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Abstract

A foundational requirement of a deployed ML model is to generalize to data drawn from a
testing distribution that is different from training. A popular solution to this problem is to
adapt a pre-trained model to novel domains using only unlabeled data. In this paper, we
focus on a challenging variant of this problem, where access to the original source data is
restricted. While fully test-time adaptation (FTTA) and unsupervised domain adaptation
(UDA) are closely related, the advances in UDA are not readily applicable to TTA, since
most UDA methods require access to the source data. Hence, we propose a new approach,
CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data,
through a novel deep subspace alignment strategy. With a minimal overhead of storing the
subspace basis set for the source data, CATTAn enables unsupervised alignment between
source and target data during adaptation. Through extensive experimental evaluation on
multiple 2D and 3D vision benchmarks (ImageNet-C, Office-31, OfficeHome, DomainNet,
PointDA-10) and model architectures, we demonstrate significant gains in FTTA perfor-
mance. Furthermore, we make a number of crucial findings on the utility of the alignment
objective even with inherently robust models, pre-trained ViT representations and under
low sample availability in the target domain.

Keywords: Test-Time Adaptation; Robustness; Domain Shifts; Geometric Alignment

1. Introduction

When the assumption that the training and testing data are drawn from the same distri-
bution is violated, the performance of supervised models can drop drastically (Torralba
and Efros, 2011). However, in practice, a deployed model is expected to generalize under
unknown shifts in the data distribution (e.g., from synthetic to real). Consequently, un-
derstanding and improving the generalization of models under such shifts has become an
active area of research (Hoffman et al., 2018; Ganin et al., 2016; Deng et al., 2018). This
problem appears under a variety of formulations in the literature, including domain adap-
tation (Ben-David et al., 2006), domain generalization (Wang and Deng, 2018), few-shot
adaptation (Triantafillou et al., 2021), and adversarial robustness (Chen et al., 2020).
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Security, LLC.
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Figure 1: An overview of the proposed approach that incorporate subspace-based feature
alignment for fully test-time adaptation. At test time, we only assume access
to the trained source model and the subspace approximation of source latent
features.

In this paper, we focus on unsupervised, fully test-time adaptation (TTA), where a de-
ployed model is adapted using unlabeled data from the target domain, without assuming
access to the original source data. This is a practically useful setting, since enabling access
to source data during model deployment requires a large memory footprint for common
datasets (e.g., ImageNet) and can also lead to shortcomings related to privacy and data
usage rights. Existing TTA approaches can be organized based on a) whether data from
the source domain can be accessed during adaptation; b) which parameters of the source
model are updated; and c) whether data from the target domain is labeled or unlabeled.
A closely related problem is unsupervised domain adaptation (UDA), which attempts to an-
ticipate and adapt for distribution shifts between the labeled source data and unlabeled
target data. Despite significant advances in UDA over the last decade, state-of-the-art so-
lutions for TTA do not utilize explicit alignment objectives. This motivates our approach,
CATTAn (Calibrate-by-Aligning for Test Time Adaptation) wherein we show that, by lever-
aging the latent space geometry, we can relax the requirement of source data access, and
enable geometric alignment between source and target data at test-time. While our method
requires access to source data in the form of basis vectors of a subspace spanned by the
source features, it does not store the loadings (or coefficients). Consequently, this neither
affects the memory overhead (the basis set requires less than 2 MB of storage in comparison
to several GBs of training data) nor compromises the privacy needs, since state-of-the-art
deep inversion methods (Behrmann et al., 2019; Yin et al., 2020; Dong et al., 2021) cannot
effectively recover the training data using only features from later layers of a network, let
alone with only the subspace basis. Using extensive empirical studies on several standard
2D image and 3D point cloud benchmarks, for the first time, we find that including unsu-
pervised alignment in the cost function leads to significant performance gains over existing
fully test-time adaptation methods.

Contributions:
(i) We propose a new test-time adaptation approach CATTAn to bridge UDA and TTA, while
not requiring access to full source data;
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(ii) We introduce a simple, post-hoc strategy to perform a distribution shift check after the
model is already adapted to the target. Through this simple detector, we show thatwe can
recover the sourcedomain performanceevenafter the model is adapted;
(iii) We perform rigorous empirical studies on large-scale vision benchmarks (Im ageNet,
DomainNet, Of�ceHome,PointDA-10) and network architectures (ResNet50,ViT);
(iv) Our codes will be publicly releasedhttps://anonymous.4open.science/r/CATTAn .

Results:
(i) CATTAnproduces SoTA results on all benchmarks, outperforming TENT (Wang et al.,
2021), SHOT (Liang et al.), as well as the recent (Mummadi et al., 2021) { ImageNet-C
(+2 :1%), O�ce-home (+2 :2%) and O�ce-31 (+1 :7%);
(ii) To demonstrate the generality of our approach, we also conducted experiments on
PointDA-10, a widely adopted 3D point cloud benchmark and observed thatCATTAnim-
proves over existingTTAbaselines by +3:4%.
(iii) We conduct, for the �rst time, a FTTAexperiment on the large-scale DomainNet (Peng
et al., 2019) dataset, based on self-supervised representations from the recent ViT-based
masked autoencoders (He et al., 2021). We �nd thatCATTAnproduces a boost of 1:1% over
the best-performing TTAbaseline, and matches the performance of a state-of-the artUDA
approach (Roy et al., 2021);
(iv) We �nd that the proposed geometric alignment objective is bene�cial even when the
target sample size is limited or when the source model was obtained via robust train-
ing (Hendrycks et al., 2020).

2. Fully Test-Time Adaptation

Our goal is to improve the generalization of a model trained on the source datasetf (xs; ys)g 2
Ds to examples from the target domainf (x t )g 2 D t through adaptation under the following
conditions { c1: Ds 6= Dt ; c2: both source and target domain share the same set of labels;
c3: examples fromDt are not labeled; and c4: there is no access to original source data
samples during adaptation.

While this work focuses on unsupervised, fully test-time adaptation, a broad class of
formulations have been considered in the literature for adapting models under distribution
shifts. A popular formulation is conventional transfer learning, which �rst pre-trains a
source modelusing data from Ds, and uses labeled examples fromDt to perform end-to-end
�ne-tuning or partial adaptation of selected layers in the source network (Donahue et al.,
2014; Yosinski et al., 2014). In contrast, unsupervised domain adaptation (UDA) jointly
infers domain-invariant representations for both labeled source and unlabeled target domain
examples, such that they both can utilize a shared classi�er. Similarly, Sun et al. introduced
a test-time training ( TTT) protocol based on an auxiliary rotation angle prediction task,
which also uses labeled source and unlabeled target examples.

Motivated by the need for source-free adaptation protocols, Liang et al. proposed SHOT
that can e�ectively repurpose a source model, without requiring access to the original source
data. Several variants of this approach have been proposed in the literature (Yang et al.,
2021; Xia et al., 2021; Huang et al., 2021) and all of them rely on end-to-end �ne-tuning,
which can be a bottleneck in fully test-time adaptation (limited data as well as need for fast
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adaptation). Hence, recent methods such asTENT(Wang et al., 2021) and IP (Mummadi
et al., 2021) update only the batch normalization layers of the source model.

Table 1: Comparing CATTAnto existing FTTAapproaches. Conf. Max.: conditional entropy-
/NLL, CB: class balance loss, BN: batchnorm.

SFTTA Methods Losses Updates
Conf. Max. CB pseudo lab. Geom. Align. BN params. I/P Trans. Align. Layer

Tent Ë 5 5 5 Ë 5 5
Tent+ Ë Ë 5 5 Ë 5 5
SHOT Ë Ë Ë 5 Ë 5 5

IP Ë Ë 5 5 Ë Ë 5
Ours Ë Ë 5 Ë Ë 5 Ë

Methodological gaps and Proposed Work. We begin by noting that the entropy min-
imization or other diversity promoting optimization strategies widely adopted by existing
TTAmethods can be viewed as calibrating predictions from a pre-trained classi�er under
distribution shifts (Shu et al., 2018). Furthermore, due to the source-free training assump-
tion, they do not leverage any domain alignment objectives. Our work is aimed at closing
this methodological gap by incorporating explicit domain alignment strategies from UDA
into fully test-time adaptation. In particular, we employ a novel deep subspace alignment
strategy to align the target and source subspaces during adaptation. This modi�cation
incurs only a negligible memory burden when compared toTENT(storing the basis vectors
of a low-rank subspace). Table 1 shows howCATTAncompares to existingFTTAapproaches.

3. Proposed Approach

As described in Section 2, our goal is to adapt a source modelF � with parameters � to
a (unlabeled) target domain at test-time. We expressF � := G! � H  , as a composition
of a feature extractor G! with parameters ! and a classi�er H  with parameters  (i.e.,
� := ! [  ). During adaptation, the classi�er model H  is frozen and only the target
features are suitably modi�ed.

3.1. Geometric Alignment Regularization

Upon training F � on the source dataset, we extract the latent features for source data
Zs = G! (X s) where Zs 2 Rns � D and ns is the number of source samples. We then compute
a low-dimensional linear subspace with the basis Ws 2 RD � d that spans the source features
Zs using principal component analysis (PCA). Here,D denotes the ambient dimensionality
of the latent space andd is the subspace dimension. For test-time adaptation, our approach
stores this pre-computed basis set Ws in addition to the learned model parameters.

In order to introduce an alignment objective between the source and target features,
we �rst extract features for the target data X t i.e., Zt = G! (X t ) and then perform a
d� dimensional subspace approximation to obtain the corresponding basis Wt . Note, WT

s Ws =
I and WT

t W t = I , where I is the identity matrix. The classical subspace alignment (SA)
process estimates the transformation matrix � that aligns W s and Wt :

� � = arg min
�

kW t � � Wsk2
F ; (1)
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where, k:kF denotes the Frobenius norm. The solution to this objective can be obtained in
closed form (Fernando et al., 2013) as

� � = (W t )> Ws: (2)
SA then projects Zs onto the source subspace as ZsWs, and the target features Zt onto
aligned co-ordinate system (also referred to as the source-aligned target subspace) as Zt W t �.
However, na•�ve linear subspace alignment is known to be insu�cient for modern datasets
with large domain shifts. Hence,CATTAnuses deep subspace alignment (DSA) that addresses
two main challenges: First, we equipDSAwith the capability of re-utilizing the source
classi�er while performing alignment. To this end, we re-project the source-aligned target
features into the ambient space as �W t = W t � � = W t (W t )T Ws and solve

Ẑ�
t = arg min

Ẑt






 Ẑt Ws � Ẑt �W t








2

F
= arg min

Ẑt






 Ẑt Ws � Ẑt W t (W t )> Ws








2

F
; (3)

where Ẑ�
t denotes the modi�ed target features. The solution to this optimization is

Ẑ�
t = Z t W t � � W>

s : (4)

Second, since the eventual goal is not optimal feature alignment but to maximally improve
the performance of the model on target data, we include prediction calibration objectives.
In such a setting, one can no longer obtain a closed-form solution for �� . As a result,
CATTAnuses the following subspace alignment cost in its objective:

L � = kW t � � Wsk2
F ; (5)

along with objectives that promote well-calibrated predictions on re-projected source-aligned
target features Ẑt from (4). To enable end-to-end gradient-based training, we implement
subspace alignmentas a network A � (:) that parameterizes � using a fully connected layer
of d neurons without any non-linear activation function or bias i.e. (4) now becomes

Ẑ�
t = A � (Zt W t )W >

s : (6)

Note, we do not use non-linearity because if we include a non-linear activation, � and conse-
quently W t � will fail to represent linear subspace alignment. Through extensive empirical
studies in Section 4, we show that, this linear subspace alignment in deep latent spaces is
highly e�ective at improving FTTAperformance.

3.2. Prediction Calibration Objective

Calibrating the target predictions using methods such as conditional entropy minimization
has been the most common objective in test-time adaptation under distribution shifts, which
can be de�ned asH (ŷ) = �

P
c p(ŷc) log p(yc), where ŷ = F � (x) are the predictions for x

obtained using the modelF � and p(ŷc) denotes the probability for sample x to be assigned
to a speci�c class c 2 C. However, it has been found that entropy minimization can lead
to vanishing gradients for high-con�dence predictions, thus hindering the training process.
Hence, we adopt the non-saturating loss function proposed by Mummadi et al.:

L lr (p(ŷ)) = � log
�

p(ŷc� )
P

i 6= c� p(ŷi )

�
= � log

�
eŷc�

P
i 6= c� eŷi

�
= � ŷc� + log

X

i 6= c�

eŷi ;
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Algorithm 1: Proposed algorithm for fully test-time adaptation

Input : Source-modelF � ; Source subspace Ws; target data X t

Initialize : � lr ; � cb; niter ; Freezeclassi�er H  ; Collect a�ne transformation parameters
f 
 l;m ; � l;m g for each normalization layer l and channelm in G!

Adaptation :
Zt = G! X t ; // compute target features
W t  PCA(Z t ) // compute target subspace
Compute � � using (2)
Initialize the weights of A � with � �

for iter in niter do
Zt = G! (X t ); // compute features for target samples
Ẑt = A � (Zt W t )W >

s following (6) // project, align and re-project
ŷt = F � (Ẑt ) // compute predictions for aligned target data
L = � lr L lr + L � + � cbL CB using (7) // compute overall objective
Update alignment A � and parametersf 
 l;m ; � l;m g of G! w:r:t: L

end
Output: A �

� ; G�
! ; F �

�

where c� = arg max p(ŷ). Since this likelihood ratio loss increases the gradient amplitude
for high con�dence predictions, this is found to be superior to entropy.
Class Balance Loss: We also include a popular class diversity objectiveL CB to avoid
trivial solutions that are biased towards a subset of the classes, since we perform adaptation
using only unlabeled data. L CB is implemented as the binary cross-entropy between the
mean prediction from the network over a mini-batch and an uniform prior distribution.
Overall Objective: The overall objective of CATTAnis a combination of the alignment
cost L � , the prediction calibration term L lr and the class balance lossL CB :

L = � lr L lr + L � + � cbL CB ; (7)

where the penalties� lr , � cb are hyper-parameters, the choice of which are not very sensitive
as we discuss in our analysis (Sec. 7).

3.3. Algorithm

Initialization Phase: Similar to TENT(Wang et al., 2021), our method �rst collects the
a�ne transformation parameters f 
 l;m ; � l;m g for each normalization layer l and channelm
in the source model. The remaining parameters� n f 
 l;m ; � l;m g are not updated during
adaptation. As described in Section 3.1, our method computes the target features Zt and
�ts a subspace to obtain Wt . We then initialize the deep subspace alignment layerA � with
its weights initialized to � � from (2).
Adaptation and Termination: In the forward pass, the outputs of the feature extractor
G! are transformed through A � , re-projected using (6) and are passed to the classi�er.
We optimize for the parameters using the objective in (7). We repeat this process for the
pre-speci�ed number of epochs. We detail our approach in Algorithm 1.
Estimating subspace dimension: To select the optimal subspace dimensiond, a hyper-
parameter in our approach, we adopt the theoretical stability
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Figure 2: Estimating subspace dimen-
sionality using (8) for the
A! C setting from O�ce-
Home. The lower bound is
plotted in red and the dif-
ference between consecutive
eigenvalues in blue.

result from (Fernando et al., 2013) and modify it for
the FTTAsetting. For a given � > 0 and � > 0, we
select the maximum subspace dimensiond such that

�
emin

d � emin
d+1

�
�

 

1 +

r
ln 2=�

2

!  
16d3=2

�
p

nt

!

; (8)

where ed represents thedth eigenvalue andnt denot-
ing the number of samples in target domain. This
theoretical bound gives us a selection rule for pick-
ing an optimal d. Given the principal components for
both source and target datasets, and the correspond-
ing eigenvalues, we compute the deviationsed � ed+1 ,
8d, for both source and target data. Through (8), we
then obtain a stable solution d << D for a given � and � . In our experiments, we set� = 0 :1
and � = 106. For example, we plot the values of the bound and

�
emin

d � emin
d

�
w.r.t. to sub-

space dimension for theA ! C case from O�ceHome in Figure 2 and we pick the value of
d = 800.

4. Experiments

List of Experiments: In Table 2 we provide the details of di�erent experiments we
conducted, their goals and the models and datasets for a quick reference. In addition, we
provide a discussion on hyper-parameter choices and ablations of our method.

Evaluation Model Datasets Section

Utility of CATTAnfor large-scale corruptions ResNet-50 ImageNet ! ImageNet-C sec 5.1

Performance of CATTAnfor common UDA benchmarks ResNet-50 O�ceHome, O�ce-31 sec 5.2

CATTAnfor 3D point-cloud classi�cation PointNET PointDA-10 sec 5.3

E�cacy of CATTAnwith pre-trained ViT embeddings MAE with ViT as backbone DomainNet sec 6

Impact of target sample sizes Resnet-50 O�ceHome sec 7.2

Extending CATTAnto recover source performance ResNet-50 O�ceHome sec 7.3

Impact of robust training on CATTAn Robust ResNet-50 O�ceHome sec 7.4

Table 2: List of experiments.

Datasets: We evaluateCATTAnusing standardUDAdatasets along with a robustness bench-
mark, ImageNet ! ImageNet-C. (i) The Of�ceHome (Venkateswara et al., 2017) dataset
is comprised of 15,500 images from 65 classes, where the images belong to 4 di�erent do-
mains; (ii) The Of�ce -31 dataset (Saenko et al., 2010) contains 4110 images from 31 classes
and represents three di�erent domains; (iii) DomainNet (Peng et al., 2019) is a large scale
UDAbenchmark with 500K images from 6 domains with 345 classes each; (iv) ImageNet
! ImageNet-C (Hendrycks and Dietterich, 2019) is a challenging corruption robustness
benchmark that includes 15 types of synthetic corruptions with 5 severity levels; and (v)
PointDA -10 is the �rst 3D point-cloud benchmark speci�cally designed for domain adap-
tation and comprises point-clouds belonging to 10 categories across 3 domains. In total, it

7



Thopalli Turaga Thiagarajan

contains approximately 27:7K training and 5:1K test samples.
Models: As our method operates under theFTTAsetting, any arbitrary pre-trained model
can be used. We experiment with the publicly available (pre-trained)Resnet-50 (He et al.,
2016) model for evaluation on the ImageNet-C benchmark, and the modi�ed Resnet-50
architecture from (Liang et al.) for the UDAbenchmarks. Furthermore, we also exper-
iment with a vision transformer(ViT) (Dosovitskiy et al., 2021)-based encoder (trained
using masked auto-encoders (He et al., 2021)) �netuned on the ImageNet dataset. For
PointDA-10, we use thePointNET (Qi et al., 2017) backbone proposed in PointDAN (Qin
et al., 2019). As this model has only a single 1D BN layer, we extend the architecture with
4 additional 2D BN layers (i.e., after the convolutional layers).
Baselines: We consider the following state-of-the-art FTTAmethods for evaluation: (i)
TENT(Wang et al., 2021); (ii) TENT+, a variant of TENTthat includes the class-balance loss
de�ned in Section 3.2; (iii) The recent IP (Mummadi et al., 2021) approach that includes
a learnable input transformation module (convolutional layers) to correct for the shifts;
and (iv) SHOT(Liang et al.) that uses a pseudo-labeling based optimization strategy for
test-time adaptation. Note that, the model architectures and the training protocols (e.g.,
update only BN layers) were �xed to be the same for all methods.
Metrics: We use the accuracy and empirical calibration error (ECE) (Guo et al., 2017)
metrics for our evaluation.
Setup: For all UDAbenchmarks, following standard practice, we considered each of the
domains as source and adapted the source model to each of the target domains at test-time
independently. We implemented CATTAnin PyTorch and used the Adam optimizer with
learning rate 1e� 4 and set the batch size to 64. All experiments were repeated thrice with
three di�erent random seeds, and we report the average performance. Moreover, in cases
where validation sets were not speci�ed, we performed a 90� 10 random split, and used the
validation split to select hyper-parameters. For IP and CATTAn, we set� lr = 0 :025 in all our
experiments. We implementedTENTand IP and generated results for O�ce-31, O�ceHome
and DomainNet datasets, as their performance on these datasets have not been reported
in their respective papers. We adaptTENTfrom the publicly available codebase2, while
we re-implementedIP, since their code was not publicly released. Following the strategy
outlined in sec 3.3, we picked the subspace dimensionalityd for our experiments. While
TENThas been found to be useful for online adaptation (single epoch), Wang et al. found
that performing the adaptation for more epochs consitently leads to better performance.
Hence, in our experiments, we performed 5 epochs of adaptation for all methods.

5. FTTAPerformance on 2D and 3D Benchmarks

5.1. ImageNet-C Benchmark

In Table 3, we report the performance of our proposed method, along with the baselines, on
ImageNet-C at the highest severity level 5. It can be observed that the proposed method
improves overTENT, TENT+and SHOTby 6% points andIP by 2% points respectively. Among
the baselines,IP performs the best - this can be attributed to the additional trainable input
transformation module, which is typically well-suited for handling pixel-level corruptions.

2. https://github.com/DequanWang/ TENT
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Table 3: Results on all 15 corruptions ofImageNet-C benchmark at the highest severity
level-5 using standard Resnet50. Through the inclusion of an alignment objective,
CATTAnimproves signi�cantly upon existing baselines.

Method gauss SHOT impulse defocus glass motion zoom snow frost fog bright contrast elastic pixel jpeg Avg.

Source Only 4.7 5.4 4.7 15.1 8.9 13.1 22.8 15.6 20.3 22.7 55.6 4.4 14.8 23.1 33.3 17.6

TENT 16.54 18.6 16.64 16.78 17 28.72 42.66 39.72 34.8 51.78 66.16 14.32 47.4 50.84 40.56 33.50

TENT+ 16.96 19.1 17.3 17.1 17.56 29.22 42.82 40.04 35.4 51.82 65.82 15.78 47.64 50.88 40.68 33.87

SHOT 17.34 21.12 20 18.42 20.06 33.41 43.04 38.65 36.99 54.33 67.54 16.78 51.59 51.75 43.35 35.62

IP 23.94 26.88 25.06 23.2 22.62 36.28 48.7 46.58 39.44 56.08 67.58 18.6 53.1 55.58 48.76 39.49

Proposed 26.02 30.4 28.82 26.06 26.7 41.02 49.34 47.46 39.42 57.0 66.52 23.88 54.4 57 50.48 41.63

Table 4: Results on theO�ceHome Dataset obtained using Resnet50. Our approach im-
proves upon existingFTTAbaselines. Interestingly,IP and TENT+baselines perform
similarly, indicating that the input transformation module in IP is not e�ective at
undoing larger domain shifts.

Method A ! C A ! P A ! R C ! A C ! P C ! R P ! A P ! C P ! R R ! A R ! C R ! P Avg. ECE
Source Only 43.73 65.35 72.94 52.62 61.07 64.77 51.17 40.53 73.01 64.65 45.25 77.27 59.36 0.56
TENT 47.88 65.98 73.26 58.76 65.94 68.07 60.16 47.31 75.4 70.83 53.95 78.73 63.85 0.09
TENT+ 51.48 69.07 74.39 59.21 67.52 69.43 60.49 50.1 76.34 70.83 56.29 79.82 65.41 0.07
SHOT 50.61 68.69 74.71 58.34 67.63 70.07 57.73 49.14 76.38 69.47 54.89 79.88 64.795 0.06
IP 52.16 69.09 74.57 59.7 67.79 69.31 60.2 50.63 75.72 70.58 56.38 79.61 65.47 0.07
Proposed 52.81 73.89 77.07 61.93 71.12 72.94 61.89 52.35 79.05 72.11 56.68 80.27 67.68 0.08

However, by not adopting an explicit alignment objective and using only the prediction
calibration process to guide the adaptation, IP produces lower performance thanCATTAn,
which does not employ any image-space transformation.

5.2. UDABenchmarks

We demonstrate the e�cacy of our method under large distribution shifts found in typical
UDA problems by performing experiments with O�ceHome and O�ce-31 datasets. The
comparative results for these two datasets can be found in Tables 4 and 5 respectively.
Similar to the observations from the previous experiment, CATTAnconsistently performs
better than the existing FTTAbaselines. On O�ceHome, CATTAnimproves upon TENT,
IP and SHOTby 3:8; 2:2 and 2:8% points respectively, while on O�ce-31 CATTAnproduces
gains of 2:4; 1:8 and 3:04% points. Interestingly, while the input transformation module
proposed in IP is useful with pixel-level corruptions, it is not able to achieve invariance to
the large semantic shifts that occur in typical domain adaptation benchmarks. As a result,
the performance ofIP tends to be similar to that of TENT+. In contrast, the latent subspace
alignment strategy adopted by CATTAnproduces large performance gains overTENT+. As
we consider more complex datasets with large diversities between domains going forward,
we compare our method against the more general and stronger baselineTENT+.

5.3. 3D point-cloud Dataset

As discussed earlier, our latent space alignment strategy is applicable to di�erent model
architectures or data modalities. In order to demonstrate this, we experimented with a
recent 3D point-cloud classi�cation DA benchmark (PointDA-10). As shown in Table 5.3,
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Table 5: Adaptation results for O�ce31 Dataset obtained using Resnet50. We observe
that CATTAnconsistently improves upon state-of-the-artFTTAapproaches.

Method A ! C A ! P A ! R C ! A C ! P C ! R Avg. ECE
Source Only 81.12 74.47 61.34 94.34 62.62 97.39 78.54 0.6
TENT 82.13 85.16 68.83 97.48 62.94 99.8 82.72 0.11
TENT+ 82.33 85.66 69.72 97.61 65.03 99.8 83.35 0.10
SHOT 80.72 82.64 67.59 97.23 64.54 99.8 82.08 0.18
IP 82.73 85.28 69.12 97.99 65.35 100 83.41 0.07
Proposed 85.54 86.29 72.88 98.62 67.59 99.8 85.12 0.07

the adaptation performance of CATTAnis signi�cantly superior to TENTand TENT+by 3:4%
and 2:8% points respectively (averaged across 6 experiments). Especially, in cases such as
Model! Shape and Scan! Model, CATTAnimproves upon TENT+by more than 6% points
while matching its performance in challenging settings such as Model! Scan. This clearly
evidences the e�ectiveness of our approach across di�erent problem settings.

Table 6: Adaptation results on the PointDA-10 , a 3D point cloud classi�cation bench-
mark. We observe that the proposed approach provides an improvement of over
1:5%, thus evidencing its generality across model architectures and data modali-
ties.

Model! Shape Model! Scan Shape! Model Shape! Scan Scan! Model Scan! Shape Mean

Source Only 52.1 15.74 51.32 12.79 38.82 52.14 37.15

TENT 54.69 23.38 51.82 28.4 38.1 53.44 41.97

TENT+ 56.2 23.32 52.33 27.41 42.48 53.71 42.58

CATTAn 62.41 22.83 54.44 27.11 48.58 57.07 45.41

6. CATTAnwith Pre-Trained ViT Embeddings

As Transformer-based solutions such as vision transformers (ViT) (Dosovitskiy et al., 2021)
and masked auto encoders (MAE) (He et al., 2021) are becoming increasingly popular and
achieve state-of-art performance in solving vision problems, it is imperative to understand
the e�cacy of our alignment strategy on feature representations obtained from such large-
scale pre-trained transformer encoders. To this end, we consider the encoder from MAE (He
et al., 2021) �ne-tuned on ImageNet as our feature extractor3. As illustrated in Figure 3,
MAE �rst masks a large portion of the image and attempts to reconstruct the complete
image from the masked image. Once trained via this self-supervision, the encoder is then
�ne-tuned with ImageNet data. We then freeze the encoder, obtain source features (class
tokens) Zs and perform PCA to obtain the basis Ws. Note that, we do not �ne-tune the
ViT with source domain data, but instead use it as an o�-the-shelf feature extractor. A
source model, which is comprised of a single MLP layer with batch normalization and a
linear classi�er layer, is then constructed and trained using Zs. During adaptation with
unlabeled target data, we extract features Zt from the frozen encoder and obtain subspace

3. https://github.com/facebookresearch/mae/blob/main/FINETUNE.md
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