Noise Robust Core-stable Coalitions of Hedonic Games Supplementary Material

Prashant Trivedi

TRIVEDI.PRASHANT15@IITB.AC.IN
IEOR, Indian Institute of Technology Bombay

Nandyala Hemachandra

NH@IITB.AC.IN
IEOR, Indian Institute of Technology Bombay

Editors: Emtiyaz Khan and Mehmet Gönen

1. n agents 2 support partial information noise model

In a two support noise model we have $\mathcal{N}_{s p}=\{1, \alpha\}$ with $\alpha>1$, such that for any coalition $S \subseteq N, \mathbb{P}[\alpha(S)=\alpha]=p=1-\mathbb{P}[\alpha(S)=1]$. We derive the agreement probability, $f_{T}(p, \alpha)$ in the following lemma. Note that this lemma serves as the base case in the Mathematical induction based proof of the Theorem 11 in the main paper.

Lemma 1 Let $\tilde{\pi}$ be $\tilde{\epsilon}$-PAC stable partition of noisy game ($N, \tilde{\boldsymbol{v}}$), and let $\tilde{\pi}$ be a ϵ-PAC stable outcome of the noise-free game (N, \boldsymbol{v}), where ϵ is identified in Theorem 5 of the paper. Then the agreement probability $f_{T}(p, \alpha)$ is given by

$$
f_{T}(p, \alpha)= \begin{cases}1, & \text { if } \tilde{\pi}(i)=T, \forall i \in T \\ p+(1-p)^{|\mathcal{R}(T)|+1-|\mathcal{I}(\alpha, T)|}, & \text { otherwise }\end{cases}
$$

where $\mathcal{I}(\alpha, T)=\left\{\tilde{\pi}(i) \in \mathcal{R}(T) \left\lvert\, \frac{\tilde{v}_{i}(\tilde{\pi}(i))}{\tilde{v}_{i}(T)} \geq \alpha\right.\right\}$.
Proof Recall from Theorem 5 in main paper we have the following

$$
\mathbb{P}_{T \sim \tilde{\mathcal{D}}}\left[\cup_{i \in T} v_{i}(\tilde{\pi}(i)) \geq v_{i}(T)\right] \geq(1-\tilde{\epsilon}) f_{T}(\boldsymbol{p}, \boldsymbol{\alpha}) .
$$

Also, recall that the agreement event is defined as
$M(\tilde{\pi}, T):=\left\{\left(\{\alpha(\tilde{\pi}(i))\}_{\tilde{\pi}(i) \in \mathcal{R}(T)}, \alpha(T)\right): \cap_{i \in T}\left\{v_{i}(\tilde{\pi}(i)) \geq v_{i}(T) \cap \alpha(\tilde{\pi}(i)) v_{i}(\tilde{\pi}(i)) \geq \alpha(T) v_{i}(T)\right\}\right\}$,
and $f_{T}(p, \alpha)=\mathbb{P}[M(\tilde{\pi}, T)]$ is the probability of agreement event. Moreover,

$$
\mathcal{R}(T):=\{\tilde{\pi}(i) \mid i \in T\} ; \quad \mathcal{I}(\alpha, T)=\left\{\tilde{\pi}(i) \in \mathcal{R}(T) \left\lvert\, \frac{\tilde{v}_{i}(\tilde{\pi}(i))}{\tilde{v}_{i}(T)} \geq \alpha\right.\right\} .
$$

To find the agreement probability, $f_{T}(\boldsymbol{p}, \boldsymbol{\alpha})$ we consider two cases $\mathcal{I}(\alpha, T)=\emptyset$, and $\mathcal{I}(\alpha, T) \neq$ \emptyset. For these cases we identify the possible noise values $\{\alpha(\tilde{\pi}(i))\} \tilde{\pi}(i) \in \mathcal{R}(T), \alpha(T)$ that are element of $M(\tilde{\pi}, T)$.

- Case 01: $[\mathcal{I}(\alpha, T)=\emptyset]$. In this case, we have following elements in $M(\tilde{\pi}, T)$.
$-\alpha(\tilde{\pi}(i))=1, \forall \tilde{\pi}(i) \in \mathcal{R}(T)$ and $\alpha(T)=1$. The probability of such choice of α 's is

$$
\begin{equation*}
(1-p)^{|\mathcal{R}(T)|+1} \tag{1}
\end{equation*}
$$

$-\alpha(\tilde{\pi}(i))=\alpha$ for exactly one $\tilde{\pi}(i) \in \mathcal{R}(T)$, and $\alpha(\tilde{\pi}(i))=1$ for remaining coalitions in $\mathcal{R}(T)$, and $\alpha(T)=\alpha$. Probability of such choice of α 's is $(p \times(1-$ $\left.p)^{|\mathcal{R}(T)|-1}\right) \times p$. And there are $\binom{|\mathcal{R}(T)|}{1}$ ways of selecting exactly one coalition $\tilde{\pi}(i) \in \mathcal{R}(T)$. Thus, the probability of above α^{\prime} 's is $\binom{|\mathcal{R}(T)|}{1} p(1-p)^{|\mathcal{R}(T)|-1} p$.
In general, for any $k \in\{0,1, \ldots,|\mathcal{R}(T)|\}$ coalitions $\tilde{\pi}(i) \in \mathcal{R}(T)$, take $\alpha(\tilde{\pi}(i))=$ α. Moreover, $\alpha(\tilde{\pi}(i))=1$ for remaining $|\mathcal{R}(T)|-k$ coalitions and take $\alpha(T)=\alpha$. Further, we have $\binom{|\mathcal{R}(T)|}{k}$ similar choices. So, the probability of the above choice of α 's is

$$
\begin{align*}
\sum_{k=0}^{|\mathcal{R}(T)|}\left\{\binom{|\mathcal{R}(T)|}{k} p^{k}(1-p)^{|\mathcal{R}(T)|-k}\right\} \times p & =p \times\left(\sum_{k=0}^{|\mathcal{R}(T)|}\binom{|\mathcal{R}(T)|}{k} p^{k}(1-p)^{|\mathcal{R}(T)|-k}\right. \\
& =p \tag{2}
\end{align*}
$$

This is because for any coalition S, we have $\mathbb{P}[\alpha(S)=\alpha]=p=1-\mathbb{P}[\alpha(S)=1]$ and the fact that binomial probabilities summed up to 1 .

- Case 02: $[\mathcal{I}(\alpha, T) \neq \emptyset]$. Then, in addition to the above possible cases, we will have a few other cases, which are:
$-\alpha(\tilde{\pi}(i))=\alpha$ for exactly one $\tilde{\pi}(i) \in \mathcal{I}(\alpha, T), \alpha(\tilde{\pi}(i))=1$ for remaining coalitions in $\mathcal{R}(T)$ and $\alpha(T)=1$. Probability of such choice of α 's is $p(1-p)^{|\mathcal{R}(T)|-1}(1-p)=$ $p(1-p)^{|\mathcal{R}(T)|}$. And there are $\binom{|\mathcal{I}(\alpha, T)|}{1}$ ways of choosing exactly one coalition $\tilde{\pi}(i) \in \mathcal{I}(\alpha, T)$. Thus the overall probability is $\binom{|\mathcal{I}(\alpha, T)|}{1} p(1-p)^{|\mathcal{R}(T)|}$.
In general, we have $\alpha(\tilde{\pi}(i))=\alpha$ for any $k \in\{1,2, \ldots,|\mathcal{I}(\alpha, T)|\}$ coalitions $\tilde{\pi}(i) \in$ $\mathcal{I}(\alpha, T)$. Moreover, $\alpha(\tilde{\pi}(i))=1$ for remaining $|\mathcal{R}(T)|-k$ coalitions, and $\alpha(T)=1$. Probability of such choice of α 's is $p^{k}(1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha, T)|}(1-p)$. And there are $\binom{|\mathcal{I}(\alpha, T)|}{k}$ ways of selecting k coalitions $\tilde{\pi}(i) \in \mathcal{I}(\alpha, T)$. Thus the overall probability is

$$
\begin{equation*}
\sum_{k=1}^{|\mathcal{I}(\alpha, T)|}\binom{|\mathcal{I}(\alpha, T)|}{k} p^{k}(1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha, T)|}(1-p) \tag{3}
\end{equation*}
$$

The probability of event $M(\tilde{\pi}, T)$, i.e., $\mathbb{P}[M(\tilde{\pi}, T)]$ is obtained by adding probabilities given in Equations (1), (2) and (3).

$$
\begin{aligned}
\mathbb{P}[M(\tilde{\pi}, T)] & =(1-p)^{|\mathcal{R}(T)|+1}+p+\sum_{k=1}^{|\mathcal{I}(\alpha, T)|}\binom{|\mathcal{I}(\alpha, T)|}{k} p^{k}(1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha, T)|}(1-p) \\
& =(1-p)^{|\mathcal{R}(T)|+1}+p+(1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha, T)|+1}\left[1-(1-p)^{|\mathcal{I}(\alpha, T)|}\right]
\end{aligned}
$$

$$
=p+(1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha, T)|+1}
$$

This ends the proof.

If $\tilde{\pi}(i) \neq T$ for at least one $i \in T$, then $f_{T}(p, \alpha)=1, \forall \alpha$ if and only if $p=0$ or $p=1$. That is, if the value of all the coalitions are retained, or if values of all of them are inflated by α, then for all $i \in T$, and for all $\tilde{\pi}(i) \in \mathcal{R}(T)$, one has $\tilde{\pi}(i) \succeq_{i} T$, and $\tilde{\pi}(i) \succeq_{i}^{\prime} T$. Thus, $\tilde{\pi}$ is ϵ-PAC stable outcome of unknown noise-free game and hence $\tilde{\pi}$ is noise-robust.

Corollary 2 When $\tilde{\pi}=N$, i.e., the grand coalition is $\tilde{\epsilon}-P A C$ stable outcome in the noisy game, then $\mathcal{R}(T)=\{N\}$ for any coalition T. Thus, $\mathcal{I}(\alpha, T)=\emptyset$, or $\mathcal{I}(\alpha, T)=\{N\}$. Therefore, $f_{T}(p, \alpha)$ simplifies to

$$
f_{T}(p, \alpha)= \begin{cases}1, & \text { if } \mathcal{I}(\alpha, T)=\{N\} \tag{4}\\ (1-p)^{2}+p, & \text { if } \mathcal{I}(\alpha, T)=\emptyset\end{cases}
$$

2. n agents 2 support partial information noisy games without core

Suppose $\tilde{\pi}$ is not $\tilde{\epsilon}$-PAC stable partition fo the noisy game $(N, \tilde{\boldsymbol{v}})$. Moreover, let the noise support be $\mathcal{N}_{s p}=\{1, \alpha\}$, the following lemma provides the expression of $h_{T}(p, \alpha)$. Note that this lemma serves as the base case for the Mathematical induction based proof of Theorem 15 in the main paper.

Lemma 3 Suppose $\tilde{\pi}$ is not a $\tilde{\epsilon}$-PAC stable outcome of the noisy game $(N, \tilde{\boldsymbol{v}})$, then the agreement probability $h_{T}(p, \alpha)$ for noise support $\mathcal{N}_{s p} \in\{1, \alpha\}$ is given by

$$
h_{T}(p, \alpha)= \begin{cases}1, & \text { if } \tilde{\pi}(i)=T, \forall i \in T \tag{5}\\ (1-p)+p^{|\mathcal{R}(T)|+1-|\mathcal{J}(\alpha, T)|}, & \text { otherwise }\end{cases}
$$

where $\mathcal{J}(\alpha, T):=\left\{\tilde{\pi}(i) \in \mathcal{R}(T) \left\lvert\, \begin{array}{l|l}\tilde{v}_{i}(\tilde{\pi}(i)) \\ \tilde{v}_{i}(T)\end{array} \frac{1}{\alpha}\right.\right\}$.
Proof From Theorem 13 of the main paper, we have the following

$$
\mathbb{P}\left[\cup_{i \in T} v_{i}(\tilde{\pi}(i)) \geq v_{i}(T)\right] \geq(1-\tilde{\epsilon}) h_{T}(\boldsymbol{p}, \boldsymbol{\alpha})
$$

To get $h_{T}(p, \alpha):=\mathbb{P}[F(T, \tilde{\pi})]$ we consider two cases viz. $\mathcal{J}(\alpha, T)=\emptyset$, and $\mathcal{J}(\alpha, T) \neq \emptyset$. For these cases, we identify the possible noise values elements of $F(T, \tilde{\pi})$.

- Case 01: $[\mathcal{J}(\alpha, T)=\emptyset]$. In this case, we have the following possibilities:
$-\alpha(\tilde{\pi}(i))=\alpha, \forall \tilde{\pi}(i) \in \mathcal{R}(T)$, and $\alpha(T)=\alpha$. Probability of such a choice of α 's is

$$
\begin{equation*}
p^{|\mathcal{R}(T)|+1} \tag{6}
\end{equation*}
$$

$-\alpha(\tilde{\pi}(i))=1$ for $k \in\{0,1, \ldots,|\mathcal{R}(T)|\}$ coalitions $\tilde{\pi}(i) \in \mathcal{R}(T)$, and $\alpha(\tilde{\pi}(i))=\alpha$ for remaining $|\mathcal{R}(T)|-k$ coalitions. Moreover, $\alpha(T)=1$. Probability of such choice of α^{\prime} 's is $(1-p)^{k} p^{|\mathcal{R}(T)|-k}(1-p)$. Further, there are $\binom{|\mathcal{R}(T)|}{k}$ ways of selecting k coalitions $\tilde{\pi}(i)$ from $\mathcal{R}(T)$. Thus, the overall probability is

$$
\begin{equation*}
\sum_{k=0}^{|\mathcal{R}(T)|}\binom{|\mathcal{R}(T)|}{k}(1-p)^{k} p^{|\mathcal{R}(T)|-k}(1-p)=1-p \tag{7}
\end{equation*}
$$

- Case 02: $[\mathcal{J}(\alpha, T) \neq \emptyset]$. In addition to the above possible cases, we have a few other cases:
$-\alpha(\tilde{\pi}(i))=1$ for any $k \in\{1,2, \ldots,|\mathcal{J}(\alpha, T)|\}$ coalitions $\tilde{\pi}(i) \in \mathcal{J}(\alpha, T)$. Moreover, $\alpha(\tilde{\pi}(i))=\alpha$ for remaining coalitions in $\mathcal{R}(T)$. Also, $\alpha(T)=\alpha$. Probability of such choice of α 's is $(1-p)^{k} p^{|\mathcal{R}(T)|-k} p=(1-p)^{k} p^{|\mathcal{R}(T)|-k+1}$. And there are $\binom{|\mathcal{J}(\alpha, T)|}{k}$ ways of selecting k coalitions $\tilde{\pi}(i) \in \mathcal{J}(\alpha, T)$. Thus the overall probability is

$$
\begin{equation*}
\sum_{k=1}^{|\mathcal{J}(\alpha, T)|}\binom{|\mathcal{J}(\alpha, T)|}{k}(1-p)^{k} p^{|\mathcal{R}(T)|-k+1} \tag{8}
\end{equation*}
$$

The probability $\mathbb{P}[F(T, \tilde{\pi})]$ is obtained by adding probabilities given in Equations (6), (7) and (8).

$$
\begin{aligned}
\mathbb{P}[F(T, \tilde{\pi})] & =p^{|\mathcal{R}(T)|+1}+(1-p)+\sum_{k=1}^{|\mathcal{J}(\alpha, T)|}\binom{|\mathcal{J}(\alpha, T)|}{k}(1-p)^{k} p^{|\mathcal{R}(T)|-k+1} \\
& =p^{|\mathcal{R}(T)|+1}+(1-p)+p^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha, T)|+1}\left[1-p^{|\mathcal{J}(\alpha, T)|}\right] \\
& =(1-p)+p^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha, T)|+1}
\end{aligned}
$$

This ends the proof.

If $\tilde{\pi}(i) \neq T$ for at least one $i \in T$, then $h_{T}(p, \alpha)=1, \forall \alpha$ if $p=0$ or $p=1$. That is, if the value of all coalitions are retained, or if value of all of them are inflated by α, then coalition $T \succeq_{i} \tilde{\pi}(i)$, and $T \succeq_{i}^{\prime} \tilde{\pi}(i)$ for all $i \in T$. Thus, neither noise-free nor noisy game will have $\tilde{\pi}$ as PAC stable outcome. Moreover, if we allow $h_{T}(p, \alpha)=\eta$ for some user-given satisfaction η, we get a noise set in accordance to the Remark 14 in the main paper. In this case, the noise set also depends on $|\mathcal{R}(T)|$, and $|\mathcal{J}(\alpha, T)|$ for coalition T. Hence, the partition is η noise-robust non core-stable for the noise set $I^{\star}(T, \eta)$.

3. Proof of Theorem 15 of main paper

Theorem: For n agent noisy hedonic game $(N, \tilde{\boldsymbol{v}})$ with $\mathcal{N}_{s p}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$, the agreement probability $h_{T}(\mathbf{p}, \boldsymbol{\alpha})$ is given by:

$$
h_{T}(\mathbf{p}, \boldsymbol{\alpha})=\left\{\begin{array}{lr}
1, & \text { if } \tilde{\pi}(i)=T, \forall i \in T, \\
\sum_{r, s \in[l]: \alpha_{r}>\alpha_{s}} p_{r}^{|\mathcal{R}(T)|-\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|+1} \times\left\{\left(p_{s}+p_{r}\right)^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}-p_{r}^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}\right\} \\
+\sum_{a=1}^{l} p_{a}\left(\sum_{b=a}^{l} p_{b}\right)^{|\mathcal{R}(T)|}, & \text { otherwise. }
\end{array}\right.
$$

Proof We will prove this via Mathematical induction on the noise support $l \geq 2$. Clearly, this is true for $l=2$ (from Lemma 3 above). Let us assume that it is true for $l=k$, i.e.; there are sets

$$
\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)=\left\{\begin{array}{l|l}
\tilde{\pi}(i) \in \mathcal{R}(T) & \frac{\tilde{v}_{i}(\tilde{\pi}(i))}{\tilde{v}_{i}(T)} \geq \frac{\alpha_{s}}{\alpha_{r}}
\end{array}\right\}
$$

such that the support $\alpha(S)=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, \forall S \subseteq N$ where $\alpha_{s}<\alpha_{r}, \forall 1 \leq s<r \leq k$. For this k we have $f_{T}\left(p_{j}, \alpha_{j}: j \in[k]\right)=: h_{T}(\boldsymbol{p}, \boldsymbol{\alpha})$ (by assumption)
$h_{T}(\boldsymbol{p}, \boldsymbol{\alpha})=\sum_{a=1}^{k} p_{a}\left(\sum_{b=a}^{k} p_{b}\right)^{|\mathcal{R}(T)|}+\sum_{r, s \in[k]: \alpha_{r}>\alpha_{s}} p_{r}^{|\mathcal{R}(T)|-\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|+1}\left(\left(p_{r}+p_{s}\right)^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}-p_{r}^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}\right)$.
We will now show that this is true for $l=k+1$. To this end define $\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)$ for all $s \in[k]$ such that $\alpha_{k+1}>\alpha_{s}$

$$
\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)=\left\{\begin{array}{l|l}
\tilde{\pi}(i) \in \mathcal{R}(T) & \frac{\tilde{v}_{i}(\tilde{\pi}(i))}{\tilde{v}_{i}(T)} \geq \frac{\alpha_{s}}{\alpha_{k+1}}
\end{array}\right\} .
$$

Now, there are two cases, $\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)=\emptyset, \forall \alpha_{s}, s \in[k]$, or $\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right) \neq \emptyset$ for at least for one $s \in[k]$.

Case 01: $\left[\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)=\emptyset, \forall \alpha_{s}, s \in[k]\right]$. Apart from the existing $\left\{\alpha(\tilde{\pi}(i)\}_{\tilde{\pi}(i) \in \mathcal{R}(T)}\right.$ and $\alpha(T)$ for k support case, with this extra $k+1$, it will also have $\alpha(T)=\alpha_{k+1}$ and $\alpha(\tilde{\pi}(i))=\alpha_{k+1}, \forall \tilde{\pi}(i) \in \mathcal{R}(T)$. The probability of such extra α^{\prime} 's is $p_{k+1}\left(\sum_{b=k+1}^{k+1} p_{b}\right)^{|\mathcal{R}(T)|}$. Therefore, the overall probability is

$$
\sum_{a=1}^{k} p_{a}\left(\sum_{b=a}^{k} p_{b}\right)^{|\mathcal{R}(T)|}+p_{k+1}\left(\sum_{b=k+1}^{k+1} p_{b}\right)^{|\mathcal{R}(T)|}=\sum_{a=1}^{k+1} p_{a}\left(\sum_{b=a}^{k+1} p_{b}\right)^{|\mathcal{R}(T)|}
$$

Case 02: $\left[\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right) \neq \emptyset\right.$ for at least one $\left.s \in[k]\right]$. In this case, apart from all $\alpha(T)$ and $\{\alpha(\tilde{\pi}(i))\}_{\tilde{\pi}(i) \in \mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)}$, we have $\{\alpha(\tilde{\pi}(i))\}_{\forall \tilde{\pi}(i) \in \mathcal{J}\left(\alpha_{k+1}, \alpha_{r}, T\right)}, \alpha(T)$. For this set, the possible pairs are such that $\alpha(\tilde{\pi}(i))=\alpha_{r}, \forall \tilde{\pi}(i) \in \mathcal{R}(T) \backslash \mathcal{J}\left(\alpha_{k+1}, \alpha_{r}, T\right)$, and $\alpha(T)=$ α_{k+1}. Thus, their combined probability is $p_{k+1}^{|\mathcal{R}(T)|-\left|\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)\right|+1}\left(\left(p_{k+1}-p_{s}\right)^{\left|\mathcal{J}\left(\alpha_{k+1}, \alpha_{r}, T\right)\right|}-\right.$ $\left.p_{k+1}^{\left|\mathcal{J}\left(\alpha_{k+1}, \alpha_{r}, T\right)\right|}\right)$. Hence for $k+1$ support, the probability is

$$
\sum_{r, s \in[k]: \alpha_{r}>\alpha_{s}} p_{r}^{|\mathcal{R}(T)|-\left|\mathcal{J}\left(\alpha_{r}, \alpha_{r}, T\right)\right|+1}\left(\left(p_{r}+p_{s}\right)^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}-p_{r}^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}\right)
$$

Trivedi Hemachandra

$$
+p_{k+1}^{|\mathcal{R}(T)|-\left|\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)\right|+1}\left(\left(p_{k+1}+p_{s}\right)^{\left|\mathcal{I}\left(\alpha_{k+1}, \alpha_{s}, T\right)\right|}-p_{k+1}^{\left|\mathcal{J}\left(\alpha_{k+1}, \alpha_{s}, T\right)\right|}\right)
$$

From case 01 and case 02 with $k+1$ support, we have

$$
\begin{aligned}
h_{T}\left(p_{j}, \alpha_{j} ; j \in[k+1]\right)= & \sum_{r, s \in[k+1]: \alpha_{r}>\alpha_{s}} p_{r}^{|\mathcal{R}(T)|-\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|+1}\left(\left(p_{r}+p_{s}\right)^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}-p_{r}^{\left|\mathcal{J}\left(\alpha_{r}, \alpha_{s}, T\right)\right|}\right) \\
& \quad+\sum_{a=1}^{k+1} p_{a}\left(\sum_{b=a}^{k+1} p_{b}\right)^{|\mathcal{R}(T)|} .
\end{aligned}
$$

Furthermore, it is true for $k+1$ support. Thus, from the principle of Mathematical induction, this is true for any $l \geq 2$.

4. 2 agent 2 support model

In this Section, we will provide further details about the 2 agents' full information noisy game with 2 support of the noise distribution. First, we consider the following noisy game.

$$
\tilde{v}_{1}(12)>\tilde{v}_{1}(1) ; \quad \tilde{v}_{2}(12)>\tilde{v}_{2}(2)
$$

(game 1)
We also consider the other possible noisy games with 2 agents in later subsections.

4.1. Proof of Lemma 18 of main paper

Lemma: For noisy game 1 with complete information on $\tilde{\boldsymbol{v}}$ and $\mathcal{N}_{s p}=\{1, \alpha\}$ we have

$$
\mathbb{P}[\pi=\tilde{\pi} \mid \text { game } 1]= \begin{cases}1-p\left(1-p^{2}\right), & \text { if } \alpha \geq \bar{r} \tag{9}\\ 1-p(1-p), & \text { if } \underline{r} \leq \alpha<\bar{r} \\ 1, & \text { if } \alpha<\underline{r},\end{cases}
$$

where $\bar{r}=\max \left\{\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}, \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\right\}$, and $\underline{r}=\min \left\{\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}, \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\right\}$.
Also, this prediction probability $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 1$]$ is convex in p. So, while the minimal value for $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 1] occurs for noise probabilities around $p=0.5$ (depending on α, \bar{r} and \underline{r}), the maximal value of it is 1 at $p=0$ and $p=1$.
Proof For noisy game 1 , we have $\tilde{\pi}=N$. Now, consider the noise support $\mathcal{N}_{s p}=\{1, \alpha\}$, where $\alpha>1$ such that $\mathbb{P}[\alpha(S)=\alpha]=p=1-\mathbb{P}[\alpha(S)=1]$, for some fixed and unknown p. Given noisy game 1 , there are 8 possible combinations of α 's (because each coalition has two options). We will now enumerate all such possibilities:

1. $\alpha(1)=1 ; \alpha(2)=1 ; \alpha(12)=1$. The probability of such alpha is $(1-p)^{3}$. Thus, the noise-free values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. Therefore, The noise-free game is:

$$
v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)
$$

From this game we have $\pi=\tilde{\pi}=N$.
2. $\alpha(1)=1 ; \alpha(2)=1 ; \alpha(12)=\alpha$ Probability of such alpha's is $p(1-p)^{2}$. Thus the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha}$. Therefore, the actual preferences will depend on the relative values of α and $\tilde{\boldsymbol{v}}$. If α and $\tilde{\boldsymbol{v}}$'s are such that $\frac{\tilde{v}_{1}(12)}{\alpha}>\tilde{v}_{1}(1)$ and $\frac{\tilde{v}_{2}(12)}{\alpha}>\tilde{v}_{2}(2)$, then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
3. $\alpha(1)=1 ; \alpha(2)=\alpha ; \alpha(12)=1$. The probability of such alpha is $p(1-p)^{2}$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha}, v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=\tilde{v}_{2}(12)$. Since, $\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha}$. The noise-free game is:

$$
v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)
$$

So, we have $\pi=\tilde{\pi}=N$.
4. $\alpha(1)=\alpha ; \alpha(2)=1 ; \alpha(12)=1$. Probability of such alpha's is $p(1-p)^{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha} ; \quad v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=\tilde{v}_{2}(12)$. Since, $\tilde{v}_{1}(12)>\tilde{v}_{1}(1)>\frac{\tilde{v}_{1}(1)}{\alpha}$. Therefore The noise-free game is:

$$
v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)
$$

From this game we have $\pi=\tilde{\pi}=N$.
5. $\alpha(1)=1 ; \alpha(2)=\alpha ; \alpha(12)=\alpha$. The probability of this alpha is $p^{2}(1-p)$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha}, v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha}$. The actual preferences will depend on the relative values of α and $\tilde{\boldsymbol{v}}$. If α and $\tilde{\boldsymbol{v}}$'s are such that $\frac{\tilde{v}_{1}(12)}{\alpha}>\tilde{v}_{1}(1)$, then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
6. $\alpha(1)=\alpha ; \alpha(2)=1 ; \alpha(12)=\alpha$. The probability of such alpha is $p^{2}(1-p)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha}, \quad v_{2}(2)=\tilde{v}_{2}(2) ; \quad v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha}$. The actual preferences will depend on the relative values of α and $\tilde{\boldsymbol{v}}$. If α and $\tilde{\boldsymbol{v}}$'s are such that $\frac{\tilde{v}_{2}(12)}{\alpha}>\tilde{v}_{2}(2)$, then $\pi=N$ otherwise $\pi=\{\{1\},\{2\}\}$.
7. $\alpha(1)=\alpha ; \alpha(2)=\alpha ; \alpha(12)=1$. Probability of such alpha's is $p^{2}(1-p)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha} ; v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=\tilde{v}_{2}(12)$. Since, $\tilde{v}_{1}(12)>\tilde{v}_{1}(1)>\frac{\tilde{v}_{1}(1)}{\alpha}$. and, $\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha}$. The noise-free game is:

$$
v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)
$$

From this game we have $\pi=\tilde{\pi}=N$.
8. $\alpha(1)=\alpha ; \alpha(2)=\alpha ; \alpha(12)=\alpha$. The probability of such alpha is p^{3}. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha} ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha}$. Therefore, the noise-free game is:

$$
v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)
$$

From this game it is clear that $\pi=\tilde{\pi}=N$.

Trivedi Hemachandra

Recall, $\bar{r}=\max \left\{\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}, \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\right\}$, and $\underline{r}=\min \left\{\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}, \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\right\}$. Out of 8 cases there are 5 cases (case $1,3,4,7,8$) in which the grand coalition $\pi=\tilde{\pi}=N$ is formed in noise-free game. In these conditions, the relative value of $\tilde{v}_{1}(\cdot), \tilde{v}_{2}(\cdot)$ should satisfy $\alpha \geq \bar{r}$, and this constitute the first expression $p^{3}+p^{2}(1-p)+2 p(1-p)^{2}+(1-p)^{3}$ of $\mathbb{P}[\pi=\tilde{\pi} \mid g a m e 1]$. Apart from this, if the inflation interval is $\underline{r} \leq \alpha<\bar{r}$, then $\pi=\tilde{\pi}=N$ is also possible from case (6) with probability $p^{2}(1-p)$. Thus, $p^{2}(1-p)$ will be added to the above prediction probability. So, we have $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 1] corresponding to it. Moreover, finally, if $\alpha<\underline{r}$, all cases are allowable, and hence the grand coalition will always form in the noise-free game. Thus,

$$
\mathbb{P}\left[\pi=\tilde{\pi} \mid \text { game 1] }= \begin{cases}p^{3}+p^{2}(1-p)+2 p(1-p)^{2}+(1-p)^{3}, & \text { if } \alpha \geq \bar{r} \tag{10}\\ p^{3}+2 p^{2}(1-p)+2 p(1-p)^{2}+(1-p)^{3}, & \text { if } \underline{r} \leq \alpha<\bar{r} \\ 1, & \text { if } \alpha<\underline{r}\end{cases}\right.
$$

Simplifying these polynomials, we have

$$
\mathbb{P}[\pi=\tilde{\pi} \mid \text { game } 1]= \begin{cases}1-p\left(1-p^{2}\right), & \text { if } \alpha \geq \bar{r} \tag{11}\\ 1-p(1-p), & \text { if } \underline{r} \leq \alpha<\bar{r} \\ 1, & \text { if } \alpha<\underline{r}\end{cases}
$$

This ends the proof.
If we allow some user given satisfaction ζ on the prediction probability, i.e., $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 1$]=$ ζ, we get the following noise interval

$$
I^{\star}(\zeta=0.9)= \begin{cases}{[0,0.101] \cup[0.946,1],} & \text { if } \alpha \geq \bar{r} \tag{12}\\ {[0,0.113] \cup[0.887,1],} & \text { if } \underline{r} \leq \alpha<\bar{r} \\ 1, & \text { if } \alpha<\underline{r}\end{cases}
$$

4.2. Details of the other 2 agent noisy games

Here we will give the prediction probabilities for other possible noisy games with 2 agents and 2 noise support.

4.2.1. Both agents prefer staying alone in noisy game

As opposed to the noisy game 1 , in noisy game 2 both agents prefer to stay alone. The noisy preferences of agents are as follows:

$$
\begin{equation*}
\tilde{v}_{1}(1)>\tilde{v}_{1}(12) ; \quad \tilde{v}_{2}(2)>\tilde{v}_{2}(12) \tag{game2}
\end{equation*}
$$

Clearly $\tilde{\pi}=\{\{1\},\{2\}\} \neq N$ is the core-stable outcome. The following lemma provides prediction probability, $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 2$]$ for noisy game 2 .

Lemma 4 For noisy game 2 with full information of $\tilde{\boldsymbol{v}}$'s, the prediction probability that unknown noise-free game has $\pi=\tilde{\pi}$ as a core-stable outcome is

$$
\mathbb{P}\left[\pi=\tilde{\pi} \mid \text { game 2] }= \begin{cases}1-p^{2}(1-p), & \text { if } \frac{1}{\alpha}<\underline{r} \tag{13}\\ 1, & \text { if } \frac{1}{\alpha} \geq \underline{r}\end{cases}\right.
$$

Moreover, the minimal and maximal values of above prediction probability are 0.85 (when $p=2 / 3)$, and 1 , respectively.

Similar to game 1, the probability of formation of partition $\pi=\{\{1\},\{2\}\}$ in an unknown noise-free game is always more than 0.85 . So, the safety value is 0.85 . The prediction probability is 1 when $\frac{1}{\alpha} \geq \underline{r}$ for any noise probability p. Moreover, for some user-given satisfaction ζ, we obtain the corresponding p by setting $\mathbb{P}[\pi=\{\{1\},\{2\}\} \mid$ game 2$]=\zeta$. In particular, we have

$$
I^{\star}(\zeta=0.9)= \begin{cases}{[0,0.413] \cup[0.867,1],} & \text { if } \frac{1}{\alpha}<\underline{r} \tag{14}\\ {[0,1],} & \frac{1}{\alpha} \geq \underline{r} .\end{cases}
$$

It is easy to see that the allowable p is larger than the interval given in Equation (12) for game 1. So, the partition $\tilde{\pi}=\{\{1\},\{2\}\}$ is noise robust for larger number of inflation probabilities p. Again the noise set will shrink if we increase the satisfaction ζ.

Figure 1: The prediction probability $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 2]. For $\zeta=0.9$, the noise regimes are given in Equation (14).

4.2.2. Agent 1 prefers to stay alone and agent 2 prefers grand coalition in Noisy Game

Now, we consider a noisy game where agent 1 prefers to stay alone, whereas agent 2 prefers the grand coalition. In particular, the preferences in the noisy game are

$$
\begin{equation*}
\tilde{v}_{1}(1)>\tilde{v}_{1}(12) ; \quad \tilde{v}_{2}(12)>\tilde{v}_{2}(2) . \tag{game3}
\end{equation*}
$$

Again $\tilde{\pi}=\{\{1\},\{2\}\} \neq N$ is noisy core-stable outcome. The prediction probability, $\mathbb{P}[\pi=$ $\tilde{\pi} \mid$ game 3] is given in the Lemma below.
Lemma 5 For noisy game 3 with full information of $\tilde{\boldsymbol{v}}$'s, the prediction probability that unknown noise-free game has $\pi=\tilde{\pi}$ as a core-stable outcome is given by:

$$
\mathbb{P}[\pi=\tilde{\pi} \mid \text { game } 3]= \begin{cases}1-p(1-p), & \text { if } \frac{1}{\alpha}<\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)} \tag{15}\\ 1, & \text { if } \frac{1}{\alpha} \geq \frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)} .\end{cases}
$$

Trivedi Hemachandra

Moreover, the minimal and maximal values of above prediction probability are 0.75 (when $p=0.5$), and 1 , respectively.

Similar to game 1 and game 2 the probability of formation of partition $\pi=\{\{1\},\{2\}\}$ in an unknown noise-free game is always more than 0.75 that is the safety value for game 3. The prediction probability is 1 when $\frac{1}{\alpha} \geq \frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}$ for any noise probability p. Moreover, for some user-given satisfaction, ζ we obtain the corresponding p by setting $\mathbb{P}[\pi=\{\{1\},\{2\}\} \mid$ game 3$]=\zeta$. In particular,

$$
I^{\star}(\zeta=0.9)= \begin{cases}{[0,0.113] \cup[0.887,1],} & \text { if } \frac{1}{\alpha}<\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)} \tag{16}\\ {[0,1],} & \text { if } \frac{1}{\alpha} \geq \frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}\end{cases}
$$

The following figure shows the prediction probabilities for game 3 .

Figure 2: The prediction probability $\mathbb{P}[\tilde{\pi}=\pi \mid$ game 3$]$. For $\zeta=0.9$, we obtain the noise regimes as given in Equation (16).

4.2.3. Agent 1 prefers grand coalition and agent 2 prefers to stay alone

Finally, consider a noisy game symmetric to game 3. Here agent 1 prefers a grand coalition, and agent 2 prefers to stay alone. In particular, we have the following preferences.

$$
\begin{equation*}
\tilde{v}_{1}(12)>\tilde{v}_{1}(1) ; \quad \tilde{v}_{2}(2)>\tilde{v}_{2}(12) \tag{game4}
\end{equation*}
$$

Again $\tilde{\pi}=\{\{1\},\{2\}\} \neq N$ is a noisy core-stable outcome. In the following lemma, we find the prediction probability when noisy game 4 is considered.

Lemma 6 For noisy game 4 with full information of $\tilde{\boldsymbol{v}}$'s, the prediction probability that noise-free game has $\pi=\tilde{\pi}$ as as core-stable outcome is given by:

$$
\mathbb{P}\left[\pi=\tilde{\pi} \mid \text { game 4] }= \begin{cases}1-p(1-p), & \text { if } \frac{1}{\alpha}<\frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)} \tag{17}\\ 1, & \text { if } \frac{1}{\alpha} \geq \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\end{cases}\right.
$$

So, the minimal and maximal values of above prediction probability are 0.75 (when $p=0.5$) and 1 respectively.

In this case also, the noise regime can be obtained using $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 4$]=\zeta$. In particular,

$$
I^{\star}(\zeta=0.9)= \begin{cases}{[0,0.113] \cup[0.887,1],} & \text { if } \frac{1}{\alpha}<\frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)} \tag{18}\\ {[0,1],} & \text { if } \frac{1}{\alpha} \geq \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\end{cases}
$$

Figure 3 shows the prediction probabilities for game 4 .

Figure 3: The prediction probability $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 4$]$. For $\zeta=0.9$, we obtain the noise regimes as given in Equation (18).

5. 2 agents 3 support noise model

In this section, we consider two player noisy hedonic game with three support noise model, i.e., $\mathcal{N}_{s p}=\left\{1, \alpha_{1}, \alpha_{2}\right\}$, with $\alpha_{1}>1$, and $\alpha_{2}<1$. Note that $\alpha_{1}, \alpha_{2}>0$. Let $\mathbb{P}[\alpha(S)=$ $\left.\alpha_{1}\right]=p_{1} ; \mathbb{P}\left[\alpha(S)=\alpha_{2}\right]=p_{2} ;$ and $\mathbb{P}[\alpha(S)=1]=1-p_{1}-p_{2}$. That is the value of each coalition is either inflated with probability p_{1}, or deflated with probability p_{2} or retained with probability $1-p_{1}-p_{2}$. The following lemma provides the prediction probability for game 1.

5.1. Proof of Lemma 20 of main paper

Lemma: For the 3 support noise model the prediction probability $\mathbb{P}[\pi=\tilde{\pi} \mid$ game 1$]$ is

$$
\mathbb{P}\left[\pi=\tilde{\pi} \mid \text { game 1] }= \begin{cases}g\left(p_{1}, p_{2}\right), & \text { if } \alpha_{1} \geq \bar{r} ; \frac{1}{\alpha_{2}} \geq \bar{r} ; \frac{\alpha_{1}}{\alpha_{2}} \geq \bar{r} \tag{19}\\ 1, & \text { if } \alpha_{1}<\underline{r} ; \frac{1}{\alpha_{2}}<\underline{r} ; \frac{\alpha_{1}}{\alpha_{2}}<\underline{r}\end{cases}\right.
$$

where $g\left(p_{1}, p_{2}\right)=p_{1}^{3}+p_{2}^{3}+2\left(p_{1}\left(1-p_{1}-p_{2}\right)^{2}+p_{2}^{2}\left(1-p_{1}-p_{2}\right)+p_{1} p_{2}\left(1-p_{1}-p_{2}\right)+p_{1} p_{2}^{2}\right)+$ $p_{1}^{2} p_{2}+p_{1}^{2}\left(1-p_{1}-p_{2}\right)+p_{2}\left(1-p_{1}-p_{2}\right)^{2}+\left(1-p_{1}-p_{2}\right)^{3}$.
Proof For game 1, with $l=3$ support of noise there are 27 possible cases for α 's. Since there are 3 coalitions, each coalition's value can either be retained, inflated by α_{1}, or deflated by α_{2}. We will now enumerate all of them:

1. $\alpha(1)=1 ; \alpha(2)=1 ; \alpha(12)=1$ Probability of such alpha's is $\left(1-p_{1}-p_{2}\right)^{3}$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=\tilde{v}_{2}(12)$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
2. $\alpha(1)=1 ; \alpha(2)=1 ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1}\left(1-p_{1}-p_{2}\right)^{2}$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game preferences are unclear; they will depend on the relative values of α_{1} and \tilde{v}. If α_{1} and \tilde{v}^{\prime} 's are such that $\frac{\tilde{v}_{1}(12)}{\alpha_{1}}>\tilde{v}_{1}(1)$ and $\frac{\tilde{v}_{2}(12)}{\alpha_{1}}>\tilde{v}_{2}(2)$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
3. $\alpha(1)=1 ; \alpha(2)=\alpha_{1} ; \alpha(12)=1$. Probability of such alpha's is $p_{1}\left(1-p_{1}-p_{2}\right)^{2}$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}}, v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=\tilde{v}_{2}(12)$. Since $\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
4. $\alpha(1)=\alpha_{1} ; \alpha(2)=1 ; \alpha(12)=1$. Probability of such alpha's is $p_{1}\left(1-p_{1}-p_{2}\right)^{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}} ; \quad v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. Since, $\tilde{v}_{1}(12)>\tilde{v}_{1}(1)>\frac{\tilde{v}_{1}(1)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1)$; $v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
5. $\alpha(1)=1 ; \alpha(2)=\alpha_{1} ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1}^{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}}, v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game preferences are unclear; they will depend on the relative values of α_{1} and \tilde{v}. If α_{1} and \tilde{v}^{\prime} s are such that $\frac{\tilde{v}_{1}(12)}{\alpha_{1}}>\tilde{v}_{1}(1)$, then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
6. $\alpha(1)=\alpha_{1} ; \alpha(2)=1 ; ~ \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1}^{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\tilde{v}_{2}(2) ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game preferences are unclear; they will depend on the relative values of α_{1} and \tilde{v}. If α_{1} and \tilde{v}^{\prime} s are such that $\frac{\tilde{v}_{2}(12)}{\alpha_{1}}>\tilde{v}_{2}(2)$, then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
7. $\alpha(1)=\alpha_{1} ; \alpha(2)=\alpha_{1} ; \alpha(12)=1$. Probability of such alpha's is $p_{1}^{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; \quad v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. Since, $\tilde{v}_{1}(12)>\tilde{v}_{1}(1)>\frac{\tilde{v}_{1}(1)}{\alpha_{1}}$. and, $\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
8. $\alpha(1)=\alpha_{1} ; \alpha(2)=\alpha_{1} ; \alpha(12)=\alpha_{1}$. The probability of such alpha is p_{1}^{3}. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; \quad v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
9. $\alpha(1)=1 ; \alpha(2)=1 ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{2}\left(1-p_{1}-p_{2}\right)^{2}$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since $\alpha_{2}<1$, thus $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\tilde{v}_{1}(12)>\tilde{v}_{1}(1)=v_{1}(1)$. Similarly, $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\tilde{v}_{2}(12)>$ $\tilde{v}_{2}(2)=v_{2}(2)$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
10. $\alpha(1)=1 ; \alpha(2)=\alpha_{2} ; \alpha(12)=1$. Probability of these alpha's is $p_{2}\left(1-p_{1}-p_{2}\right)^{2}$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}}, v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=\tilde{v}_{2}(12)$. The noise-free game preferences are unclear; they will depend on the relative values of α_{2} and \tilde{v}. If α_{2} and \tilde{v} 's are such that $\tilde{v}_{2}(12)>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
11. $\alpha(1)=\alpha_{2} ; \alpha(2)=1 ; \alpha(12)=1$. Probability of such alpha's is $p_{2}\left(1-p_{1}-p_{2}\right)^{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}} ; \quad v_{2}(2)=\tilde{v}_{2}(2), v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. The noise-free game preferences are unclear; they will depend on the relative values of α_{2} and \tilde{v}. If α_{2} and \tilde{v} 's are such that $\tilde{v}_{1}(12)>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
12. $\alpha(1)=1 ; \alpha(2)=\alpha_{2} ; \alpha(12)=\alpha_{2}$. probability of such alpha's is $p_{2}^{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1) ; v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}}, v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$ Since $\alpha_{2}<1$, thus $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\tilde{v}_{1}(12)>\tilde{v}_{1}(1)=v_{1}(1)$, and $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
13. $\alpha(1)=\alpha_{2} ; \alpha(2)=1 ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{2}^{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, \quad v_{2}(2)=\tilde{v}_{2}(2) ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since $\alpha_{2}<1$ thus $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\tilde{v}_{2}(12)>\tilde{v}_{2}(2)=v_{2}(2)$, and $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
14. $\alpha(1)=\alpha_{2} ; \alpha(2)=\alpha_{2} ; \alpha(12)=1$. Probability of such alpha's is $p_{2}^{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; \quad v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. The noise-free game preferences are unclear; they will depend on the relative values of α_{2} and \tilde{v}. If α_{2} and \tilde{v}^{\prime} s are such that $\tilde{v}_{1}(12)>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$ and $\tilde{v}_{1}(12)>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
15. $\alpha(1)=1 ; \alpha(2)=\alpha_{1} ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{1} p_{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\tilde{v}_{1}(1), \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\tilde{v}_{1}(12)>\tilde{v}_{1}(1)$ and $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
16. $\alpha(1)=1 ; \alpha(2)=\alpha_{2} ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1} p_{2}\left(1-p_{1}-p_{2}\right)$. Thus, actual values are $v_{1}(1)=\tilde{v}_{1}(1), \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; \quad v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game preferences are unclear; it will depend on the relative values α_{1}, α_{2} and \tilde{v}. If α_{1}, α_{2} and \tilde{v}^{\prime} s are such that $\frac{\tilde{v}_{1}(12)}{\alpha_{1}}>\tilde{v}_{1}(1)$ and $\frac{\tilde{v}_{2}(12)}{\alpha_{1}}>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
17. $\alpha(1)=\alpha_{1} ; \alpha(2)=1 ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{1} p_{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\tilde{v}_{2}(2) ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\tilde{v}_{1}(12)>\tilde{v}_{1}(1)$ and $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\tilde{v}_{2}(12)>\tilde{v}_{2}(2)$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
18. $\alpha(1)=\alpha_{2} ; \alpha(2)=1 ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1} p_{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, v_{2}(2)=\tilde{v}_{2}(2) ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$.

Trivedi Hemachandra

The noise-free game preferences are unclear; it will depend on the relative values of α_{1}, α_{2}, and \tilde{v}. If α_{1}, α_{2} and \tilde{v} 's are such that $\frac{\tilde{v}_{1}(12)}{\alpha_{1}}>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$ and $\frac{\tilde{v}_{2}(12)}{\alpha_{1}}>\tilde{v}_{2}(2)$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$.
19. $\alpha(1)=\alpha_{1} ; \alpha(2)=\alpha_{2} ; \alpha(12)=1$. Probability of such alpha's is $p_{1} p_{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. The noise-free game preferences are unclear; it will depend on the relative values of α_{1}, α_{2}, and \tilde{v}. If α_{1}, α_{2} and \tilde{v} 's are such that $\tilde{v}_{2}(12)>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$ then $\pi=N$ otherwise $\pi=\{\{1\},\{2\}\}$.
20. $\alpha(1)=\alpha_{2} ; \alpha(2)=\alpha_{1} ; \alpha(12)=1$. Probability of such alpha's is $p_{1} p_{2}\left(1-p_{1}-p_{2}\right)$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; v_{1}(12)=\tilde{v}_{1}(12)$ and $v_{2}(12)=$ $\tilde{v}_{2}(12)$. The noise-free game preferences are unclear; it will depend on the relative values of α_{1}, α_{2}, and \tilde{v}. If α_{1}, α_{2} and \tilde{v} 's are such that $\tilde{v}_{1}(12)>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$ then $\pi=N$, otherwise $\pi=\{\{1\},\{2\}\}$
21. $\alpha(1)=\alpha_{1} ; \alpha(2)=\alpha_{1} ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{1}^{2} p_{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since, $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\tilde{v}_{1}(12)>\tilde{v}_{1}(1)>\frac{\tilde{v}_{1}(1)}{\alpha_{1}}$, and $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
22. $\alpha(1)=\alpha_{1} ; \alpha(2)=\alpha_{2} ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1}^{2} p_{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game preferences are unclear; it will depend on the relative values of α_{1}, α_{2}, and \tilde{v}. If α_{1}, α_{2} and \tilde{v} 's are such that $\frac{\tilde{v}_{2}(12)}{\alpha_{1}}>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$ then $\pi=N$ otherwise $\pi=\{\{1\},\{2\}\}$.
23. $\alpha(1)=\alpha_{1} ; \alpha(2)=\alpha_{2} ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{1} p_{2}^{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{1}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; \quad v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since, $\frac{\tilde{v}_{1}(12)}{\alpha_{2}}>\tilde{v}_{1}(12)>\tilde{v}_{1}(1)>\frac{\tilde{v}_{1}(1)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1)$; $v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
24. $\alpha(1)=\alpha_{2} ; \alpha(2)=\alpha_{1} ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1}^{2} p_{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; \quad v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$ Clearly, the preferences in the noise-free game are not clear; it will depend on the relative values of α_{1}, α_{2} and \tilde{v}. If α_{1}, α_{2} and \tilde{v} 's are such that $\frac{\tilde{v}_{1}(12)}{\alpha_{1}}>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$ then $\pi=N$ otherwise $\pi=\{\{1\},\{2\}\}$.
25. $\alpha(1)=\alpha_{2} ; \alpha(2)=\alpha_{1} ; \alpha(12)=\alpha_{2}$. Probability of such alpha's is $p_{1} p_{2}^{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{1}} ; \quad v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. Since, $\frac{\tilde{v}_{2}(12)}{\alpha_{2}}>\tilde{v}_{2}(12)>\tilde{v}_{2}(2)>\frac{\tilde{v}_{2}(2)}{\alpha_{1}}$. The noise-free game is: $v_{1}(12)>v_{1}(1)$; $v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
26. $\alpha(1)=\alpha_{2} ; \alpha(2)=\alpha_{2} ; \alpha(12)=\alpha_{1}$. Probability of such alpha's is $p_{1} p_{2}^{2}$. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{1}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{1}}$. The noise-free game preferences are unclear; it will depend on the relative values α_{1},
α_{2} and \tilde{v}. If α_{1}, α_{2} and \tilde{v} 's are such that $\frac{\tilde{v}_{1}(12)}{\alpha_{1}}>\frac{\tilde{v}_{1}(1)}{\alpha_{2}}$ and $\frac{\tilde{v}_{2}(12)}{\alpha_{1}}>\frac{\tilde{v}_{2}(2)}{\alpha_{2}}$ then $\pi=N$ otherwise $\pi=\{\{1\},\{2\}\}$.
27. $\alpha(1)=\alpha_{2} ; \alpha(2)=\alpha_{2} ; \alpha(12)=\alpha_{2}$. The probability of such alpha is p_{2}^{3}. Thus, the actual values are $v_{1}(1)=\frac{\tilde{v}_{1}(1)}{\alpha_{2}}, \quad v_{2}(2)=\frac{\tilde{v}_{2}(2)}{\alpha_{2}} ; v_{1}(12)=\frac{\tilde{v}_{1}(12)}{\alpha_{2}}$ and $v_{2}(12)=\frac{\tilde{v}_{2}(12)}{\alpha_{2}}$. The noise-free game is: $v_{1}(12)>v_{1}(1) ; \quad v_{2}(12)>v_{2}(2)$. So, $\pi=\tilde{\pi}$ in this case.
Since $\bar{r}=\max \left\{\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}, \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\right\}$, and $\underline{r}=\min \left\{\frac{\tilde{v}_{1}(12)}{\tilde{v}_{1}(1)}, \frac{\tilde{v}_{2}(12)}{\tilde{v}_{2}(2)}\right\}$. From above cases, we see that in 14 out of 27 cases (case $1,3,4,7,8,9,12,13,15,17,21,23,25,27$) we have $\pi=\tilde{\pi}=N$ in noise-free game. In these cases, the relative value of $\tilde{v}_{1}(\cdot), \tilde{v}_{2}(\cdot)$ should satisfy $\alpha_{1} \geq \bar{r}, \frac{1}{\alpha_{2}} \geq$ $\bar{r}, \frac{\alpha_{1}}{\alpha_{2}} \geq \bar{r}$. The prediction probability in this case is given below as $g\left(p_{1}, p_{2}\right)$. Whereas if we allow for the cases, say $\alpha_{1}<\underline{r} ; \frac{1}{\alpha_{2}}<\underline{r} ; \frac{\alpha_{1}}{\alpha_{2}}<\underline{r}$, then the prediction probability is 1 . So, these are the two extreme cases. However, if we take any other range of α 's, the prediction probability will be more than $g\left(p_{1}, p_{2}\right)$ and less than 1 . Thus,

$$
\mathbb{P}[\pi=\tilde{\pi} \mid \text { game } 1]= \begin{cases}g\left(p_{1}, p_{2}\right), & \text { if } \alpha_{1} \geq \bar{r} ; \frac{1}{\alpha_{2}} \geq \bar{r} ; \frac{\alpha_{1}}{\alpha_{2}} \geq \bar{r} \tag{20}\\ 1, & \text { if } \alpha_{1}<\underline{r} ; \frac{1}{\alpha_{2}}<\underline{r} ; \frac{\alpha_{1}}{\alpha_{2}}<\underline{r},\end{cases}
$$

where $g\left(p_{1}, p_{2}\right)=p_{1}^{3}+p_{2}^{3}+2\left(p_{1}\left(1-p_{1}-p_{2}\right)^{2}+p_{2}^{2}\left(1-p_{1}-p_{2}\right)+p_{1} p_{2}\left(1-p_{1}-p_{2}\right)+p_{1} p_{2}^{2}\right)+$ $p_{1}^{2} p_{2}+p_{1}^{2}\left(1-p_{1}-p_{2}\right)+p_{2}\left(1-p_{1}-p_{2}\right)^{2}+\left(1-p_{1}-p_{2}\right)^{3}$.

5.2. Safety value via global minima for 2 agents and 3 support noise model

Here we will show that the above prediction probability given in Equation (20) can be non-convex in p_{1}, p_{2}. So, the global minima are difficult to hope for.

Note that $\frac{\partial g\left(p_{1}, p_{2}\right)}{\partial p_{1}}=3 p_{1}^{2}-\left(p_{2}-1\right)^{2}$ and $\frac{\partial g\left(p_{1}, p_{2}\right)}{\partial p_{2}}=-2 p_{1}\left(p_{2}-1\right)-3 p_{2}^{2}+6 p_{2}-2$. Hence, we have $\frac{\partial^{2} g\left(p_{1}, p_{2}\right)}{\partial^{2} p_{1}}=6 p_{1}, \frac{\partial^{2} g\left(p_{1}, p_{2}\right)}{\partial p_{1} p_{2}}=\frac{\partial^{2} g\left(p_{1}, p_{2}\right)}{\partial p_{2} p_{1}}=-2\left(p_{2}-1\right)$, and $\frac{\partial^{2} g\left(p_{1}, p_{2}\right)}{\partial p_{2}^{2}}=-2 p_{1}-6 p_{2}+6$. Thus, the Hessian of $g\left(p_{1}, p_{2}\right)$ is

$$
H\left(g\left(p_{1}, p_{2}\right)\right)=\left[\begin{array}{cc}
6 p_{1} & -2\left(p_{2}-1\right) \\
-2\left(p_{2}-1\right) & -2 p_{1}-6 p_{2}+6
\end{array}\right] .
$$

For $p_{1}=0.3$ and $p_{2}=0.5$, we have

$$
H\left(g\left(p_{1}, p_{2}\right)\right)=\left[\begin{array}{cc}
0.18 & 1 \\
1 & 2.4
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=2.78$, and $\lambda_{2}=-0.20$. So, $g\left(p_{1}, p_{2}\right)$ is not a convex function. Therefore, finding the global minima is difficult.

Though the above prediction probability is non-convex, one can get the noise set such that the prediction probability is more than a given satisfaction ζ. Similar to the 2 support cases, where the prediction probability was a convex function, but the noise regimes were disjoint intervals, in 3 support cases also, we get disjoint sets. However, computing the exact safety value is problematic because it is the global minima of the non-convex prediction
probability function. Note that the safety value is a fundamental limit such that below a user-given satisfaction ζ, the partition is noise robust in the entire noise probability simplex.

As earlier, in the noise regimes where the prediction probability is more than ζ, a partition $\tilde{\pi}$ that is core-stable in a noisy game will remain core-stable in a noise-free game.

