-MMD 97.5±0.03 76.7±0.69 96.9±0.15 11.0±0.53 80.1±0.49 72.4

FedKA 96.4±0.23 77.3±1.01 96.6±0.38 13.8±0.81 79.5±0.68 72.7

Table 5: maxGtTTAf (Gt) (%) on the Office-Caltech10 dataset using Resnet18 as the back-
bone. The highest reported accuracy under each task is in bold.

Models/Tasks C,D,W→A A,D,W→C C,A,W→D C,D,A→W Avg

FedAvg 56.4 ±1.23 40.2 ±0.69 28.7±1.21 22.7±1.85 37.0

f-DANN 58.3 ±1.53 40.0 ±1.50 30.7 ±3.59 22.3±1.29 37.8

f-DAN 56.7±0.71 38.7±0.75 30.2±1.64 23.9 ±1.70 37.4

Voting 56.5 ±1.88 40.2 ±0.58 29.8±1.45 24.1 ±0.69 37.7

Disentangler + Voting 61.4 ±2.51 40.4 ±1.01 31.5 ±3.11 23.9 ±1.89 39.3

Disentangler + MK-MMD 59.5 ±0.41 37.8±0.93 32.2 ±3.21 22.3 ±1.00 38.0

FedKA 59.9 ±1.44 39.7±0.81 30.2 ±1.71 23.4 ±1.45 38.3

Figure 2: Model performance comparison between the Source Only (FedAvg) method and
FedKA using different backbone encoder models. The result shows that FedKA can better
benefit the improvement in global model performance with a more complex encoder model.

FedKA achieved performance gains of 8.8% and 3.5% in Digit-Five and Office-Caltech10
with the Resnet18 backbone, respectively. Moreover, as shown in Figure 2, a more complex
model could contribute to a larger gain in the global model performance improvement.

4.5. Effectiveness in Alleviating the Group Effect of Federated Learning

To understand the effectiveness of FedKA in alleviating the negative transfer in Federated
Learning (FL), we evaluated Group Effect GEt in Eq. 12 during the 200 rounds of FL
with the Digit-Five dataset (Figure 3). The GE value represents the amount of negative
transfer occurring in FL during model aggregation, where a higher GE value reflects more
information loss from the aggregation and a negative value represents a performance gain
via the aggregation. In particular, as shown in the graphs, the learning progress had high
GE values at the early stages, implicating that the model aggregation results in informa-
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(a) mt,sv,sy,up→mm (b) mt,mm,sv,up→sy

Figure 3: Group Effect GEt during the 200 rounds of FL. Lower is better. In Figure (a),
though we observed a bounce-back behavior of GE after 20 rounds, the negative transfer in
each round was decreased by FedKA. Moreover, in Figure (b), FedKA kept reducing GE even
after FedAvg started to bounce back, successfully alleviating the negative transfer of model
aggregation by 1 time without voting and 4 times with voting, respectively. Compared to
the usual model aggregation of FedAvg, FedKA showed great performance in alleviating
Group Effect by the global model fine-tuning with federated voting.

Figure 4: T-SNE visualization of different client domain feature distributions in Digit-Five
when applying Resnet18 as the encoder backbone.

tion loss and degraded model performance. As learning progresses, the GE values keep
decreasing implicating the gradual convergence of client models towards the target domain
distribution. The results show that FedKA can greatly alleviate the negative transfer in the
model aggregation of FL increasing the global model’s performance in unseen tasks.

To further verify the effectiveness of FedKA in alleviating negative transfer, we employ
t-SNE (Maaten and Hinton, 2008) to visualize the extracted feature distributions from
different client data domains based on the learned global model (Figure 4). Apparently, the
global model based on FedKA learns better representations for the classification tasks.
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5. Conclusion

Federated Learning (FL) has been adopted in various walks of life to facilitate machine
learning on distributed client data. Nevertheless, the data discrepancy between clients
usually hinders the effectiveness of model transfer in FL. Traditional domain adaptation
methods usually require prior knowledge of different domain data and cannot benefit FL
under the constraint of data confidentiality. In this work, we proposed Federated Knowledge
Alignment (FedKA) to allow domain feature matching in the global workspace. FedKA
improves the transferability of learned domain knowledge alleviating negative transfer in FL.
The extensive experiments showed that FedKA could improve the global model’s generality
to unseen image and text classification tasks. In future work, we aim to employ self-
supervised learning methods such as contrastive learning (Chen et al., 2020; Zbontar et al.,
2021; Radford et al., 2021) to further improve the model’s performance. Moreover, we will
also consider the security of the proposed framework encountered with adversarial attacks
such as information stealing (Huang et al., 2021; Yin et al., 2021) in our future study.
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