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Abstract

With the Internet of Everything (IoE) nowadays, monitoring edge systems is essential for
coordinating everything into an IoE web. However, it is hard to monitor edge systems due
to limited system information and limited sensors. To infer system information and provide
robust monitoring capability, machine learning models were used to approximate mapping
rules between different measurements. However, mapping rule learning using traditional
machine learning tools is one way only, e.g., from measurement variables to the state vector
variables. And, it is hard to be reverted, leading to over-fitting because of inconsistency
between the forward and inverse learnings. Hence, we propose a structural deep neural
network framework to provide a coherent two-way functional approximation. For physical
regularization, we embed network size into the number of variables in the latent layers.
We also utilize state sensors in the ‘latent layer’ to guide other latent variables to create
state sets. The performance of reconstruction for the two-way mapping rule is validated
extensively using test cases in the engineering, physics, and mathematical analysis domain.
Keywords: Edge Systems; Unobservability; Monitoring; Network Information; Auto-
Physics-Encoder; Optimization; Symbolic Regression; Two-way Flow.

1. Introduction

Internet of Everything (IoE) integrates cyber-infrastructure with system physics to improve
the computational and communication capabilities of the system. These are primarily
used to accomplish system planning, monitoring, and control operations Ding et al. (2021).
System physics is the underlying physical model of the system that governs the relationship
between the measurement variables and state vectors. Due to the close interaction between
cyber-infrastructure and the physics of the system, without enough sensors for monitoring, it
results in process interruption and system failure. For example, active devices complement
the Cyber-Physical Systems (CPS) Martinez-Castro and Jang (2018), such as the home
devices and system controllers at the system edge without complete observability. Such
edge system happens at the boundary areas of power grid networks Baran (2001), heat
exchange networks Sheng et al. (2022), water distribution networks Tshehla et al. (2017),
natural gas networks Jalving and Zavala (2018), etc. Hence, in the absence of knowledge
about the control rules by the system operator on the edge, new dynamics are introduced
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Figure 1. Framework of the constrained neural network model.

into the system. It makes robust system analysis difficult to perform. Hence, monitoring
and control at the system edge is an essential component in the IoE management systems.
So this paper focuses on the state estimation problem in monitoring.

Traditionally, in systems with good sensing capability, state estimation is quite useful to
monitor system states Lefebvre et al. (2014). However, the prerequisite for state estimation
is the need for complete system information, which does not hold especially at system
edges. In that case, state estimation is performed using discriminative learning to learn the
regression rule from one set of variables to another. However, there are two problems. One
is the lack of physical knowledge to regularize the mapping rules for future operating points,
which will create dramatically different data. The second problem is that only physical laws
can create a two-way mapping with consistent results. But the learning algorithms can not
handle inconsistency in the two-way mapping rule learning for physical systems. This is
due to the challenge with data-driven learning algorithms in which typically the mapping
is one way only, from measurement variables to the state vector variables, and can not be
reverted. To resolve this issue, we design a structural deep neural network framework.

Although the system is only partially observable, we embed knowledge of the network
size into the latent layer. This is a critical design in our physics-auto-encoder as our pri-
mary rule is not to compress information in the latent layer but to maintain just the right
information in the latent layer, consisting of system states and latent units. Another benefit
of embedding system size into the latent layer is to obtain the latent layer with a physical
meaning of the system state. So, these state measurements will guide the latent units to
extract a state set that can uniquely recreate all the measurements in the physical sys-
tems uniquely. To understand the framework and the outcome of the proposed data-driven
model, the framework for the model-X is shown in Figure 1.

The principal contributions of the proposed method are four-fold. [i.] A two-way
mapping function is used in a structural deep learning framework to introduce physical
knowledge to regularize the learning of forward and inverse mapping consistency against
over-fitting and unobservability. [ii.] The latent unit is created to embed knowledge of the
network size into the latent layer. [iii] Improve the computational complexity by utilizing the
spatial data of location and topology of nodes, which is common in physical systems. [iv.]
Bound the uncertainty. Numerical results support our claim and contributions precisely.
Our work opens the door for the economic monitoring of vast edge systems.
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1.1. Related Work
1.1.1. Data-driven Methods to Learn System physics:

Data-driven methods enabled a major breakthrough in the state estimation algorithm De-
hghanpour et al. (2018). To utilize the data-driven methods to learn system models di-
rectly from measurement data, a number of works have explored using measurement data
itself. These methods use machine learning as a tool. For example, probabilistic and data-
driven methods are utilized for identi cation of physical topology Muller et al. (2005); Singh
et al. (2005, 2010); Luan et al. (2015); Hayes et al. (2016); Cavraro and Arghandeh (2018);
Cavraro et al. (2019). In addition, one can embed physics in the mapping rule learning with
machine learning Zhang et al. (2020); Powell et al. (2020); Guddanti et al. (2022); Yuan and
Weng (2022); Li et al. (2021). Although these methods show some physical understanding
of learning, they can not handle inconsistency in the two-way mapping rule learning for
physical systems. Additionally, the highly important concept of state estimation is not
analyzed extensively, making the learning algorithms less robust and less explainable.

1.1.2. State Estimation with Auto-Encoder with Full Obsenability:

When the system is observable in a well-monitored area, there are past works utilizing auto-
encoder. For example, Miranda et al. (2012); Barbeiro et al. (2014) assumes full system
knowledge and uses an auto-encoder to reconstruct missing data in state estimation with
auto-encoders for smart grid. Di erent from the smart grid, Cheng et al. (2020) develops

an adversarial auto-encoder for parameterized nonlinear uid ow modeling, but it still
assumes good system knowledge. Therefore, it remains open on how to design auto-encoder
for systems with unobservability, with con dence.

1.1.3. Reducing Computational Complexity for Learning in Physical
Systems:

Many physics-informed learning methods are time-consuming due to excessive parameter
tuning process and a lot of data for training. To resolve this issue, some works have ap-
proached the problem in terms of the machine learning model selection. For example,
Coelho et al. (2020) proposes a composite regularization-based network selection approach
to reduce time for parameter tuning. For applications using psychological data, Epskamp
and Fried (2018) uses a regularization-based maodel selection approach to reduce the compu-
tational complexity. In load monitoring application, Sundaray (2019) proposes a machine
learning approach, based on identi cation of the most representative features to reduce
computational complexity. But, these methods still do not take into account the system
physics consideration, which can help with narrowing down the learning space further.

1.1.4. Other Works:

In dynamic systems, multiple linear models are learned in Chen and Poor (2022) on a
two-stage algorithm. But, it's objective is not to learn any mappings, rather it learns the
linear models that constitute sample trajectories. In physical-informed machine learning
domain, the design in Lu et al. (2021) improves generalization by discovering a new opera-
tor. However, the mapping is one-way only so it lacks consistency. In symbolic regression
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domain, symbolic regression is used in Cranmer et al. (2020) to generate an overall algebraic
equation. But, rst, it utilizes genetic algorithm, thus the method is intractable. Second,

no consideration is given to prior system knowledge in library function terms. Lastly, the
mapping in the work Cranmer et al. (2020) is one-way only, therefore it lacks consistency.

2. Preliminaries

In a CPS, when a node is partially observable, the state vectors are unknown. This par-
tial observability in the topology impacts the calculation of measurement variables at the
neighboring nodes. Although the measurement variables and state vectors are coupled alge-
braically, it becomes di cult to use a method based on a system equation solver to realize
the algebraic relationship in the presence of partial observability. Therefore, in the absence
of any algebraic relationship, a data-driven method needs to be employed to obtain the
relationship between the measurement variables and state vectors. This mapping is utilized
to determine the measurement variables associated with the unobservable nodes, which oth-
erwise was not possible to obtain using system equations. In our proposed model-X, the
measurement variables and state vectors may not necessarily be from the same observable
node. The way we deal with it has been discussed in the Subsection 3.2.

State estimation relies on a general model Muscas et al. (2014), which can be represented
as: y = f(x)+ ; wherey represents the vector of network measurements and pseudo-
measurements x represents the state vectorf represents the vector of non-linear measure-
ment functions, and represents the measurement noise vector., is usually assumed to
be independent zero-mean Gaussian variable with the standard deviation of measurement
values. Most state estimation programs are formulated as over-determined systems of non-
linear equations, that are solved as weighted least squares (WLS) problems Maddala (1992),
Lin and Davenport Jr (1997), Simpson and Monlgomery (1998), Monticelli (2000). In WLS
approach, the state x ié usually estimated by minimizing the weighted sum of squares of
the residuals, arg min, :‘:1 wi(y;  fi(x))?, wherew; denotes weight associated with the
i measurement, andk is the total number of measurements. Although, state estimation
is widely adapted in power systems, the problem of limited measurements is common to
CPS. So, model-X contributions can improve monitoring capability for oceanic circulation
systems, climate models, aerial-vehicle monitoring, and spacecraft control systems etc.

Notation

The bold letters are used to denote vectors and vector functions; lower case letters denote
scalars and scalar functions. Subscripts are used to indicate a subset. The termifndicates

the expected value ofx. The use of curly braces represents a set of variables. Furthermore,

y = fy1;  ;yng' represents the measurement variables, ang = fx1; ;X,g' represents
the state vectors, with n being the number of nodes in the CPS. In addition,O and O rep-
resent the notations for the observable and unobservable subsystems, respectively. In the
observable subsystem the corresponding set of variables are represented a(:x‘o;yio) :(:1,
with k being the number of samples in the observable subsystem. Similarly, in the unob-
ﬁervable sétlj(g)system, the estimates of the corresponding set of variables are represented as

(x! ;y‘o) - with k®being the number of samples in the unobservable subsystem.
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Figure 2. General architecture of the auto-encoder for model-X.

3. Proposed Method - Model-X for System Monitoring in Partial
Observability

To solve forward and inverse mapping consistency, the rst innovation we provide is a two-
way mapping function using a structural deep learning framework. First, the mapping from
measurement variablesy to state vectorsx is referred to as a forward mapping. Second, the
mapping from state vectorsx to measurement variablesy is referred to as inverse mapping.
Using this, the measurement variables of the system are reproducible. However, to deal
with the uncertainty arising out of the unobservability in the system, intermediate mapping

is used. The mapping from state vectorsx to latent units is referred to as an intermediate
mapping. Hence, the sensor information is used to map from the state vectorso to learn
the latent units x5, which are unobservable. This involves embedding the network size into
the latent layers, which is discussed in detail in the Subsection 3.2. The numerical result
for the reduction in the computational burden due to sensor information is presented in the
Subsection 5.2. The latent layer consists of two components: state vectorsp, and latent
units X o, which are the estimates of unobservable components of the state vectors, which
is discussed in detail in the Subsection 3.2.

However, neither the forward nor the intermediate mapping, estimate the system pa-
rameters explicitly. So, the next innovation we provide is performing the inverse mapping
using symbolic regression to estimate the system parameters. Hence, inverse mapping from
the latent variables set xo;X o to the measurement variablesy, yields the estimation for
system parameters by using symbolic regression. A%, is unobservable throughout the
mapping, the estimate ofx 5 obtained from the intermediate mapping is considered for the
inverse mapping, for estimation of system parameters. Therefore, the measurements are
reconstructed by using the state vectors and the latent units in the latent layer. As the
proposed data mining technique does not require any system parameters, the need for an
accurate system model is eliminated as a result. The Figure 2 shows the general idea of
the latent representation for model-X in the framework of auto-encoder architecture, with
a focus on the two-way mapping directions. The Figure 2 shows the two-way mapping
with a similar setup to the regular auto-encoder. However, the key di erences between the
proposed physics-auto-encoder and the regular auto-encoder model are, rst, the state is
partially observable in the proposed method, second the proposed model has a clear physical
meaning of the latent variables, and last, part of the latent layer in the proposed approach,
is observable in the domain of the cyber-physical system.



Sundaray Weng

3.1. Forward Mapping: Preparing for Two-Way Information Flow

From the review, we know the system equation asx = f (y) + , for the mapping from
measurement variablesy to the state vectors x, where the functionf represents the under-
lying physics of the system, and represents the additive noise. We de ne forward mapping
as a projection from measurement variables to the state vectors via a structural deep neu-
ral network. Therefore, the encoder is mapping the measurement variables to the state
vectors in the latent layer. Mathematically, the set of fyo; X g variables are coupled alge-
braically. Considering this coupling, the forward mapping between these variables can be
inferred upon exploring the observable subsystem. The forward mapping from measurement
variables to the state vectors involves the optimization, as shown in Equation 1.

argmin fkf (yo) Xok3g; (1)
1

where 1 denotes the set of learned parameters of ,. The target function denoted by
f iYo! Xosatisesxo=1f (yo)and learns the forward mapping function.

3.2. Intermediate Mappings: Preserving Complete Information on Physical
States

The forward mapping can be inferred from the coupling between observable measurements in
terms of algebraic relationships. However, in the presence of partial observability, one needs
additional information to infer knowledge about the partial state of the system. Therefore,

in model-X, knowledge about the latent layer is vital to understanding the physics of the
CPS system. Dierent from the normal auto-encoder, we constrain the latent layer and
create an intermediate mapping in the model-X. The intermediate mapping will map from
limited but observable state vectors in the latent layer to the latent units in the latent layer.
And, we constrain the total number of system states, including both the state vectors and
latent units, to be equal to the physical network size. This means that we can determine
the number of latent units needed to make the model more physical. The mathematical
formulation is as shown in Equation 2.

argminkxg  f ,(x0)k3; 2)
2
where > denotes the set of learned parameters of ,. The target function denoted by

f ,iXo! Xg satises xqg = f (xo) and learns the intermediate mapping function for
obtaining state vector correlation.

3.3. Inverse Mappings: Embedding All Physical Possibilities

By using forward and intermediate mapping, the mapping function and the latent units are
obtained. However, to estimate the system parameters, inverse mapping of the state vectors
to the measurement variables is required. Hence, the inverse mapping objective function
involves the optimization as shown in Equation 3.

argminkyo f .,(Xo;Xo)K3; (3)
3






	Introduction
	Related Work
	Data-driven Methods to Learn System physics:
	State Estimation with Auto-Encoder with Full Observability:
	Reducing Computational Complexity for Learning in Physical Systems:
	Other Works:


	Preliminaries
	Proposed Method - Model-X for System Monitoring in Partial Observability
	Forward Mapping: Preparing for Two-Way Information Flow
	Intermediate Mappings: Preserving Complete Information on Physical States
	Inverse Mappings: Embedding All Physical Possibilities
	Combined Objective for the Proposed Model X

	Performance Guarantees for Quantifying Uncertainties
	Experiments
	Robust Reconstruction: Using Two-way Information Flow
	Improvement in Computational Complexity: Embedding Constrained network size into Latent Layer using Sensor Information
	Performance Guarantee for Quantifying Uncertainty of Model-X: Using Latent Layers Constrained Mapping Design

	Conclusion

