Noise Robust Core-stable Coalitions of Hedonic Games Supplementary Material

Prashant Trivedi IEOR, Indian Institute of Technology Bombay

Nandyala Hemachandra IEOR, Indian Institute of Technology Bombay

Editors: Emtiyaz Khan and Mehmet Gönen

1. n agents 2 support partial information noise model

In a two support noise model we have $\mathcal{N}_{sp} = \{1, \alpha\}$ with $\alpha > 1$, such that for any coalition $S \subseteq N$, $\mathbb{P}[\alpha(S) = \alpha] = p = 1 - \mathbb{P}[\alpha(S) = 1]$. We derive the agreement probability, $f_T(p, \alpha)$ in the following lemma. Note that this lemma serves as the base case in the Mathematical induction based proof of the Theorem 11 in the main paper.

Lemma 1 Let $\tilde{\pi}$ be $\tilde{\epsilon}$ -PAC stable partition of noisy game (N, \tilde{v}) , and let $\tilde{\pi}$ be a ϵ -PAC stable outcome of the noise-free game (N, v), where ϵ is identified in Theorem 5 of the paper. Then the agreement probability $f_T(p, \alpha)$ is given by

$$f_T(p,\alpha) = \begin{cases} 1, & \text{if } \tilde{\pi}(i) = T, \ \forall \ i \in T \\ p + (1-p)^{|\mathcal{R}(T)| + 1 - |\mathcal{I}(\alpha,T)|}, & otherwise \end{cases}$$

where $\mathcal{I}(\alpha, T) = \left\{ \tilde{\pi}(i) \in \mathcal{R}(T) \mid \frac{\tilde{v}_i(\tilde{\pi}(i))}{\tilde{v}_i(T)} \ge \alpha \right\}.$

Proof Recall from Theorem 5 in main paper we have the following

$$\mathbb{P}_{T \sim \tilde{\mathcal{D}}}[\bigcup_{i \in T} v_i(\tilde{\pi}(i)) \ge v_i(T)] \ge (1 - \tilde{\epsilon}) f_T(\boldsymbol{p}, \boldsymbol{\alpha}).$$

Also, recall that the agreement event is defined as

$$M(\tilde{\pi},T) \coloneqq \{(\{\alpha(\tilde{\pi}(i))\}_{\tilde{\pi}(i)\in\mathcal{R}(T)},\alpha(T)): \cap_{i\in T}\{v_i(\tilde{\pi}(i))\geq v_i(T) \cap \alpha(\tilde{\pi}(i))v_i(\tilde{\pi}(i))\geq \alpha(T)v_i(T)\}\},$$

and $f_T(p,\alpha) = \mathbb{P}[M(\tilde{\pi},T)]$ is the probability of agreement event. Moreover,

$$\mathcal{R}(T) \coloneqq \{ \tilde{\pi}(i) \mid i \in T \}; \quad \mathcal{I}(\alpha, T) = \left\{ \tilde{\pi}(i) \in \mathcal{R}(T) \mid \frac{\tilde{v}_i(\tilde{\pi}(i))}{\tilde{v}_i(T)} \ge \alpha \right\}.$$

To find the agreement probability, $f_T(\boldsymbol{p}, \boldsymbol{\alpha})$ we consider two cases $\mathcal{I}(\alpha, T) = \emptyset$, and $\mathcal{I}(\alpha, T) \neq \emptyset$. For these cases we identify the possible noise values $\{\alpha(\tilde{\pi}(i))\}_{\tilde{\pi}(i)\in\mathcal{R}(T)}, \alpha(T)$ that are element of $M(\tilde{\pi}, T)$.

© 2022 P. Trivedi & N. Hemachandra.

NH@IITB.AC.IN

TRIVEDI.PRASHANT15@IITB.AC.IN

- Case 01: $[\mathcal{I}(\alpha, T) = \emptyset]$. In this case, we have following elements in $M(\tilde{\pi}, T)$.
 - $-\alpha(\tilde{\pi}(i)) = 1, \ \forall \ \tilde{\pi}(i) \in \mathcal{R}(T) \text{ and } \alpha(T) = 1. \text{ The probability of such choice of } \alpha's$ is $(1-p)^{|\mathcal{R}(T)|+1}.$ (1)

$$\alpha(\tilde{\pi}(i)) = \alpha$$
 for **exactly one** $\tilde{\pi}(i) \in \mathcal{R}(T)$, and $\alpha(\tilde{\pi}(i)) = 1$ for remaining coalitions in $\mathcal{R}(T)$, and $\alpha(T) = \alpha$. Probability of such choice of α 's is $(p \times (1 - p)^{|\mathcal{R}(T)|-1}) \times p$. And there are $\binom{|\mathcal{R}(T)|}{1}$ ways of selecting **exactly one** coalition $\tilde{\pi}(i) \in \mathcal{R}(T)$. Thus, the probability of above α 's is $\binom{|\mathcal{R}(T)|}{1}p(1-p)^{|\mathcal{R}(T)|-1}p$.

In general, for any $k \in \{0, 1, ..., |\mathcal{R}(T)|\}$ coalitions $\tilde{\pi}(i) \in \mathcal{R}(T)$, take $\alpha(\tilde{\pi}(i)) = \alpha$. Moreover, $\alpha(\tilde{\pi}(i)) = 1$ for remaining $|\mathcal{R}(T)| - k$ coalitions and take $\alpha(T) = \alpha$. Further, we have $\binom{|\mathcal{R}(T)|}{k}$ similar choices. So, the probability of the above choice of α 's is

$$\sum_{k=0}^{|\mathcal{R}(T)|} \left\{ \binom{|\mathcal{R}(T)|}{k} p^k (1-p)^{|\mathcal{R}(T)|-k} \right\} \times p = p \times \left(\sum_{k=0}^{|\mathcal{R}(T)|} \binom{|\mathcal{R}(T)|}{k} p^k (1-p)^{|\mathcal{R}(T)|-k} \right)$$
$$= p. \tag{2}$$

This is because for any coalition S, we have $\mathbb{P}[\alpha(S) = \alpha] = p = 1 - \mathbb{P}[\alpha(S) = 1]$ and the fact that binomial probabilities summed up to 1.

- Case 02: $[\mathcal{I}(\alpha, T) \neq \emptyset]$. Then, in addition to the above possible cases, we will have a few other cases, which are:
 - $\begin{array}{l} \alpha(\tilde{\pi}(i)) = \alpha \text{ for exactly one } \tilde{\pi}(i) \in \mathcal{I}(\alpha,T), \, \alpha(\tilde{\pi}(i)) = 1 \text{ for remaining coalitions} \\ & \text{in } \mathcal{R}(T) \text{ and } \alpha(T) = 1. \text{ Probability of such choice of } \alpha \text{'s is } p(1-p)^{|\mathcal{R}(T)|-1}(1-p) = \\ & p(1-p)^{|\mathcal{R}(T)|}. \text{ And there are } \binom{|\mathcal{I}(\alpha,T)|}{1} \text{ ways of choosing exactly one coalition} \\ & \tilde{\pi}(i) \in \mathcal{I}(\alpha,T). \text{ Thus the overall probability is } \binom{|\mathcal{I}(\alpha,T)|}{1} p(1-p)^{|\mathcal{R}(T)|}. \end{array}$

In general, we have $\alpha(\tilde{\pi}(i)) = \alpha$ for any $k \in \{1, 2, \dots, |\mathcal{I}(\alpha, T)|\}$ coalitions $\tilde{\pi}(i) \in \mathcal{I}(\alpha, T)$. Moreover, $\alpha(\tilde{\pi}(i)) = 1$ for remaining $|\mathcal{R}(T)| - k$ coalitions, and $\alpha(T) = 1$. Probability of such choice of α 's is $p^k(1-p)^{|\mathcal{R}(T)| - |\mathcal{I}(\alpha, T)|}(1-p)$. And there are $\binom{|\mathcal{I}(\alpha, T)|}{k}$ ways of selecting k coalitions $\tilde{\pi}(i) \in \mathcal{I}(\alpha, T)$. Thus the overall probability is

$$\sum_{k=1}^{|\mathcal{I}(\alpha,T)|} \binom{|\mathcal{I}(\alpha,T)|}{k} p^k (1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha,T)|} (1-p).$$
(3)

The probability of event $M(\tilde{\pi}, T)$, i.e., $\mathbb{P}[M(\tilde{\pi}, T)]$ is obtained by adding probabilities given in Equations (1), (2) and (3).

$$\mathbb{P}[M(\tilde{\pi},T)] = (1-p)^{|\mathcal{R}(T)|+1} + p + \sum_{k=1}^{|\mathcal{I}(\alpha,T)|} \binom{|\mathcal{I}(\alpha,T)|}{k} p^k (1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha,T)|} (1-p)$$
$$= (1-p)^{|\mathcal{R}(T)|+1} + p + (1-p)^{|\mathcal{R}(T)|-|\mathcal{I}(\alpha,T)|+1} \left[1 - (1-p)^{|\mathcal{I}(\alpha,T)|}\right]$$

$$= p + (1-p)^{|\mathcal{R}(T)| - |\mathcal{I}(\alpha, T)| + 1}.$$

This ends the proof.

If $\tilde{\pi}(i) \neq T$ for at least one $i \in T$, then $f_T(p, \alpha) = 1$, $\forall \alpha$ if and only if p = 0 or p = 1. That is, if the value of all the coalitions are retained, or if values of all of them are inflated by α , then for all $i \in T$, and for all $\tilde{\pi}(i) \in \mathcal{R}(T)$, one has $\tilde{\pi}(i) \succeq_i T$, and $\tilde{\pi}(i) \succeq'_i T$. Thus, $\tilde{\pi}$ is ϵ -PAC stable outcome of unknown noise-free game and hence $\tilde{\pi}$ is noise-robust.

Corollary 2 When $\tilde{\pi} = N$, i.e., the grand coalition is $\tilde{\epsilon}$ -PAC stable outcome in the noisy game, then $\mathcal{R}(T) = \{N\}$ for any coalition T. Thus, $\mathcal{I}(\alpha, T) = \emptyset$, or $\mathcal{I}(\alpha, T) = \{N\}$. Therefore, $f_T(p, \alpha)$ simplifies to

$$f_T(p,\alpha) = \begin{cases} 1, & \text{if } \mathcal{I}(\alpha,T) = \{N\}\\ (1-p)^2 + p, & \text{if } \mathcal{I}(\alpha,T) = \emptyset. \end{cases}$$
(4)

2. n agents 2 support partial information noisy games without core

Suppose $\tilde{\pi}$ is not $\tilde{\epsilon}$ -PAC stable partition fo the noisy game (N, \tilde{v}) . Moreover, let the noise support be $\mathcal{N}_{sp} = \{1, \alpha\}$, the following lemma provides the expression of $h_T(p, \alpha)$. Note that this lemma serves as the base case for the Mathematical induction based proof of Theorem 15 in the main paper.

Lemma 3 Suppose $\tilde{\pi}$ is not a $\tilde{\epsilon}$ -PAC stable outcome of the noisy game (N, \tilde{v}) , then the agreement probability $h_T(p, \alpha)$ for noise support $\mathcal{N}_{sp} \in \{1, \alpha\}$ is given by

$$h_T(p,\alpha) = \begin{cases} 1, & \text{if } \tilde{\pi}(i) = T, \ \forall \ i \in T \\ (1-p) + p^{|\mathcal{R}(T)|+1-|\mathcal{J}(\alpha,T)|}, & \text{otherwise}, \end{cases}$$
(5)

where $\mathcal{J}(\alpha, T) \coloneqq \left\{ \tilde{\pi}(i) \in \mathcal{R}(T) \mid \frac{\tilde{v}_i(\tilde{\pi}(i))}{\tilde{v}_i(T)} \geq \frac{1}{\alpha} \right\}.$

Proof From Theorem 13 of the main paper, we have the following

$$\mathbb{P}[\bigcup_{i\in T} v_i(\tilde{\pi}(i)) \ge v_i(T)] \ge (1-\tilde{\epsilon})h_T(\boldsymbol{p},\boldsymbol{\alpha})$$

To get $h_T(p,\alpha) := \mathbb{P}[F(T,\tilde{\pi})]$ we consider two cases viz. $\mathcal{J}(\alpha,T) = \emptyset$, and $\mathcal{J}(\alpha,T) \neq \emptyset$. For these cases, we identify the possible noise values elements of $F(T,\tilde{\pi})$.

- Case 01: $[\mathcal{J}(\alpha, T) = \emptyset]$. In this case, we have the following possibilities:
 - $-\alpha(\tilde{\pi}(i)) = \alpha, \ \forall \ \tilde{\pi}(i) \in \mathcal{R}(T), \ \text{and} \ \alpha(T) = \alpha.$ Probability of such a choice of α 's is

$$p^{|\mathcal{R}(T)|+1}.$$
(6)

 $-\alpha(\tilde{\pi}(i)) = 1 \text{ for } k \in \{0, 1, \dots, |\mathcal{R}(T)|\} \text{ coalitions } \tilde{\pi}(i) \in \mathcal{R}(T), \text{ and } \alpha(\tilde{\pi}(i)) = \alpha \text{ for remaining } |\mathcal{R}(T)| - k \text{ coalitions. Moreover, } \alpha(T) = 1. \text{ Probability of such choice of } \alpha\text{'s is } (1-p)^k p^{|\mathcal{R}(T)|-k}(1-p). \text{ Further, there are } \binom{|\mathcal{R}(T)|}{k} \text{ ways of selecting } k \text{ coalitions } \tilde{\pi}(i) \text{ from } \mathcal{R}(T). \text{ Thus, the overall probability is }$

$$\sum_{k=0}^{\mathcal{R}(T)|} \binom{|\mathcal{R}(T)|}{k} (1-p)^k p^{|\mathcal{R}(T)|-k} (1-p) = 1-p.$$
(7)

- Case 02: $[\mathcal{J}(\alpha, T) \neq \emptyset]$. In addition to the above possible cases, we have a few other cases:
 - $\begin{array}{l} -\alpha(\tilde{\pi}(i)) = 1 \text{ for any } k \in \{1, 2, \ldots, |\mathcal{J}(\alpha, T)|\} \text{ coalitions } \tilde{\pi}(i) \in \mathcal{J}(\alpha, T). \text{ Moreover,} \\ \alpha(\tilde{\pi}(i)) = \alpha \text{ for remaining coalitions in } \mathcal{R}(T). \text{ Also, } \alpha(T) = \alpha. \text{ Probability} \\ \text{ of such choice of } \alpha \text{'s is } (1-p)^k p^{|\mathcal{R}(T)|-k}p = (1-p)^k p^{|\mathcal{R}(T)|-k+1}. \text{ And there} \\ \text{ are } \binom{|\mathcal{J}(\alpha,T)|}{k} \text{ ways of selecting } k \text{ coalitions } \tilde{\pi}(i) \in \mathcal{J}(\alpha,T). \text{ Thus the overall} \\ \text{ probability is} \end{array}$

$$\sum_{k=1}^{\mathcal{J}(\alpha,T)|} \binom{|\mathcal{J}(\alpha,T)|}{k} (1-p)^k p^{|\mathcal{R}(T)|-k+1}.$$
(8)

The probability $\mathbb{P}[F(T, \tilde{\pi})]$ is obtained by adding probabilities given in Equations (6), (7) and (8).

$$\begin{split} \mathbb{P}[F(T,\tilde{\pi})] &= p^{|\mathcal{R}(T)|+1} + (1-p) + \sum_{k=1}^{|\mathcal{J}(\alpha,T)|} \binom{|\mathcal{J}(\alpha,T)|}{k} (1-p)^k p^{|\mathcal{R}(T)|-k+1} \\ &= p^{|\mathcal{R}(T)|+1} + (1-p) + p^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha,T)|+1} \bigg[1-p^{|\mathcal{J}(\alpha,T)|} \bigg] \\ &= (1-p) + p^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha,T)|+1}. \end{split}$$

This ends the proof.

If $\tilde{\pi}(i) \neq T$ for at least one $i \in T$, then $h_T(p, \alpha) = 1$, $\forall \alpha$ if p = 0 or p = 1. That is, if the value of all coalitions are retained, or if value of all of them are inflated by α , then coalition $T \succeq_i \tilde{\pi}(i)$, and $T \succeq'_i \tilde{\pi}(i)$ for all $i \in T$. Thus, neither noise-free nor noisy game will have $\tilde{\pi}$ as PAC stable outcome. Moreover, if we allow $h_T(p, \alpha) = \eta$ for some user-given satisfaction η , we get a noise set in accordance to the Remark 14 in the main paper. In this case, the noise set also depends on $|\mathcal{R}(T)|$, and $|\mathcal{J}(\alpha, T)|$ for coalition T. Hence, the partition is η noise-robust non core-stable for the noise set $I^*(T, \eta)$.

3. Proof of Theorem 15 of main paper

Theorem: For *n* agent noisy hedonic game (N, \tilde{v}) with $\mathcal{N}_{sp} = \{\alpha_1, \alpha_2, \ldots, \alpha_l\}$, the agreement probability $h_T(\mathbf{p}, \boldsymbol{\alpha})$ is given by:

$$h_{T}(\mathbf{p}, \boldsymbol{\alpha}) = \begin{cases} 1, & \text{if } \tilde{\pi}(i) = T, \ \forall \ i \in T, \\ \sum_{r,s \in [l]:\alpha_{r} > \alpha_{s}} p_{r}^{|\mathcal{R}(T)| - |\mathcal{J}(\alpha_{r},\alpha_{s},T)| + 1} \times \{(p_{s} + p_{r})^{|\mathcal{J}(\alpha_{r},\alpha_{s},T)|} - p_{r}^{|\mathcal{J}(\alpha_{r},\alpha_{s},T)|} \} \\ + \sum_{a=1}^{l} p_{a} \left(\sum_{b=a}^{l} p_{b} \right)^{|\mathcal{R}(T)|}, & \text{otherwise.} \end{cases}$$

Proof We will prove this via Mathematical induction on the noise support $l \ge 2$. Clearly, this is true for l = 2 (from Lemma 3 above). Let us assume that it is true for l = k, i.e.; there are sets

$$\mathcal{J}(\alpha_r, \alpha_s, T) = \left\{ \tilde{\pi}(i) \in \mathcal{R}(T) \mid \frac{\tilde{v}_i(\tilde{\pi}(i))}{\tilde{v}_i(T)} \ge \frac{\alpha_s}{\alpha_r} \right\}$$

such that the support $\alpha(S) = \{\alpha_1, \ldots, \alpha_k\}, \forall S \subseteq N$ where $\alpha_s < \alpha_r, \forall 1 \le s < r \le k$. For this k we have $f_T(p_j, \alpha_j : j \in [k]) =: h_T(\mathbf{p}, \boldsymbol{\alpha})$ (by assumption)

$$h_{T}(\boldsymbol{p}, \boldsymbol{\alpha}) = \sum_{a=1}^{k} p_{a} \left(\sum_{b=a}^{k} p_{b} \right)^{|\mathcal{R}(T)|} + \sum_{r,s \in [k]: \alpha_{r} > \alpha_{s}} p_{r}^{|\mathcal{R}(T)| - |\mathcal{J}(\alpha_{r}, \alpha_{s}, T)| + 1} ((p_{r} + p_{s})^{|\mathcal{J}(\alpha_{r}, \alpha_{s}, T)|} - p_{r}^{|\mathcal{J}(\alpha_{r}, \alpha_{s}, T)|}).$$

We will now show that this is true for l = k + 1. To this end define $\mathcal{J}(\alpha_{k+1}, \alpha_s, T)$ for all $s \in [k]$ such that $\alpha_{k+1} > \alpha_s$

$$\mathcal{J}(\alpha_{k+1}, \alpha_s, T) = \left\{ \tilde{\pi}(i) \in \mathcal{R}(T) \mid \frac{\tilde{v}_i(\tilde{\pi}(i))}{\tilde{v}_i(T)} \ge \frac{\alpha_s}{\alpha_{k+1}} \right\}.$$

Now, there are two cases, $\mathcal{J}(\alpha_{k+1}, \alpha_s, T) = \emptyset$, $\forall \alpha_s, s \in [k]$, or $\mathcal{J}(\alpha_{k+1}, \alpha_s, T) \neq \emptyset$ for at least for one $s \in [k]$.

Case 01: $[\mathcal{J}(\alpha_{k+1}, \alpha_s, T) = \emptyset, \forall \alpha_s, s \in [k]]$. Apart from the existing $\{\alpha(\tilde{\pi}(i)\}_{\tilde{\pi}(i)\in\mathcal{R}(T)} and \alpha(T) \text{ for } k \text{ support case, with this extra } k+1, \text{ it will also have } \alpha(T) = \alpha_{k+1} and \alpha(\tilde{\pi}(i)) = \alpha_{k+1}, \forall \tilde{\pi}(i) \in \mathcal{R}(T)$. The probability of such extra α 's is $p_{k+1} \left(\sum_{b=k+1}^{k+1} p_b\right)^{|\mathcal{R}(T)|}$. Therefore, the overall probability is

$$\sum_{a=1}^{k} p_a \left(\sum_{b=a}^{k} p_b \right)^{|\mathcal{R}(T)|} + p_{k+1} \left(\sum_{b=k+1}^{k+1} p_b \right)^{|\mathcal{R}(T)|} = \sum_{a=1}^{k+1} p_a \left(\sum_{b=a}^{k+1} p_b \right)^{|\mathcal{R}(T)|}$$

Case 02: $[\mathcal{J}(\alpha_{k+1}, \alpha_s, T) \neq \emptyset$ for at least one $s \in [k]]$. In this case, apart from all $\alpha(T)$ and $\{\alpha(\tilde{\pi}(i))\}_{\tilde{\pi}(i)\in\mathcal{J}(\alpha_r,\alpha_s,T)}$, we have $\{\alpha(\tilde{\pi}(i))\}_{\forall \tilde{\pi}(i)\in\mathcal{J}(\alpha_{k+1},\alpha_r,T)}, \alpha(T)$. For this set, the possible pairs are such that $\alpha(\tilde{\pi}(i)) = \alpha_r$, $\forall \tilde{\pi}(i) \in \mathcal{R}(T) \setminus \mathcal{J}(\alpha_{k+1},\alpha_r,T)$, and $\alpha(T) = \alpha_{k+1}$. Thus, their combined probability is $p_{k+1}^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha_{k+1},\alpha_s,T)|+1}((p_{k+1}-p_s)^{|\mathcal{J}(\alpha_{k+1},\alpha_r,T)|} - p_{k+1}^{|\mathcal{J}(\alpha_{k+1},\alpha_r,T)|})$. Hence for k+1 support, the probability is

$$\sum_{r,s\in[k]:\alpha_r>\alpha_s} p_r^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha_r,\alpha_r,T)|+1}((p_r+p_s)^{|\mathcal{J}(\alpha_r,\alpha_s,T)|} - p_r^{|\mathcal{J}(\alpha_r,\alpha_s,T)|})$$

$$+ p_{k+1}^{|\mathcal{R}(T)| - |\mathcal{J}(\alpha_{k+1}, \alpha_s, T)| + 1} ((p_{k+1} + p_s)^{|\mathcal{I}(\alpha_{k+1}, \alpha_s, T)|} - p_{k+1}^{|\mathcal{J}(\alpha_{k+1}, \alpha_s, T)|})$$

From case 01 and case 02 with k + 1 support, we have

$$h_{T}(p_{j},\alpha_{j};j\in[k+1]) = \sum_{r,s\in[k+1]:\alpha_{r}>\alpha_{s}} p_{r}^{|\mathcal{R}(T)|-|\mathcal{J}(\alpha_{r},\alpha_{s},T)|+1} \left((p_{r}+p_{s})^{|\mathcal{J}(\alpha_{r},\alpha_{s},T)|} - p_{r}^{|\mathcal{J}(\alpha_{r},\alpha_{s},T)|} \right) + \sum_{a=1}^{k+1} p_{a} \left(\sum_{b=a}^{k+1} p_{b} \right)^{|\mathcal{R}(T)|}.$$

Furthermore, it is true for k + 1 support. Thus, from the principle of Mathematical induction, this is true for any $l \ge 2$.

4. 2 agent 2 support model

In this Section, we will provide further details about the 2 agents' full information noisy game with 2 support of the noise distribution. First, we consider the following noisy game.

$$\tilde{v}_1(12) > \tilde{v}_1(1); \ \tilde{v}_2(12) > \tilde{v}_2(2).$$
 (game 1)

We also consider the other possible noisy games with 2 agents in later subsections.

4.1. Proof of Lemma 18 of main paper

Lemma: For noisy game 1 with complete information on \tilde{v} and $\mathcal{N}_{sp} = \{1, \alpha\}$ we have

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1] = \begin{cases} 1 - p(1 - p^2), & if \ \alpha \ge \overline{r} \\ 1 - p(1 - p), & if \ \underline{r} \le \alpha < \overline{r} \\ 1, & if \ \alpha < \underline{r}, \end{cases}$$
(9)

where $\overline{r} = \max\left\{\frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}, \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}\right\}$, and $\underline{r} = \min\left\{\frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}, \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}\right\}$. Also, this prediction probability $\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1]$ is convex in p. So, while the minimal

Also, this prediction probability $\mathbb{P}[\pi = \pi \mid game \mid]$ is convex in p. So, while the minimal value for $\mathbb{P}[\pi = \tilde{\pi} \mid game \mid]$ occurs for noise probabilities around p = 0.5 (depending on α, \overline{r} and \underline{r}), the maximal value of it is 1 at p = 0 and p = 1.

Proof For noisy game 1, we have $\tilde{\pi} = N$. Now, consider the noise support $\mathcal{N}_{sp} = \{1, \alpha\}$, where $\alpha > 1$ such that $\mathbb{P}[\alpha(S) = \alpha] = p = 1 - \mathbb{P}[\alpha(S) = 1]$, for some fixed and unknown p. Given noisy game 1, there are 8 possible combinations of α 's (because each coalition has two options). We will now enumerate all such possibilities:

1. $\alpha(1) = 1; \alpha(2) = 1; \alpha(12) = 1$. The probability of such alpha is $(1 - p)^3$. Thus, the noise-free values are $v_1(1) = \tilde{v}_1(1); v_2(2) = \tilde{v}_2(2), v_1(12) = \tilde{v}_1(12)$ and $v_2(12) = \tilde{v}_2(12)$. Therefore, The noise-free game is:

$$v_1(12) > v_1(1); v_2(12) > v_2(2).$$

From this game we have $\pi = \tilde{\pi} = N$.

- 2. $\alpha(1) = 1; \alpha(2) = 1; \ \alpha(12) = \alpha$ Probability of such alpha's is $p(1-p)^2$. Thus the actual values are $v_1(1) = \tilde{v}_1(1); \ v_2(2) = \tilde{v}_2(2), v_1(12) = \frac{\tilde{v}_1(12)}{\alpha} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha}$. Therefore, the actual preferences will depend on the relative values of α and $\tilde{\boldsymbol{v}}$. If α and $\tilde{\boldsymbol{v}}$'s are such that $\frac{\tilde{v}_1(12)}{\alpha} > \tilde{v}_1(1)$ and $\frac{\tilde{v}_2(12)}{\alpha} > \tilde{v}_2(2)$, then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}.$
- 3. $\alpha(1) = 1; \alpha(2) = \alpha; \ \alpha(12) = 1$. The probability of such alpha is $p(1-p)^2$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha}, v_1(12) = \tilde{v}_1(12) \ and \ v_2(12) = \tilde{v}_2(12)$. Since, $\tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha}$. The noise-free game is:

$$v_1(12) > v_1(1); v_2(12) > v_2(2).$$

So, we have $\pi = \tilde{\pi} = N$.

4. $\alpha(1) = \alpha$; $\alpha(2) = 1$; $\alpha(12) = 1$. Probability of such alpha's is $p(1-p)^2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha}$; $v_2(2) = \tilde{v}_2(2), v_1(12) = \tilde{v}_1(12)$ and $v_2(12) = \tilde{v}_2(12)$. Since, $\tilde{v}_1(12) > \tilde{v}_1(1) > \frac{\tilde{v}_1(1)}{\alpha}$. Therefore The noise-free game is:

$$v_1(12) > v_1(1); v_2(12) > v_2(2).$$

From this game we have $\pi = \tilde{\pi} = N$.

- 5. $\alpha(1) = 1; \alpha(2) = \alpha; \ \alpha(12) = \alpha.$ The probability of this alpha is $p^2(1-p)$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha}, v_1(12) = \frac{\tilde{v}_1(12)}{\alpha} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha}.$ The actual preferences will depend on the relative values of α and $\tilde{\boldsymbol{v}}$. If α and $\tilde{\boldsymbol{v}}$'s are such that $\frac{\tilde{v}_1(12)}{\alpha} > \tilde{v}_1(1)$, then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.
- 6. $\alpha(1) = \alpha; \alpha(2) = 1; \ \alpha(12) = \alpha$. The probability of such alpha is $p^2(1-p)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha}, \ v_2(2) = \tilde{v}_2(2); \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha}$. The actual preferences will depend on the relative values of α and $\tilde{\boldsymbol{v}}$. If α and $\tilde{\boldsymbol{v}}$'s are such that $\frac{\tilde{v}_2(12)}{\alpha} > \tilde{v}_2(2)$, then $\pi = N$ otherwise $\pi = \{\{1\}, \{2\}\}$.
- 7. $\alpha(1) = \alpha; \alpha(2) = \alpha; \ \alpha(12) = 1$. Probability of such alpha's is $p^2(1-p)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha}; \ v_1(12) = \tilde{v}_1(12) \ and \ v_2(12) = \tilde{v}_2(12)$. Since, $\tilde{v}_1(12) > \tilde{v}_1(1) > \frac{\tilde{v}_1(1)}{\alpha}$. and, $\tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha}$. The noise-free game is:

$$v_1(12) > v_1(1); v_2(12) > v_2(2).$$

From this game we have $\pi = \tilde{\pi} = N$.

8. $\alpha(1) = \alpha; \alpha(2) = \alpha; \alpha(12) = \alpha$. The probability of such alpha is p^3 . Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha}, v_2(2) = \frac{\tilde{v}_2(2)}{\alpha}; v_1(12) = \frac{\tilde{v}_1(12)}{\alpha} and v_2(12) = \frac{\tilde{v}_2(12)}{\alpha}$. Therefore, the noise-free game is:

$$v_1(12) > v_1(1); v_2(12) > v_2(2).$$

From this game it is clear that $\pi = \tilde{\pi} = N$.

Trivedi Hemachandra

Recall, $\overline{r} = \max\left\{\frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}, \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}\right\}$, and $\underline{r} = \min\left\{\frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}, \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}\right\}$. Out of 8 cases there are 5 cases (case 1,3,4,7,8) in which the grand coalition $\pi = \tilde{\pi} = N$ is formed in noise-free game. In these conditions, the relative value of $\tilde{v}_1(\cdot), \tilde{v}_2(\cdot)$ should satisfy $\alpha \geq \overline{r}$, and this constitute the first expression $p^3 + p^2(1-p) + 2p(1-p)^2 + (1-p)^3$ of $\mathbb{P}[\pi = \tilde{\pi} \mid game 1]$. Apart from this, if the inflation interval is $\underline{r} \leq \alpha < \overline{r}$, then $\pi = \tilde{\pi} = N$ is also possible from case (6) with probability $p^2(1-p)$. Thus, $p^2(1-p)$ will be added to the above prediction probability. So, we have $\mathbb{P}[\pi = \tilde{\pi} \mid game 1]$ corresponding to it. Moreover, finally, if $\alpha < \underline{r}$, all cases are allowable, and hence the grand coalition will always form in the noise-free game. Thus,

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1] = \begin{cases} p^3 + p^2(1-p) + 2p(1-p)^2 + (1-p)^3, & \text{if } \alpha \ge \overline{r} \\ p^3 + 2p^2(1-p) + 2p(1-p)^2 + (1-p)^3, & \text{if } \underline{r} \le \alpha < \overline{r} \\ 1, & \text{if } \alpha < \underline{r}. \end{cases}$$
(10)

Simplifying these polynomials, we have

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1] = \begin{cases} 1 - p(1 - p^2), & \text{if } \alpha \ge \overline{r} \\ 1 - p(1 - p), & \text{if } \underline{r} \le \alpha < \overline{r} \\ 1, & \text{if } \alpha < \underline{r}. \end{cases}$$
(11)

This ends the proof.

If we allow some user given satisfaction ζ on the prediction probability, i.e., $\mathbb{P}[\pi = \tilde{\pi} \mid game 1] = \zeta$, we get the following noise interval

$$I^{\star}(\zeta = 0.9) = \begin{cases} [0, 0.101] \cup [0.946, 1], & \text{if } \alpha \ge \overline{r}; \\ [0, 0.113] \cup [0.887, 1], & \text{if } \underline{r} \le \alpha < \overline{r} \\ 1, & \text{if } \alpha < \underline{r}. \end{cases}$$
(12)

4.2. Details of the other 2 agent noisy games

Here we will give the prediction probabilities for other possible noisy games with 2 agents and 2 noise support.

4.2.1. Both agents prefer staying alone in noisy game

As opposed to the noisy game 1, in noisy game 2 both agents prefer to stay alone. The noisy preferences of agents are as follows:

$$\tilde{v}_1(1) > \tilde{v}_1(12); \quad \tilde{v}_2(2) > \tilde{v}_2(12).$$
 (game 2)

Clearly $\tilde{\pi} = \{\{1\}, \{2\}\} \neq N$ is the core-stable outcome. The following lemma provides prediction probability, $\mathbb{P}[\pi = \tilde{\pi} \mid game \ 2]$ for noisy game 2.

Lemma 4 For noisy game 2 with full information of \tilde{v} 's, the prediction probability that unknown noise-free game has $\pi = \tilde{\pi}$ as a core-stable outcome is

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \ 2] = \begin{cases} 1 - p^2(1 - p), & if \ \frac{1}{\alpha} < \underline{r} \\ 1, & if \ \frac{1}{\alpha} \ge \underline{r}. \end{cases}$$
(13)

Moreover, the minimal and maximal values of above prediction probability are 0.85 (when p = 2/3), and 1, respectively.

Similar to game 1, the probability of formation of partition $\pi = \{\{1\}, \{2\}\}\)$ in an unknown noise-free game is always more than 0.85. So, the safety value is 0.85. The prediction probability is 1 when $\frac{1}{\alpha} \geq \underline{r}$ for any noise probability p. Moreover, for some user-given satisfaction ζ , we obtain the corresponding p by setting $\mathbb{P}[\pi = \{\{1\}, \{2\}\} \mid game 2] = \zeta$. In particular, we have

$$I^{\star}(\zeta = 0.9) = \begin{cases} [0, 0.413] \cup [0.867, 1], & if \ \frac{1}{\alpha} < \underline{r} \\ [0, 1], & \frac{1}{\alpha} \ge \underline{r}. \end{cases}$$
(14)

It is easy to see that the allowable p is larger than the interval given in Equation (12) for game 1. So, the partition $\tilde{\pi} = \{\{1\}, \{2\}\}$ is noise robust for larger number of inflation probabilities p. Again the noise set will shrink if we increase the satisfaction ζ .

Figure 1: The prediction probability $\mathbb{P}[\pi = \tilde{\pi} \mid game \ 2]$. For $\zeta = 0.9$, the noise regimes are given in Equation (14).

4.2.2. Agent 1 prefers to stay alone and agent 2 prefers grand coalition in NOISY game

Now, we consider a noisy game where agent 1 prefers to stay alone, whereas agent 2 prefers the grand coalition. In particular, the preferences in the noisy game are

$$\tilde{v}_1(1) > \tilde{v}_1(12); \ \tilde{v}_2(12) > \tilde{v}_2(2).$$
 (game 3)

Again $\tilde{\pi} = \{\{1\}, \{2\}\} \neq N$ is noisy core-stable outcome. The prediction probability, $\mathbb{P}[\pi = \tilde{\pi} \mid game \ 3]$ is given in the Lemma below.

Lemma 5 For noisy game 3 with full information of \tilde{v} 's, the prediction probability that unknown noise-free game has $\pi = \tilde{\pi}$ as a core-stable outcome is given by:

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \; 3] = \begin{cases} 1 - p(1 - p), & if \; \frac{1}{\alpha} < \frac{\tilde{v}_1(12)}{\tilde{v}_1(1)} \\ 1, & if \; \frac{1}{\alpha} \ge \frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}. \end{cases}$$
(15)

Moreover, the minimal and maximal values of above prediction probability are 0.75 (when p = 0.5), and 1, respectively.

Similar to game 1 and game 2 the probability of formation of partition $\pi = \{\{1\}, \{2\}\}\)$ in an *unknown* noise-free game is always more than 0.75 that is the safety value for game 3. The prediction probability is 1 when $\frac{1}{\alpha} \geq \frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}$ for any noise probability p. Moreover, for some user-given satisfaction, ζ we obtain the corresponding p by setting $\mathbb{P}[\pi = \{\{1\}, \{2\}\} \mid game 3] = \zeta$. In particular,

$$I^{\star}(\zeta = 0.9) = \begin{cases} [0, 0.113] \cup [0.887, 1], & if \ \frac{1}{\alpha} < \frac{\tilde{v}_1(12)}{\tilde{v}_1(1)} \\ [0, 1], & if \ \frac{1}{\alpha} \ge \frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}. \end{cases}$$
(16)

The following figure shows the prediction probabilities for game 3.

Figure 2: The prediction probability $\mathbb{P}[\tilde{\pi} = \pi \mid game \ 3]$. For $\zeta = 0.9$, we obtain the noise regimes as given in Equation (16).

4.2.3. AGENT 1 PREFERS GRAND COALITION AND AGENT 2 PREFERS TO STAY ALONE

Finally, consider a noisy game symmetric to game 3. Here agent 1 prefers a grand coalition, and agent 2 prefers to stay alone. In particular, we have the following preferences.

$$\tilde{v}_1(12) > \tilde{v}_1(1); \ \tilde{v}_2(2) > \tilde{v}_2(12).$$
 (game 4)

Again $\tilde{\pi} = \{\{1\}, \{2\}\} \neq N$ is a noisy core-stable outcome. In the following lemma, we find the prediction probability when noisy game 4 is considered.

Lemma 6 For noisy game 4 with full information of \tilde{v} 's, the prediction probability that noise-free game has $\pi = \tilde{\pi}$ as as core-stable outcome is given by:

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \; 4] = \begin{cases} 1 - p(1 - p), & if \; \frac{1}{\alpha} < \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)} \\ 1, & if \; \frac{1}{\alpha} \ge \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}. \end{cases}$$
(17)

So, the minimal and maximal values of above prediction probability are 0.75 (when p = 0.5) and 1 respectively.

In this case also, the noise regime can be obtained using $\mathbb{P}[\pi = \tilde{\pi} \mid game \ 4] = \zeta$. In particular,

$$I^{\star}(\zeta = 0.9) = \begin{cases} [0, 0.113] \cup [0.887, 1], & if \frac{1}{\alpha} < \frac{v_2(12)}{\tilde{v}_2(2)} \\ [0, 1], & if \frac{1}{\alpha} \ge \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}. \end{cases}$$
(18)

Figure 3 shows the prediction probabilities for game 4.

Figure 3: The prediction probability $\mathbb{P}[\pi = \tilde{\pi} \mid game \; 4]$. For $\zeta = 0.9$, we obtain the noise regimes as given in Equation (18).

5. 2 agents 3 support noise model

In this section, we consider two player noisy hedonic game with three support noise model, i.e., $\mathcal{N}_{sp} = \{1, \alpha_1, \alpha_2\}$, with $\alpha_1 > 1$, and $\alpha_2 < 1$. Note that $\alpha_1, \alpha_2 > 0$. Let $\mathbb{P}[\alpha(S) = \alpha_1] = p_1$; $\mathbb{P}[\alpha(S) = \alpha_2] = p_2$; and $\mathbb{P}[\alpha(S) = 1] = 1 - p_1 - p_2$. That is the value of each coalition is either inflated with probability p_1 , or deflated with probability p_2 or retained with probability $1 - p_1 - p_2$. The following lemma provides the prediction probability for game 1.

5.1. Proof of Lemma 20 of main paper

Lemma: For the 3 support noise model the prediction probability $\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1]$ is

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1] = \begin{cases} g(p_1, p_2), & if \ \alpha_1 \ge \overline{r} \ ; \ \frac{1}{\alpha_2} \ge \overline{r} \ ; \ \frac{\alpha_1}{\alpha_2} \ge \overline{r} \\ 1, & if \ \alpha_1 < \underline{r} \ ; \ \frac{1}{\alpha_2} < \underline{r} \ ; \ \frac{\alpha_1}{\alpha_2} < \underline{r} \end{cases}$$
(19)

where $g(p_1, p_2) = p_1^3 + p_2^3 + 2(p_1(1 - p_1 - p_2)^2 + p_2^2(1 - p_1 - p_2) + p_1p_2(1 - p_1 - p_2) + p_1p_2^2) + p_1^2p_2 + p_1^2(1 - p_1 - p_2) + p_2(1 - p_1 - p_2)^2 + (1 - p_1 - p_2)^3.$

Proof For game 1, with l = 3 support of noise there are 27 possible cases for α 's. Since there are 3 coalitions, each coalition's value can either be retained, inflated by α_1 , or deflated by α_2 . We will now enumerate all of them:

- 1. $\alpha(1) = 1$; $\alpha(2) = 1$; $\alpha(12) = 1$ Probability of such alpha's is $(1 p_1 p_2)^3$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1)$; $v_2(2) = \tilde{v}_2(2), v_1(12) = \tilde{v}_1(12)$ and $v_2(12) = \tilde{v}_2(12)$. The noise-free game is: $v_1(12) > v_1(1)$; $v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 2. $\alpha(1) = 1$; $\alpha(2) = 1$; $\alpha(12) = \alpha_1$. Probability of such alpha's is $p_1(1 p_1 p_2)^2$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1)$; $v_2(2) = \tilde{v}_2(2), v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1}$ and $v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. The noise-free game preferences are unclear; they will depend on the relative values of α_1 and \tilde{v} . If α_1 and \tilde{v} 's are such that $\frac{\tilde{v}_1(12)}{\alpha_1} > \tilde{v}_1(1)$ and $\frac{\tilde{v}_2(12)}{\alpha_1} > \tilde{v}_2(2)$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.
- 3. $\alpha(1) = 1; \alpha(2) = \alpha_1; \ \alpha(12) = 1$. Probability of such alpha's is $p_1(1 p_1 p_2)^2$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}, v_1(12) = \tilde{v}_1(12) \ and \ v_2(12) = \tilde{v}_2(12)$. Since $\tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha_1}$. The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 4. $\alpha(1) = \alpha_1$; $\alpha(2) = 1$; $\alpha(12) = 1$. Probability of such alpha's is $p_1(1 p_1 p_2)^2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}$; $v_2(2) = \tilde{v}_2(2), v_1(12) = \tilde{v}_1(12)$ and $v_2(12) = \tilde{v}_2(12)$. Since, $\tilde{v}_1(12) > \tilde{v}_1(1) > \frac{\tilde{v}_1(1)}{\alpha_1}$. The noise-free game is: $v_1(12) > v_1(1)$; $v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 5. $\alpha(1) = 1; \alpha(2) = \alpha_1; \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1^2(1-p_1-p_2)$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}, v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} and v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. The noise-free game preferences are unclear; they will depend on the relative values of α_1 and \tilde{v} . If α_1 and \tilde{v} 's are such that $\frac{\tilde{v}_1(12)}{\alpha_1} > \tilde{v}_1(1)$, then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}.$
- 6. $\alpha(1) = \alpha_1; \alpha(2) = 1; \ \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1^2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \ v_2(2) = \tilde{v}_2(2); \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. The noise-free game preferences are unclear; they will depend on the relative values of α_1 and \tilde{v} . If α_1 and \tilde{v} 's are such that $\frac{\tilde{v}_2(12)}{\alpha_1} > \tilde{v}_2(2)$, then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}.$
- 7. $\alpha(1) = \alpha_1; \alpha(2) = \alpha_1; \alpha(12) = 1$. Probability of such alpha's is $p_1^2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \quad v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; \quad v_1(12) = \tilde{v}_1(12) \text{ and } v_2(12) = \tilde{v}_2(12)$. Since, $\tilde{v}_1(12) > \tilde{v}_1(1) > \frac{\tilde{v}_1(1)}{\alpha_1}$ and, $\tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha_1}$. The noise-free game is: $v_1(12) > v_1(1); \quad v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 8. $\alpha(1) = \alpha_1; \alpha(2) = \alpha_1; \ \alpha(12) = \alpha_1$. The probability of such alpha is p_1^3 . Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}.$ The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 9. $\alpha(1) = 1; \alpha(2) = 1; \alpha(12) = \alpha_2$. Probability of such alpha's is $p_2(1 p_1 p_2)^2$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); v_2(2) = \tilde{v}_2(2), v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} and v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}$. Since $\alpha_2 < 1$, thus $\frac{\tilde{v}_1(12)}{\alpha_2} > \tilde{v}_1(12) > \tilde{v}_1(1) = v_1(1)$. Similarly, $\frac{\tilde{v}_2(12)}{\alpha_2} > \tilde{v}_2(12) > \tilde{v}_2(2) = v_2(2)$. The noise-free game is: $v_1(12) > v_1(1); v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.

- 10. $\alpha(1) = 1; \alpha(2) = \alpha_2; \ \alpha(12) = 1$. Probability of these alpha's is $p_2(1 p_1 p_2)^2$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}, v_1(12) = \tilde{v}_1(12) \ and \ v_2(12) = \tilde{v}_2(12)$. The noise-free game preferences are unclear; they will depend on the relative values of α_2 and \tilde{v} . If α_2 and \tilde{v} 's are such that $\tilde{v}_2(12) > \frac{\tilde{v}_2(2)}{\alpha_2}$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.
- 11. $\alpha(1) = \alpha_2$; $\alpha(2) = 1$; $\alpha(12) = 1$. Probability of such alpha's is $p_2(1 p_1 p_2)^2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}$; $v_2(2) = \tilde{v}_2(2), v_1(12) = \tilde{v}_1(12)$ and $v_2(12) = \tilde{v}_2(12)$. The noise-free game preferences are unclear; they will depend on the relative values of α_2 and \tilde{v} . If α_2 and \tilde{v} 's are such that $\tilde{v}_1(12) > \frac{\tilde{v}_1(1)}{\alpha_2}$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.
- 12. $\alpha(1) = 1; \alpha(2) = \alpha_2; \ \alpha(12) = \alpha_2.$ probability of such alpha's is $p_2^2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1); \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}, v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}$. Since $\alpha_2 < 1$, thus $\frac{\tilde{v}_1(12)}{\alpha_2} > \tilde{v}_1(12) > \tilde{v}_1(1) = v_1(1)$, and $\frac{\tilde{v}_2(12)}{\alpha_2} > \frac{\tilde{v}_2(2)}{\alpha_2}$. The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 13. $\alpha(1) = \alpha_2; \alpha(2) = 1; \ \alpha(12) = \alpha_2$. Probability of such alpha's is $p_2^2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}, \ v_2(2) = \tilde{v}_2(2); \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}$. Since $\alpha_2 < 1$ thus $\frac{\tilde{v}_2(12)}{\alpha_2} > \tilde{v}_2(12) > \tilde{v}_2(2) = v_2(2)$, and $\frac{\tilde{v}_1(12)}{\alpha_2} > \frac{\tilde{v}_1(1)}{\alpha_2}$. The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 14. $\alpha(1) = \alpha_2$; $\alpha(2) = \alpha_2$; $\alpha(12) = 1$. Probability of such alpha's is $p_2^2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}$, $v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}$; $v_1(12) = \tilde{v}_1(12)$ and $v_2(12) = \tilde{v}_2(12)$. The noise-free game preferences are unclear; they will depend on the relative values of α_2 and \tilde{v} . If α_2 and \tilde{v} 's are such that $\tilde{v}_1(12) > \frac{\tilde{v}_1(1)}{\alpha_2}$ and $\tilde{v}_1(12) > \frac{\tilde{v}_2(2)}{\alpha_2}$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.
- 15. $\alpha(1) = 1; \alpha(2) = \alpha_1; \ \alpha(12) = \alpha_2$. Probability of such alpha's is $p_1 p_2(1-p_1-p_2)$. Thus, the actual values are $v_1(1) = \tilde{v}_1(1), \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}.$ Since $\frac{\tilde{v}_1(12)}{\alpha_2} > \tilde{v}_1(12) > \tilde{v}_1(1)$ and $\frac{\tilde{v}_2(12)}{\alpha_2} > \tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha_1}$. The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 16. $\alpha(1) = 1; \alpha(2) = \alpha_2; \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1 p_2(1-p_1-p_2)$. Thus, actual values are $v_1(1) = \tilde{v}_1(1)$, $v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}; v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1}$ and $v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. The noise-free game preferences are unclear; it will depend on the relative values α_1 , α_2 and \tilde{v} . If α_1, α_2 and \tilde{v} 's are such that $\frac{\tilde{v}_1(12)}{\alpha_1} > \tilde{v}_1(1)$ and $\frac{\tilde{v}_2(12)}{\alpha_1} > \frac{\tilde{v}_2(2)}{\alpha_2}$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.
- 17. $\alpha(1) = \alpha_1; \alpha(2) = 1; \ \alpha(12) = \alpha_2$. Probability of such alpha's is $p_1 p_2(1-p_1-p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \ v_2(2) = \tilde{v}_2(2); \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}.$ Since $\frac{\tilde{v}_1(12)}{\alpha_2} > \tilde{v}_1(12) > \tilde{v}_1(1)$ and $\frac{\tilde{v}_2(12)}{\alpha_2} > \tilde{v}_2(12) > \tilde{v}_2(2)$. The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.
- 18. $\alpha(1) = \alpha_2; \alpha(2) = 1; \ \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1 p_2(1-p_1-p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}, \ v_2(2) = \tilde{v}_2(2); \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}.$

The noise-free game preferences are unclear; it will depend on the relative values of α_1 , α_2 , and \tilde{v} . If α_1 , α_2 and \tilde{v} 's are such that $\frac{\tilde{v}_1(12)}{\alpha_1} > \frac{\tilde{v}_1(1)}{\alpha_2}$ and $\frac{\tilde{v}_2(12)}{\alpha_1} > \tilde{v}_2(2)$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$.

- 19. $\alpha(1) = \alpha_1; \alpha(2) = \alpha_2; \ \alpha(12) = 1$. Probability of such alpha's is $p_1 p_2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}; \ v_1(12) = \tilde{v}_1(12) \ and \ v_2(12) = \tilde{v}_2(12)$. The noise-free game preferences are unclear; it will depend on the relative values of α_1, α_2 , and \tilde{v} . If α_1, α_2 and \tilde{v} 's are such that $\tilde{v}_2(12) > \frac{\tilde{v}_2(2)}{\alpha_2}$ then $\pi = N$ otherwise $\pi = \{\{1\}, \{2\}\}$.
- 20. $\alpha(1) = \alpha_2; \alpha(2) = \alpha_1; \ \alpha(12) = 1$. Probability of such alpha's is $p_1 p_2(1 p_1 p_2)$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; \ v_1(12) = \tilde{v}_1(12) \ and \ v_2(12) = \tilde{v}_2(12)$. The noise-free game preferences are unclear; it will depend on the relative values of α_1, α_2 , and \tilde{v} . If α_1, α_2 and \tilde{v} 's are such that $\tilde{v}_1(12) > \frac{\tilde{v}_1(1)}{\alpha_2}$ then $\pi = N$, otherwise $\pi = \{\{1\}, \{2\}\}$
- 21. $\alpha(1) = \alpha_1; \alpha(2) = \alpha_1; \alpha(12) = \alpha_2$. Probability of such alpha's is $p_1^2 p_2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \text{ and } v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}.$ Since, $\frac{\tilde{v}_1(12)}{\alpha_2} > \tilde{v}_1(12) > \tilde{v}_1(1) > \frac{\tilde{v}_1(1)}{\alpha_1}, \text{ and } \frac{\tilde{v}_2(12)}{\alpha_2} > \tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha_1}.$ The noise-free game is: $v_1(12) > v_1(1); v_2(12) > v_2(2).$ So, $\pi = \tilde{\pi}$ in this case.
- 22. $\alpha(1) = \alpha_1; \alpha(2) = \alpha_2; \ \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1^2 p_2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}; \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. The noise-free game preferences are unclear; it will depend on the relative values of $\alpha_1, \alpha_2, \text{ and } \tilde{v}$. If α_1, α_2 and \tilde{v} 's are such that $\frac{\tilde{v}_2(12)}{\alpha_1} > \frac{\tilde{v}_2(2)}{\alpha_2}$ then $\pi = N$ otherwise $\pi = \{\{1\}, \{2\}\}$.
- 23. $\alpha(1) = \alpha_1; \alpha(2) = \alpha_2; \ \alpha(12) = \alpha_2.$ Probability of such alpha's is $p_1 p_2^2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_1}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}; \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}.$ Since, $\frac{\tilde{v}_1(12)}{\alpha_2} > \tilde{v}_1(12) > \tilde{v}_1(1) > \frac{\tilde{v}_1(1)}{\alpha_1}.$ The noise-free game is: $v_1(12) > v_1(1); \ v_2(12) > v_2(2).$ So, $\pi = \tilde{\pi}$ in this case.
- 24. $\alpha(1) = \alpha_2; \alpha(2) = \alpha_1; \ \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1^2 p_2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. Clearly, the preferences in the noise-free game are not clear; it will depend on the relative values of α_1, α_2 and \tilde{v} . If α_1, α_2 and \tilde{v} 's are such that $\frac{\tilde{v}_1(12)}{\alpha_1} > \frac{\tilde{v}_1(1)}{\alpha_2}$ then $\pi = N$ otherwise $\pi = \{\{1\}, \{2\}\}.$
- 25. $\alpha(1) = \alpha_2; \alpha(2) = \alpha_1; \ \alpha(12) = \alpha_2.$ Probability of such alpha's is $p_1 p_2^2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}, \ v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_1}; \ v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2} \ and \ v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}.$ Since, $\frac{\tilde{v}_2(12)}{\alpha_2} > \tilde{v}_2(12) > \tilde{v}_2(2) > \frac{\tilde{v}_2(2)}{\alpha_1}.$ The noise-free game is: $v_1(12) > v_1(1); v_2(12) > v_2(2).$ So, $\pi = \tilde{\pi}$ in this case.
- 26. $\alpha(1) = \alpha_2; \alpha(2) = \alpha_2; \alpha(12) = \alpha_1$. Probability of such alpha's is $p_1 p_2^2$. Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}, v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}; v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_1} and v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_1}$. The noise-free game preferences are unclear; it will depend on the relative values α_1 ,

 α_2 and \tilde{v} . If α_1 , α_2 and \tilde{v} 's are such that $\frac{\tilde{v}_1(12)}{\alpha_1} > \frac{\tilde{v}_1(1)}{\alpha_2}$ and $\frac{\tilde{v}_2(12)}{\alpha_1} > \frac{\tilde{v}_2(2)}{\alpha_2}$ then $\pi = N$ otherwise $\pi = \{\{1\}, \{2\}\}.$

27. $\alpha(1) = \alpha_2; \alpha(2) = \alpha_2; \alpha(12) = \alpha_2$. The probability of such alpha is p_2^3 . Thus, the actual values are $v_1(1) = \frac{\tilde{v}_1(1)}{\alpha_2}$, $v_2(2) = \frac{\tilde{v}_2(2)}{\alpha_2}$; $v_1(12) = \frac{\tilde{v}_1(12)}{\alpha_2}$ and $v_2(12) = \frac{\tilde{v}_2(12)}{\alpha_2}$. The noise-free game is: $v_1(12) > v_1(1)$; $v_2(12) > v_2(2)$. So, $\pi = \tilde{\pi}$ in this case.

Since $\bar{r} = \max\left\{\frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}, \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}\right\}$, and $\underline{r} = \min\left\{\frac{\tilde{v}_1(12)}{\tilde{v}_1(1)}, \frac{\tilde{v}_2(12)}{\tilde{v}_2(2)}\right\}$. From above cases, we see that in 14 out of 27 cases (case 1,3,4,7,8,9,12,13,15,17,21,23,25,27) we have $\pi = \tilde{\pi} = N$ in noise-free game. In these cases, the relative value of $\tilde{v}_1(\cdot), \tilde{v}_2(\cdot)$ should satisfy $\alpha_1 \geq \overline{r}, \frac{1}{\alpha_2} \geq \overline{r}, \frac{\alpha_1}{\alpha_2} \geq \overline{r}$. The prediction probability in this case is given below as $g(p_1, p_2)$. Whereas if we allow for the cases, say $\alpha_1 < \underline{r}$; $\frac{1}{\alpha_2} < \underline{r}$; $\frac{\alpha_1}{\alpha_2} < \underline{r}$, then the prediction probability is 1. So, these are the two extreme cases. However, if we take any other range of α 's, the prediction probability will be more than $g(p_1, p_2)$ and less than 1. Thus,

$$\mathbb{P}[\pi = \tilde{\pi} \mid game \ 1] = \begin{cases} g(p_1, p_2), & if \ \alpha_1 \ge \overline{r} \ ; \ \frac{1}{\alpha_2} \ge \overline{r} \ ; \ \frac{\alpha_1}{\alpha_2} \ge \overline{r} \\ 1, & if \ \alpha_1 < \underline{r} \ ; \ \frac{1}{\alpha_2} < \underline{r} \ ; \ \frac{\alpha_1}{\alpha_2} < \underline{r}, \end{cases}$$
(20)

where $g(p_1, p_2) = p_1^3 + p_2^3 + 2(p_1(1 - p_1 - p_2)^2 + p_2^2(1 - p_1 - p_2) + p_1p_2(1 - p_1 - p_2) + p_1p_2^2) + p_1^2p_2 + p_1^2(1 - p_1 - p_2) + p_2(1 - p_1 - p_2)^2 + (1 - p_1 - p_2)^3.$

5.2. Safety value via global minima for 2 agents and 3 support noise model

Here we will show that the above prediction probability given in Equation (20) can be

non-convex in p_1, p_2 . So, the global minima are difficult to hope for. Note that $\frac{\partial g(p_1,p_2)}{\partial p_1} = 3p_1^2 - (p_2 - 1)^2$ and $\frac{\partial g(p_1,p_2)}{\partial p_2} = -2p_1(p_2 - 1) - 3p_2^2 + 6p_2 - 2$. Hence, we have $\frac{\partial^2 g(p_1,p_2)}{\partial^2 p_1} = 6p_1, \frac{\partial^2 g(p_1,p_2)}{\partial p_1 p_2} = \frac{\partial^2 g(p_1,p_2)}{\partial p_2 p_1} = -2(p_2 - 1)$, and $\frac{\partial^2 g(p_1,p_2)}{\partial p_2^2} = -2p_1 - 6p_2 + 6$. Thus, the Hessian of $q(p_1, p_2)$ is

$$H(g(p_1, p_2)) = \begin{bmatrix} 6p_1 & -2(p_2 - 1) \\ -2(p_2 - 1) & -2p_1 - 6p_2 + 6 \end{bmatrix}$$

For $p_1 = 0.3$ and $p_2 = 0.5$, we have

$$H(g(p_1, p_2)) = \begin{bmatrix} 0.18 & 1\\ 1 & 2.4 \end{bmatrix}.$$

The eigenvalues are $\lambda_1 = 2.78$, and $\lambda_2 = -0.20$. So, $g(p_1, p_2)$ is not a convex function. Therefore, finding the global minima is difficult.

Though the above prediction probability is non-convex, one can get the noise set such that the prediction probability is more than a given satisfaction ζ . Similar to the 2 support cases, where the prediction probability was a convex function, but the noise regimes were disjoint intervals, in 3 support cases also, we get disjoint sets. However, computing the exact safety value is problematic because it is the global minima of the non-convex prediction probability function. Note that the safety value is a fundamental limit such that below a user-given satisfaction ζ , the partition is noise robust in the entire noise probability simplex.

As earlier, in the noise regimes where the prediction probability is more than ζ , a partition $\tilde{\pi}$ that is core-stable in a noisy game will remain core-stable in a noise-free game.