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Abstract

In this work, we consider the coalition formation games with an additional component,
‘noisy preferences’. Moreover, such noisy preferences are available only for a sample of
coalitions. We propose a multiplicative noise model (equivalent to an additive noise model)
and obtain the prediction probability, defined as the probability that the estimated PAC
core-stable partition of the noisy game is also PAC core-stable for the unknown noise-free
game. This prediction probability depends on the probability of a combinatorial construct
called an ‘agreement event’. We explicitly obtain the agreement probability for n agent
noisy game with l ≥ 2 support noise distribution. For a user-given satisfaction value on
this probability, we identify the noise regimes for which an estimated partition is noise
robust; that is, it is PAC core-stable in both noisy and noise-free games. We obtain similar
robustness results when the estimated partition is not PAC core-stable. These noise regimes
correspond to the level sets of the agreement probability function and are non-convex sets.
Moreover, an important fact is that the prediction probability can be high even if high
noise values occur with a high probability. Further, for a class of top-responsive hedonic
games, we obtain the bounds on the extra noisy samples required to get noise robustness
with a user-given satisfaction value.

We completely solve the noise robustness problem of a 2 agent hedonic game. In
particular, we obtain the prediction probability function for l = 2 and l = 3 noise support
cases. For l = 2, the prediction probability is convex in noise probability, but the noise
robust regime is non-convex. Its minimum value, called the safety value, is 0.62; so, below
0.62, the noise robust regime is the entire probability simplex. However, for l ≥ 3, the
prediction probability is non-convex; so, the safety value is the global minima of a non-
convex function and is computationally hard.

Keywords: Prediction probability; noise regimes; combinatorial events; safety value; non-
convex optimisation; global minima; weak supervision; PAC stability; multiplicative noise

1. Introduction

Coalition formation games are of great interest to researchers because they model natural
interactions among multi-agent societies. The coalition formation process can be formalized
using the framework of hedonic games. In these games, each agent has a preference over
the coalitions they form with the other agents. An outcome of a hedonic game consists of
dividing the agent set into disjoint coalitions called partition. Such a partition is referred
to as coalition structure. A desirable property in hedonic games is the formation of a stable
coalition structure. However, any stability notion (Bogomolnaia and Jackson, 2002; Aziz
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and Savani, 2016) assumes the complete information of each agent’s preferences, i.e., the
entire ranking of coalitions by each agent is known. This is one of the strong assumptions
in hedonic games. Nonetheless, there is significant work in finding a stable partition of the
agent set, if it exists (Brandt et al., 2016).

Authors in Sliwinski and Zick (2017) relax the assumption of complete information
and assume that the preferences over only some coalitions are available; they introduce the
notion of ε-Probably Approximately Correct (ε-PAC) stability to learn the stable outcome of
the hedonic game. Apart from the assumption about the complete information, we can have
preferences corrupted by noise, i.e., the exact preferences of agents are not available; instead,
the preferences with errors are observed. We call such observed erroneous preferences, noisy
preferences. A consequence of these noisy preferences is that a partition that is not stable
in a noisy game can be stable in a noise-free game with non-trivial probability or vice-versa.

In this work, one of our goals is to find the probability that a stable partition learned
from the observed noisy sample is the same as that of the stable partition of the unknown
noise-free game (Sec. 2). We obtain similar results when one starts with a particular
partition that is not PAC stable for the noisy game. In such a case, we are interested in the
probability that the estimated partition is also not core-stable for a noise-free game (Sec.
3). We call these probabilities the prediction probabilities. These prediction probabilities
depend on a probability of an event called the ‘agreement event’. We also obtain the noise
regimes where the agreement probabilities are more than a user-given threshold.

As a motivation, let us consider a stylized model of a market for a specific product that
three manufacturers N = {1, 2, 3} serve. Each manufacturer has preferences, denoted by
�i, ∀ i ∈ N , over the coalitions they want to form with other manufacturers. Based on
their preferences, a market analyst would like to predict the coalition structure that these
three manufacturers form. However, these preferences being private to manufacturers, the
market analyst collects them through a noisy channel (or estimates them based on the
market’s history). For simplicity, assume that the analyst has noisy preferences, denoted
by �′i, ∀ i ∈ N , of all the agents (a complete information model) as in the game (1) below:

{12} �′1 {1} �′1 {123} �′1 {13}
{12} �′2 {2} �′2 {123} �′2 {23}
{123} �′3 {23} �′3 {13} �′3 {3}

(1)

{1} �1 {12} �1 {123} �1 {13}
{12} �2 {2} �2 {123} �2 {23}
{123} �3 {23} �3 {13} �3 {3}

(2)

The noisy core-stable partition as predicted by the market analyst is π̃ = {{12}, {3}}.
However, suppose the noise-free preferences are as in game (2) (these are not known to
market analyst). Based on these noise-free preferences the unique core-stable partition is
π = {{1}, {2}, {3}}. So, while the market analyst concludes that the manufacturers form a
coalition based on the available noisy preferences, they will not. Thus, the market analyst
needs to know the prediction probability, the probability that the predicted partition based
on the available noisy preferences is the same as the partition of the unknown noise-free
game in (2). An interesting phenomenon in the noisy hedonic game is that even if the
market analyst misses identifying a core-stable partition, the market has one with non-
trivial probability. We consider this in Sec. 3, via their complimentary event.

As a generalization to the above three manufacturers’ model, we assume that a learner
has preferences over some coalitions collected via a noisy channel. Based on these noisy
preferences, the learner’s task is to predict the core-stable partition for an unknown noise-
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free game based on these partial and noisy preferences. We propose a noise model to
investigate noise regimes where the predicted noisy partition is the same as an unknown
noise-free partition. It addresses an important aspect of noise-robustness, meaning these
partitions are the same with high probability. Specifically, our major contributions are:
(a) In Sec. 2, we propose a multiplicative noise model and obtain the prediction probability.
This probability depends on a combinatorial construct called ‘agreement event’. For a user-
given value on agreement probability, we obtain the noise regimes where an estimated
partition of the noisy game is noise-robust.
(b) In Subsec. 2.1, we obtain the lower and upper bounds on the number of noisy samples
required to get PAC stable partition for the top-responsive class of hedonic games.
(c) In Sec. 3, we obtain the prediction probability function that a partition π̃ is not PAC
stable for the noise-free game given that it is not PAC stable for the noisy game.
(d) In Sec. 4, we consider a noisy game with 2 agents with complete information on each
agent’s preferences. The allowable noise regimes for noise-robustness are non-convex, even
though the agreement probability is a convex function.
(e) We now mention some observations of 2 agent game. The prediction probability is non-
convex when the noise distribution has l (≥ 3) support. Thus, computing the safety value,
i.e., the minimum prediction probability, is computationally hard. So, for user satisfaction
values below this safety value, the prediction probability is 1, regardless of the noise values
and their probabilities. Also, the noise values that render a user given minimum prediction
probability form non-contiguous regions (superlevel sets). A counter-intuitive fact is that
the prediction probabilities can be high for some high noise values occurring with high
probability. A simple illustration is in the 2 support case, where the prediction probability
is 1 even when the value of both agents is inflated with probability 1.

1.1. Notations and preliminaries

This Sec. provides some notations, definitions, and other related backgrounds that we use
in the paper subsequently. Let N = {1, 2, . . . , n} be the set of agents and for each agent
i ∈ N , let Ci = {S ⊆ N | i ∈ S} be the set of coalitions containing agent i. A hedonic
game is a pair (N,�), where �= (�1,�2, . . . ,�n). Here �i is a reflexive, transitive, and
complete preference ranking of agent i ∈ N over the set Ci. The preference �i of agent
i ∈ N represents its willingness to form a coalition with other agents.

For any two distinct coalitions S, T ⊆ Ci we say S �i T if agent i ∈ N prefers coalition S
over T . Also, S ∼i T iff S �i T and T �i S, that is agent i is indifferent to coalition S and
T . Since the preferences are reflexive, transitive and complete there exists a value function
v : S ⊆ N 7→ R|S| such that v(S) = (vi(S))i∈S

1, where vi(S) ∈ R+ is the valuation of an
agent i in coalition S. For any coalitions S, T ∈ Ci, it satisfies that S �i T ⇐⇒ vi(S) ≥
vi(T ) (Mas-Colell et al., 1995; Narahari, 2014). The valuation vi(S) often depends on value
vi(j) ∈ R+ of agent j in the eyes of agent i, here i, j ∈ S. We use (N, v) to denote the
hedonic game.

A typical partition of the agent set in the hedonic game (N, v) is denoted by π. Let the
coalition containing i ∈ N in partition π be π(i). The hedonic game’s outcome is finding
a ‘stable’ partition according to some stability criterion. A partition is ‘stable’ if no agent

1. Note that (vi(S))i∈S is a vector of size |S| with each element vi(S) for agent i ∈ S.
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or a group of agents can deviate from it to reach a subjectively better outcome. Various
stability criteria are introduced in Bogomolnaia and Jackson (2002) and are nicely reviewed
by Aziz and Savani (2016). However, in this paper, we use core, one of the popular stability
criteria. A coalition S core blocks a partition π, if every agent i in coalition S strictly prefers
S to π(i), i.e., S �i π(i), ∀ i ∈ S. Further, a coalition structure π is said to be core-stable
if there is no coalition that core blocks π, meaning there is at least one agent i ∈ S who
prefers π(i) over S, i.e., π(i) �i S.

Recently, for a partial information hedonic game, authors in Sliwinski and Zick (2017)
have proposed the PAC learning framework to find a ε-PAC stable outcome for several
classes of hedonic games. We briefly describe the ε-PAC stability framework here (Sliwinski
and Zick, 2017). Given a sample S = {(S1, v(S1)), . . . , (Sm, v(Sm))}, where S1, S2, . . . , Sm
are drawn i.i.d. from a distribution over 2N and the corresponding values v ’s are obtained
from D. An algorithm A is said to PAC stabilize a class H of hedonic games if for any
hedonic game (N, v) ∈ H, after seeing examples in S it can propose a partition π that is
unlikely to be core blocked by a coalition sampled from D with high probability. Formally,
for any error and the confidence parameter ε, δ > 0, a partition π is ε-PAC stable under D
if A outputs a ε-PAC stable coalition structure or reports that the core is empty, i.e.,

PS [PT∼D[T core blocks π in noise-free game (N, v)] < ε] ≥ 1− δ, (3)

here, the number of samples m are required to be polynomial in n, 1ε and log 1
δ .

As mentioned above, the ε-PAC stability notion assumes the correct preferences over
the sample of coalitions. However, it is not the case in most realistic scenarios. Often the
preferences are erroneous, i.e., corrupted by noise. In this work, we relax both the assump-
tions of correct and complete knowledge of the preferences. Let the value of each agent in
any coalition be corrupted by an unknown noise distribution, N . We denote the complete,
reflexive and transitive noisy preferences by �′= (�′1,�′2, . . . ,�′n). The noisy hedonic game
is therefore represented by (N,�′) or equivalently (N, ṽ), where ṽ(S) = (ṽi(S))i∈S is such
that ṽi(S) ∈ R+. Formally, we are given a sample S̃ = {(S1, ṽ(S1)), . . . , (Sm̃, ṽ(Sm̃))} from
the noisy hedonic game (N, ṽ). Here S1, S2, . . . , Sm are drawn i.i.d. from a distribution over
2N and the corresponding values ṽ ’s are obtained from D̃. So, we can find a ε̃-PAC stable
partition (this can be done by using an algorithm similar to one given in say, Sliwinski and
Zick (2017); Alcalde and Revilla (2004)) if it exists. Let π̃ be an ε̃-PAC stable partition of
the noisy hedonic game, i.e., with probability at least 1− δ, we have,

PS̃ [P
T∼D̃[T core blocks π̃ in noisy game (N, ṽ)] < ε̃] ≥ 1− δ. (4)

Again, the number of samples required are m̃ which is polynomial in n, 1ε̃ , and log 1
δ . The

entire paper uses the inner probability given in Equation (3) for the noisy game. However,
for the noise-free game, we are interested in the probability given in Equation (5) below.
This is because we only have samples from the noisy game; hence, the outer probability is
taken on noisy samples for noisy and noise-free games.

Let αi(S) ∼ N be the noise realized to an agent i ∈ S ⊆ N . We assume that for
each agent i ∈ S, the noise is the same, i.e., αi(S) = α(S) ∈ R+, ∀ i ∈ S. To ensure
noise distribution support, Nsp is non-empty we assume that it contains 1 and other noise
values. So, the noisy value is ṽi(S) := α(S) · vi(S), ∀ i ∈ S ⊆ N . We call this noise model
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the multiplicative noise model; this is equivalent to the additive noise model as given in
Remark 3 below. In Sections 2.2, and 3.1, we also consider scaling at various levels by
taking l ≥ 2 support on the noise distribution (the same level for all members of a given
coalition). Another motivation for the same noise level scaling for each agent in the coalition
is the following: A learner is collecting the valuation of each coalition via a noisy channel.
So, we assume that a noisy channel affects the value of the entire coalition by the same
amount. Hence, each agent in a coalition will have the same noise impact, irrespective of
its identity. However, suppose an agent i is a member of two coalitions S, T ∈ Ci. The noise
valuation of agent i in coalition S is α(S)vi(S), and α(T )vi(T ) in coalition T , so, we also
have different noise values for the same agent depending on the coalition. Moreover, the
assumption of common scaling α(S) is necessary to carry out the Probably Approximately
Correct (PAC) analysis. The PAC stability definition uses a hypothesis class, in our case,
the class of hedonic games. The common α(S) preserves the class of hedonic games under
noise, which need not be the case when we scale the value of each coalition at the individual
agent level. For example, if the noise-free game belongs to the class of additively separable
hedonic games (ASHGs), the noisy game with agent dependent noise scaling αi(S), ∀ i ∈ S
may not be ASHG, but it is within ASHG class with common noise scaling α(S). So, we use
a common scaling that restricts noisy and noise-free games to the same class. We believe
this assumption can be relaxed by taking the larger class of hedonic games; however, we
might need additional conditions to ensure the class-preserving property.

It is important to note that our noisy hedonic game setup can be reduced to the noise-
free setup in a very specialized setting, i.e., only if α(S) = 1 for all coalitions S.

Suppose π̃ is any partition of the noisy game (N, ṽ). We aim to find the probability
that any T ∼ D̃ core blocks π̃ in the noise-free game (N, v), i.e.,

PT∼D̃[T core blocks π̃ in noise-free game (N, v)]. (5)

We call the above probability, prediction probability. In each case, i.e., when π̃ is ε̃-PAC
stable partition of the noisy game or not, we bound these prediction probability in Sections
2 and 3, respectively. Prediction probability is a performance measure associated with noise
robustness, as defined below:

Definition 1 (ζ noise-robust core-stable partition π̃) A partition π̃ is ζ noise-robust
core-stable partition if (a) π̃ is ε̃-PAC stable partition of noisy game (N, ṽ), and (b) predic-
tion probability in Equation (5) is less than ε, where ε = 1− (1− ε̃)ζ with ζ ∈ (0, 1].

Definition 2 (η noise-robust non core-stable partition π̃) A partition π̃ is η noise-
robust non core-stable partition if (a) π̃ is not ε̃-PAC stable partition of noisy game (N, ṽ)
and (b) prediction probability in Equation (5) is more than 1 − ε, where ε = 1 − (1 − ε̃)η
with η ∈ (0, 1].

Remark 3 Additive noise model: Our noise model is a fairly generic one. For example,
if the noise is additive, i.e., ṽi(S) = α(S) + vi(S) then, taking exponential on both sides,
we have eṽi(S) = eα(S)+vi(S) = eα(S) · evi(S). With Ṽi(S) = eṽi(S), Γ(S) = eα(S), and
Vi(S) = evi(S), we have Ṽi(S) = Γ(S)Vi(S). Hence, for robustness to an additive noise
model, one can reduce it to a noisy hedonic game (N, Ṽ) with multiplicative noise Γ(S).
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Remark 4 Note that in Equation (5) we use noise-free values v’s to check whether a coali-
tion can potentially block a given noisy core-stable partition π̃. However, we only have
samples from the noisy game, so we use T ∼ D̃ instead of T ∼ D.

2. Partial information noisy game with π̃ as ε̃-PAC stable partition

Let S̃ = {(S1, ṽ(S1), . . . , (Sm̃, ṽ(Sm̃))} be a sample of coalitions drawn i.i.d from the dis-
tribution D̃ = D × N over 2N . Let π̃ be ε̃-PAC stable outcome of noisy game (N, ṽ).
Therefore, with probability at least 1− δ, ∀ ε̃ > 0, we have

P
T∼D̃[T core blocks π̃] < ε̃, or PT∼D̃[ṽi(T ) > ṽi(π̃(i)), ∀ i ∈ T ] < ε̃,

or PT∼D̃[∪i∈T ṽi(π̃(i)) ≥ ṽi(T )] ≥ 1− ε̃.
(6)

For an unknown noise-free hedonic game (N, v), we now find the prediction probability
given in Equation (5). To this end, we first define set R(T ) for any coalition T as R(T ) :=
{π̃(i) ∈ π̃ | i ∈ T}, i.e., for all agents i ∈ T , it is the set of all coalitions containing agent i
in the partition π̃. Moreover, for any coalition T , and partition π̃, we define an agreement
event M(π̃, T ) containing the set of all noise levels α(π̃(i)) and α(T ) such that all the
coalitions π̃(i) ∈ R(T ) are preferred over coalition T by every agent i ∈ T in both noisy
and noise-free game. Formally, it is defined as

M(π̃, T ) := {({α(π̃(i))}π̃(i)∈R(T ), α(T )) : ∩i∈T {vi(π̃(i)) ≥ vi(T ) ∩ α(π̃(i))vi(π̃(i)) ≥ α(T )vi(T )}}.

Let fT (p,α) := P
T∼D̃[M(π̃, T )] be the probability of agreement event M(π̃, T ), where p is

the probability mass function of noise values α 2. Note that M(π̃, T ) is not known, since
the noise-free values vi(T ) and vi(π̃(i)) are not known. However, for l ≥ 2 support noise
distribution we obtain explicit expressions for fT (p,α) in Sec. 2.2. We also use fT (p,α)
later as user satisfaction value. The following Theorem gives probability that unknown
noise-free game (N, v) has π̃ as ε-PAC stable partition (ε is identified in the Theorem 5
below in terms of p,α and ε̃) if noisy game (N, ṽ) has π̃ as ε̃-PAC stable partition.

Theorem 5 Let π̃ be ε̃-PAC stable outcome of the noisy game (N, ṽ). Then, π̃ is ε-PAC
stable for noise-free game (N, v), i.e., PT∼D̃[∪i∈T vi(π̃(i)) ≥ vi(T )] ≥ 1 − ε, where ε > 0
satisfies (1− ε̃)fT (p,α) = 1− ε with fT (p,α) = P[M(π̃, T )].

Proof Consider the following probability

PT∼D̃[∪i∈T vi(π̃(i)) ≥ vi(T )] ≥ P
T∼D̃[∪i∈T vi(π̃(i)) ≥ vi(T )| ∪j∈T ṽj(π̃(j)) ≥ ṽj(T )]

× P
T∼D̃[∪j∈T ṽj(π̃(j)) ≥ ṽj(T )]

≥ (1− ε̃)P
T∼D̃[∪i∈T vi(π̃(i)) ≥ vi(T )| ∪j∈T ṽj(π̃(j)) ≥ ṽj(T )]

≥ (1− ε̃)P[(∪i∈T vi(π̃(i)) ≥ vi(T )) ∩ (∪j∈T ṽj(π̃(j)) ≥ ṽj(T ))]

(∵ P(A|B) ≥ P(A ∩B))

= (1− ε̃)P[∪j∈T ∪i∈T {vi(π̃(i)) ≥ vi(T ) ∩ ṽj(π̃(j)) ≥ ṽj(T )}]
≥ (1− ε̃)P[∩i∈T {vi(π̃(i)) ≥ vi(T ) ∩ ṽi(π̃(i)) ≥ ṽi(T )}]
= (1− ε̃)P[M(π̃, T )] = (1− ε̃)fT (p,α) = 1− ε.

2. Here α contains all possible noise values, and p is the probability mass function of noise values in α.
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This ends the proof.

In Theorem 5, we have (1 − ε̃)fT (p,α) = 1 − ε for any ε̃ > 0. This implies ε = 1 − (1 −
ε̃)fT (p,α) = ε̃ if fT (p,α) = 1. So, for an arbitrary ε > 0, we have arbitrary ε̃ > 0 if
fT (p,α) = 1. However, it is not true even in the l = 2 support noise model. For example,
as we see in Sec. 1 of the supplementary material (SM) that we have fT (p, α) = 1 iff p = 0
or p = 1, i.e., when values of all the coalitions are either scaled by some scalar α > 1, or they
are retained. Therefore, we relax the requirement of fT (p,α) = 1, and ask for fT (p,α) = ζ
for user-given ζ. In some situations, the ζ captures the satisfaction value of an external
agent trying to predict the partition of a noise-free game without having its knowledge.
That is, a higher ζ is preferred. In particular, if ζ = 1, we have ε = ε̃.

Theorem 6 If a partition π̃ is ε̃-PAC stable for the noisy game (N, ṽ) and for ε = 1−(1−ε̃)ζ
it is ε-PAC stable for the noise-free game (N, v), then it is also ζ noise-robust core-stable.

Proof Recall, from Theorem 5, we have P[T core blocks π̃ for (N, v)] ≤ ε. Here
ε = 1 − (1 − ε̃)fT (p,α). Setting fT (p,α) = ζ, we have ε = 1 − (1 − ε̃)ζ = 1 − ζ + ε̃ζ.
So, for this ε, the partition π̃ is ζ noise-robust core-stable from Definition 1.

The agreement probability fT (p,α) being the same as user-given satisfaction value ζ iden-
tifies the noise regimes I?(T, ζ) for which at least the ζ fraction of preferences are preserved.
The following Theorem shows that the noise-regime for which a partition π̃ is core-stable in
both noisy and noise-free games with a user-given satisfaction value ζ is indeed non-empty.

Theorem 7 Let π̃ be ε̃-PAC stable partition of noisy game (N, ṽ) and it is ε-PAC stable
for noise-free game (N, v). Then, for a sample St = {T1, . . . , Tmt} drawn i.i.d. from D̃
we obtain a non-empty noise regime I?(St, ζ) = ∩mt

i=1I
?(Ti, ζ) for which π̃ is ζ noise-robust

core-stable partition. Moreover, π̃ is ζ noise-robust core-stable partition for the noise regime
I?(ζ) = ∩T⊆NI?(T, ζ).

Proof For any coalition T , we first note that I?(T, ζ) 6= ∅, because α(π̃(i)) = 1, ∀π̃(i) ∈
R(T ); α(T ) = 1 is always an element of M(π̃, T ). So, for St = {T1, . . . , Tmt} we have
non-empty noise regimes I?(T1, ζ), · · · , I?(Tm̃t , ζ). Also, α(S) = 1, ∀ S ⊆ N is a common
element of each I?(T, ζ), ∀ T ∈ St. Therefore, I?(St, ζ) = ∩mt

i=1I
?(Ti, ζ) 6= ∅, i.e., is non-

empty. Hence, partition π̃ is ζ noise robust on the sample St with noise regime I∗(St, ζ) in
accordance to Theorem 5 and Definition 1. Moreover, I?(ζ) 6= ∅ because of the same reason
as mentioned above. The ζ noise-robustness follows from Theorem 5 and 6.

In the next Section, we provide the relation between m, and m̃, i.e., the number of samples
used to get ε and ε̃-PAC stable partition π̃ in noise-free and noisy game, respectively for
top-responsive hedonic games (Alcalde and Revilla, 2004) and other hedonic games.

2.1. Sample size for top-responsive and other games

In a top-responsive game, the value of each agent in a given coalition depends on the most
preferred sub-coalition. Formally, the top-responsive games are described via choice sets
Ch(i, S), defined as Ch(i, S) := {X ⊆ S : ∀ Y ⊆ S, i ∈ Y : X �i Y }. The game satisfies the
top-responsiveness if (a) ∀ i ∈ N , and S ∈ Ci, |Ch(i, S)| = 1, and (b) ∀ i ∈ N , and S, T ∈ Ci
if Ch(i, S) �i Ch(i, T ) then S �i T or if Ch(i, S) = Ch(i, T ), and S ⊂ T , then S �i T .
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Theorem 8 For a top-responsive game, let m̃ be the number of samples required to get
ε̃-PAC stable partition in noisy game (N, ṽ), and m be the samples required for π̃ to
be ε-PAC partition in unknown noise-free game (N, v). Then mζ ≤ m̃ ≤ m + (2n3 +

2n4)
(
(1−ε̃)+ε̃ζ
ε̃(1+ε̃ζ) log 2n3

δ

)
.

Proof Recall, to get ε̃-PAC stable partition in the noisy top-responsive games authors in

(Sliwinski and Zick, 2017) provide m̃ for top-responsive games as m̃ = (2n3+2n4)
(
1
ε̃ log 2n3

δ

)
.

However, from Theorem 5 we have (1 − ε̃)ζ = 1 − ε, this implies ε = (1 − ζ) + ζε̃ ≥ ζε̃.
Thus, for ε-PAC stability of partition π̃ in a top-responsive noise-free game the number of

samples m are given by m = (2n3 + 2n4)
(
1
ε log 2n3

δ

)
≤ (2n3 + 2n4)

(
1
ζε̃ log 2n3

δ

)
= m̃

ζ . This

gives an upper bound. For a lower bound, again consider (1− ε̃)ζ = 1− ε, therefore we have
ε = (1− ζ) + ζε̃ ≤ 1 + ζε̃. That is 1

ε ≥
1

1+ζε̃ . Thus, we have

m = (2n3 + 2n4)

(
1

ε
log

2n3

δ

)
≥ (2n3 + 2n4)

(
1

1 + ζε̃
log

2n3

δ

)
= (2n3 + 2n4)

({
1

ε̃
− (1− ε̃) + ε̃ζ

ε̃(1 + ε̃ζ)

}
log

2n3

δ

)
= m̃− (2n3 + 2n4)

(
(1− ε̃) + ε̃ζ

ε̃(1 + ε̃ζ)
log

2n3

δ

)
.

From the lower and upper bounds, we have the result.

The above Theorem gives a bound on the extra samples required to get ε-PAC stable
partition of the unknown noise-free game given ε̃-PAC stable partition of the noisy game.
Again the number of samples to get ε = (1− (1− ε̃)ζ)-PAC stable outcome in an unknown
noise-free game are bounded by the number of samples m̃, the satisfaction value ζ, and
the confidence parameter δ. In particular, the number of samples m are polynomial in
n, 1ε , log

(
1
δ

)
, but its upper bound is non-linear in ζ.

We next relate the number of samples and errors in noisy and unknown noise-free games.
Let π̃ be ε̃-PAC stable partition of noisy game when m̃ samples are used. Suppose, we get
(ε̃ − ε̃′)-PAC partition of the noisy game on increasing the noisy samples to m̃ + m̃′. Let
π̃ be (ε̃ − ε̃′)-PAC stable for the noisy game that uses m̃ + m̃′ samples. Let εnew be the
error incurred to get π̃ partition with m̃ + m̃′ samples in a given noise-free game, then
εnew = 1− (1− (ε̃− ε̃′))fT (p,α) = 1− (1− ε̃)fT (p,α)− ε̃′fT (p,α) = ε− ε̃′fT (p,α) ≤ ε.

Theorem 9 For an unknown noise-free game, let π̃ be εnew-PAC stable partition with m̃+
m̃′ noisy samples, and it is ε-PAC stable partition with m̃ noisy samples, then εnew ≤ ε.

Remark 10 The results of Theorem 8 and Theorem 9 can be generalized to any class of
hedonic games by suitably obtaining the sample complexity of that class. This is because the
number of samples required in noise-free game is function of n, 1ε , log

(
1
δ

)
.

To get some more insights we next identify the agreement probability fT (p,α) defined for
partial information noise model with l ≥ 2 noise support in the following subsection. We
use the base case of l = 2 noise support case in the proofs of results in the next Section.
these are deferred to Sec. 1 of the SM due to space considerations.
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2.2. n agent l support partial information noisy game

We now consider the l ≥ 2 support case, i.e., Nsp = {α1, α2, . . . , αl} with respective prob-
abilities p1, p2, . . . , pl, and

∑
j∈[l] pj = 1. Here pj = P(α(S) = αj) and αj > 0, ∀ j ∈ [l].

Moreover, without loss of generality we assume that αi < αj , ∀ i < j. For above noise
support the following Theorem give expression of fT (p,α). To this end, for any coalition

T and for all r, s such that αr > αs, define I(αr, αs, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))ṽi(T )
≥ αr

αs

}
.

Theorem 11 Let π̃ be a ε̃-PAC stable outcome of the noisy game (N, ṽ) and let π̃ be a ε-
PAC stable outcome of noise-free game (N, ṽ), where ε is identified as in Theorem 5. Then
for noise support Nsp = {α1, α2, . . . , αl}, the fT (p,α) is given by:

fT (p,α) =


1, if π̃(i) = T, ∀ i ∈ T,∑

r,s∈[l]:αr>αs
p
|R(T )|−|I(αr,αs,T )|+1
s × {(pr + ps)

|I(αr,αs,T )| − p|I(αr,αs,T )|
s }

+
∑l

a=1 pa (
∑a

b=1 pb)
|R(T )| , otherwise.

The proof uses the principle of Mathematical induction on noise support l ≥ 2 with base
case of l = 2 support (Lemma 1 of the SM). The detailed proof is available in Appendix A.

Remark 12 If we allow fT (p,α) = ζ for all coalitions T ⊆ N for some user-given sat-
isfaction value ζ, we have noise set I?(ζ) in accordance to Theorem 7. This noise set
corresponds to the superlevel sets of the prediction probability function. For this super level
set the partition π̃ is ζ noise-robust core-stable. Later, Sec. 4 shows that these superlevel
sets are non-convex by explicitly deriving the prediction probability.

3. Partial information noisy game when π̃ is not ε̃-PAC stable partition

So far we have assumed that π̃ is ε̃-PAC stable partition of the noisy game (N, ṽ); however,
that is not always the case. For example π̃ = {{1}, {23}} is not core stable for the game in
(1). In this section, we consider the other case where an estimated partition π̃ is not ε̃-PAC
stable for the noisy game (N, ṽ). Note that π̃ not being ε̃-PAC stable doesn’t mean that the
noisy game (N, ṽ) has no stable partition. Given a sample S̃, we say π̃ is not ε̃-PAC stable
partition of noisy game (N, ṽ) if there is a coalition T that core blocks it with probability
at least 1− ε̃. Formally, ∀ ε̃ > 0, ∃ T ∼ D̃, such that

P[∩i∈T ṽi(T ) > ṽi(π̃(i))] ≥ 1− ε̃. (7)

Our interest is in finding the prediction probability (Equation (5)) that a noise-free game
does not have π̃ as ε-PAC stable outcome (ε to be identified in terms of ε̃) when the noisy
game does not have π̃ as ε̃-PAC stable partition. To this end, for any coalition T , we again
define an agreement event F (T, π̃) 3. It contains all the noise values (α(T ), {α(π̃(i)))}π̃∈R(T ))
such that coalition T is preferred over all the coalitions π̃(i) ∈ R(T ) by every agent i ∈ T
in both the noisy and noise-free games. Formally,

F (T, π̃) := {(α(T ), {α(π̃(i))}π̃(i)∈R(T )) : ∩i∈T {vi(T ) ≥ vi(π̃(i)) ∩ α(T )vi(T ) ≥ α(π̃(i))vi(π̃(i))}}.

3. Though we use the same names, the agreement event in Sec. 2 is different from this agreement event.
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For probability mass p and noise value set α, let hT (p,α) := P
T∼D̃[F (T, π̃)] be the

agreement probability. Note that F (T, π̃) and hence hT (p,α) are not known since the
noise-free values vi(T ) and vi(π̃(i)) are not known. However, for l ≥ 2 support noise
distribution N we obtain hT (p,α) explicitly in Sec. 3.1.

Theorem 13 Suppose the noisy game (N, ṽ) does not have π̃ as ε̃-PAC stable outcome,
i.e., equation (7) is satisfied. Then the prediction probability given in Equation (5) is given
by: P[∩i∈T (vi(T ) > vi(π̃(i)))] ≥ (1− ε̃)hT (p,α), where ε > 0 satisfy (1− ε̃)hT (p,α) = 1− ε.

Proof Consider the following: P
T∼D̃[∩i∈T (vi(T ) > vi(π̃(i)))]

≥ P
T∼D̃[∩i∈T (vi(T ) > vi(π̃(i))) | ∩i∈T (ṽi(T ) > ṽi(π̃(i)))]× P

T∼D̃[∩i∈T (ṽi(T ) > ṽi(π̃(i)))]

≥ (1− ε̃) P[∩i∈T (vi(T ) > vi(π̃(i))) | ∩i∈T (ṽi(T ) > ṽi(π̃(i)))]

≥ (1− ε̃) P[∩i∈T {vi(T ) > vi(π̃(i)) ∩ ṽi(T ) > ṽi(π̃(i))}] (∵ P(A|B) ≥ P(A ∩B))

= (1− ε̃) hT (p,α) = 1− ε.

This ends the proof.

Let η be the probability of noise agreement event for which coalition T core blocks π̃, i.e.,
η := hT (p,α). Thus ε = (1−η) +ηε̃ and hence partition π̃ is η noise-robust non core-stable
in accordance to Definition 2. Moreover, if η = 1 then ε̃ = ε so, for arbitrary ε̃ > 0, we also
have arbitrary ε > 0.

Remark 14 Similar to Sec. 2, for a user-given η, we get a noise set I?(T, η) on p for
coalition T , i.e., the noise set in which the coalition T core blocks π̃ with error more than
1 − ε. This is obtained by setting P[F (T, π̃)] = hT ((p),α) = η; that is, I?(T, η) is η level
set of agreement probability function P[F (T, π̃)]; in other words, it is a super level set of the
prediction probability. Hence, π̃ is η noise-robust non core-stable in this noise set I?(T, η).

To better understand the noise robustness, we provide the expression of hT (p,α) for l ≥ 2
support noise models in the following subsection. For l = 2 support noise model, we refer
the readers to Lemma 3 of the SM. The detailed analysis of the 2 support model gives many
more insights and also serves as the base case in the proof of results in the next Section.

3.1. n agents l support partial information noisy game without core

In this section, we obtain the expression of the agreement probability hT (p,α) for l ≥ 2
support noise model, Nsp = {α1, α2, . . . , αl}. To this end, for all r, s such that αr > αs

define J (αr, αs, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))ṽi(T )
≥ αs

αr

}
. It contains the set of all coalitions in

the set R(T ), such that αr > αs, and ṽi(π̃(i))
ṽi(T )

≥ αs
αr

. The following Theorem provides the

expression of hT (p,α). For proof refer to Sec. 3 of the SM.

Theorem 15 For n agent noisy hedonic game (N, ṽ) with Nsp = {α1, α2, . . . , αl}, the
agreement probability hT (p,α) is given by:

hT (p,α) =


1, if π̃(i) = T, ∀ i ∈ T,∑

r,s∈[l]:αr>αs
p
|R(T )|−|J (αr,αs,T )|+1
r × {(ps + pr)

|J (αr,αs,T )| − p|J (αr,αs,T )|
r }

+
∑l

a=1 pa

(∑l
b=a pb

)|R(T )|
, otherwise.
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Remark 16 Let hT (p,α) = η for some user-given satisfaction value η, we get a set of
noise values in accordance to the Remark 14. In this case, the noise set depends on |R(T )|,
and |J (αr, αs, T )|, ∀ αr > αs for coalition T . Also, the partition π̃ is η noise-robust non
core-stable in the noise set I?(T, η).

Remark 17 Theorem 13 provides the probability that π̃ is not ε-PAC stable outcome in
noise-free game (N, v), when it is not ε̃-PAC stable outcome in noisy game. Therefore, the
probability that a noise-free game has π̃ as ε-PAC stable outcome, given that the noisy game
does not have π̃ as ε̃-PAC stable outcome is compliment of the probability in Theorem 13.

4. 2 agent full information model

This Section considers the complete information game with 2 agents. So, valuations on all
coalitions are known in the noisy game; hence, a noisy core-stable partition is also known.
Even though this Section is a particular case of previous sections, we get many valuable
insights that enhance our understanding regarding noise robustness in noisy hedonic games.
For example, we have this counter-intuitive fact that the prediction probability can be high
if the noise value occurs with a high probability. A concrete illustration is that the prediction
probability turns out to be 1 when values of all agents are inflated by α > 1 with probability
1; in fact, both games have the same preferences and hence identical partitions.

4.1. 2 support noise distribution

Let the noise support be Nsp ∈ {1, α} with α > 1, such that P[Nsp = α] = p = 1− P[Nsp =
1]. Note that α > 1 is not a restrictive condition; even if we allow α < 1, we will get
results similar to the ones presented below. Given a noisy game and its corresponding core-
stable partition, we aim to find the prediction probability that a core-stable partition of the
unknown noise-free game is the same as a core-stable partition of a noisy game. Formally,
for a user-given ζ ∈ (0, 1], we find P[π = π̃ | noisy game] ≥ ζ.

We want to emphasize that the above prediction probability is the same as the one
given in Equation (5). Since, in a 2 agent complete information game, the noisy core-
stable partition π̃ always exists; hence ε̃ = 0 in Theorem 5. So, with fT (p,α) = ζ we
have P

T∼D̃[T does not core blocks π̃ in (N, v)] ≥ ζ. Consider the following 2 agents’ noisy
game.

ṽ1(12) > ṽ1(1); ṽ2(12) > ṽ2(2). (game 1)

Clearly, π̃ = {12} = N is the core-stable outcome of the above noisy game. The following
Lemma gives the prediction probability for the above game.

Lemma 18 For noisy game 1 with complete information on ṽ, and Nsp = {1, α}, we have

P[π = π̃ | game 1] =


1− p(1− p2), if α ≥ r
1− p(1− p), if r ≤ α < r

1, if α < r,

(8)

where r = max
{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
, and r = min

{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
.
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Also, this prediction probability P[π = π̃ | game 1] is convex in p. So, while the minimal
value for P[π = π̃ | game 1] occurs for noise probabilities around p = 0.5 (depending on α, r
and r), the maximal value of it is 1 at p = 0 and p = 1.

The proof is deferred to Sec. 4.1 of the SM. The above lemma has following insights: the
prediction probability depends on three factors, p, α, and ṽ . Note that p is not known
because the noise distribution is unknown. We know ṽ ’s hence r, and r are known. If p is
close to 0.5, then the prediction probability P[π = π̃ | game 1] is close to 0.62, for α ≥ r,
and close to 0.75 for r ≤ α < r. So, the prediction probability is the least when noise is
random. We call this minimum prediction probability the safety value.

Suppose we allow the user-given satisfaction value on the prediction probability, i.e.,
we relax the condition P[π = π̃ | game 1] = 1, and allow a user-given satisfaction value,
ζ ∈ (0, 1] on the prediction probability, i.e., P[π = π̃ | game 1] = ζ. So, for different ranges of
α, we get an interval of the noise probabilities p allowable to attain a user-given probability
ζ. For example, if ζ = 0.9, then the noise regime, I?(ζ = 0.9) = [0, 0.101] ∪ [0.946, 1], if
α ≥ r; it is [0, 0.113] ∪ [0.887, 1], if r ≤ α < r; and it is [0, 1], if α < r. So, for the noise set
I?(ζ = 0.9), the core-stable partition of the noise-free game is the same as the core-stable
partition of the noisy game 1 with probability 0.9. Thus, the noise regime achieving a user
given satisfaction value can be non-convex. Figure 1 illustrates these observations. Note

Figure 1: In two agent hedonic game 1 with 2 support noise model, we plot the prediction
probability P[π = π̃ | game 1] for different ranges of α.

that in Equation (8) we have obtained the conditional probability P[π = π̃ | game 1]. One
can obtain a similar prediction probability for other noisy games, which we call game 2,
game 3, and game 4, whose details are available in Sec. 4.2 of the SM. We summarize the
main observations of 2 agents 2 support noise in the Theorem below:

Theorem 19 Consider 2 agent noisy hedonic game with 2 support noise model, then the
prediction probability that π = π̃ given any noisy game k, k = 1, 2, 3, 4 is:

P[π = π̃ | game k] =

{
1, under any condition in A,

q(p, ṽ1(·), ṽ2(·), α), otherwise,
(9)
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for some function q(p, ṽ1(·), ṽ2(·), α) < 1, depending on ṽ1(·), ṽ2(·) and α. The conditions

in A are (a) k = 1, and α < r; (b) k = 2 and 1
α ≥ r; (c) k = 3 and 1

α ≥
ṽ1(12)
ṽ1(1)

; and (d)

k = 4 and 1
α ≥

ṽ2(12)
ṽ2(2)

.

Moreover, if p = 0 or p = 1, we have P[π = π̃ | game k] = 1, for all k = 1, 2, 3, 4.

For a 2 support noise model, the probability that a noise-free game has the same core-stable
partition as the noisy game is 1 in many cases, including p = 1, i.e., when all values are
inflated by α. Thus, the allowable noise regimes for high prediction probabilities can include
high noise values. Moreover, q(p, ṽ1(·), ṽ2(·), α) ≥ 0.62 is the safety value. So, we have a
lower bound on the prediction probability.

4.2. 3 support noise distribution

Next, consider the 3 support noise, Nsp = {1, α1, α2}, where α1 > 1, and 0 < α2 < 1. Let
P[α(S) = α1] = p1; P[α(S) = α2] = p2; and P[α(S) = 1] = 1 − p1 − p2. Given the noisy
game 1, the prediction probability for 3 support noise is given in the Lemma below.

Lemma 20 For the 3 support noise model the prediction probability P[π = π̃ | game 1] is

P[π = π̃ | game 1] =

{
g(p1, p2), if α1 ≥ r ; 1

α2
≥ r ; α1

α2
≥ r

1, if α1 < r ; 1
α2
< r ; α1

α2
< r

(10)

where g(p1, p2) = p31 + p32 + 2(p1(1− p1− p2)2 + p22(1− p1− p2) + p1p2(1− p1− p2) + p1p
2
2) +

p21p2 + p21(1− p1 − p2) + p2(1− p1 − p2)2 + (1− p1 − p2)3.

There are 106 more cases in the above Lemma, where in each case, the prediction probability
is strictly less than 1 (Sec. 5.1 of SM). Unlike 2 support model (Sec. 4.1) in this case they
are non-convex ; a counter-example is available in Sec. 5.2 of SM.

5. Related work

Stability notions in hedonic games: Researchers have extensively studied hedonic
games in the computational social choice community. Some early works in coalition forma-
tion games describing the economic situations include that of Dreze and Greenberg (1980);
Elkind and Wooldridge (2009). The agents collaborate and have personal preferences on
different coalitions. Based on these preferences, agents seek a partition of the agent set.
However, which partition to form led to various notions of stability (Bogomolnaia and Jack-
son, 2002; Banerjee et al., 2001; Aziz and Brandl, 2012). Some of them are core stability,
Nash stability, and perfect. In this work, we use core stability. In particular, the core for
the simple hedonic games is available in Banerjee et al. (2001).

representation of hedonic games: In many real-life scenarios, there are multiple
agents, so storing the hedonic game in a machine takes exponential space. In literature,
various concise representations are used because they (often) only require polynomial space.
So, apart from various stability notions, much literature is on representing the hedonic
games. Some of them includes individually rational lists of coalitions (IRLC) (Ballester,
2004), hedonic coalition nets (HCNs) (Elkind and Wooldridge, 2009), additively separable
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games, fractional hedonic games, B-games, W-games, top-responsive games (Alcalde and
Revilla, 2004). A detailed survey of the hedonic games is available in Aziz and Savani
(2016); Aziz et al. (2019); Cechlárová and Hajduková (2004). In our work, we only use
partial information and ε-PAC stable notion for the existence of partition π̃. However, our
work is valid for any class of hedonic games as long as both noise-free and noisy values have
the same representation.

Existence of solution concepts: Another line of literature focuses on the algorithmic
aspects of solution concepts of hedonic games. Regarding solution concepts like core stability
and nature of partitions, there are two questions: does there exist a partition π satisfying
the solution concept’s properties; if there is such a π, find one. To this end, for different
classes of hedonic games, there are various algorithms and hardness results such as Sung
and Dimitrov (2010); Rahwan et al. (2009); Woeginger (2013).

PAC learning in hedonic games: Uncertainty in the agents’ preferences in the
cooperative games has been carefully analyzed by Balcan et al. (2015). The authors used
the PAC learning model to learn an underlying game. A new connection is established
between PAC learnability and core stability for various classes of TU cooperative games.
It turned out that only a few classes of TU games are learnable and stable. Sliwinski and
Zick (2017) extended the PAC learning approach to the premise of hedonic games, where
complete information about individual preferences is unavailable. We incorporate noise in
the preferences and use PAC bounds to obtain the prediction probabilities.

6. Discussion and looking ahead

This work considers the noisy hedonic game with partial information on preferences. Given
a PAC stable partition of the noisy game, we find the prediction probability that unknown
noise-free game has PAC stable partition. This requires a combinatorial construct called
agreement event and its probability. For l ≥ 2 noise support, we obtain the agreement prob-
ability as a function of noise probabilities. For a user-given satisfaction value on agreement
probability, we obtain the noise set such that a given partition is noise-robust. An inter-
esting observation is that the prediction probability can be high for some high noise values
with high probabilities. In particular, for a 2 agent game with 2 noise support, we obtain
the noise set for which the prediction probability is more than a user-given satisfaction
value. We have noise robustness for the entire noise probability simplex for the prediction
probability below 0.62, i.e., the safety value. However, if the prediction probability function
exceeds this safety value, the noise robust regime is non-convex. For the case of 3 noise
support, finding a safety value is difficult as it is a global minimum of a non-convex predic-
tion probability function. We obtain the bounds on the extra noisy samples required to get
the PAC stable partition in a noise-free game. These extra samples are polynomial in the
number of agents and the user-given satisfaction value on agreement probability.

The aspects we investigated offer many other rich possibilities; we mention some of them
here. Firstly, since the prediction probability function for 3 support noise distribution is
non-convex, which renders the computation of the fundamental limit of noise robustness
hard, one may investigate suitable approximations. Another possibility is to consider other
noise models where the value of each coalition is perturbed at the individual player level.
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Appendix A. Proof of Theorem 11

Proof We prove this via induction on noise support l ≥ 2. The base case with l = 2
support is available in Lemma 1 of the SM. Let us assume that it is true for l = k, i.e., there

are sets I(αr, αs, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))ṽi(T )
≥ αr

αs

}
, such that αs < αr, ∀ 1 ≤ s < r ≤ k.

For this k we have fT (pj , αj ; j ∈ [k]) =: fT (p,α) (by assumption), here [k] = {1, 2, . . . , k}

fT (p,α) =

k∑
a=1

pa

(
a∑
b=1

pb

)|R(T )|

+
∑

r,s∈[k]:αr>αs

p|R(T )|−|I(αr,αs,T )|+1
s ((pr+ps)

|I(αr,αs,T )|−p|I(αr,αs,T )|
s ).

We will now show that this is true for l = k + 1. To this end, for all s ∈ [k] such that for

αk+1 > αs we define I(αk+1, αs, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))ṽi(T )
≥ αk+1

αs

}
. Now, there are two

cases, I(αk+1, αs, T ) = ∅, ∀ αs, s ∈ [k], or I(αk+1, αs, T ) 6= ∅ for at least for one s ∈ [k].
Case 01: [I(αk+1, αs, T ) = ∅, ∀ αs, s ∈ [k]]. With one more element in noise support,

apart from the existing {α(π̃(i)}π̃(i)∈R(T ), and α(T ) for k support case it will also have
α(T ) = αk+1, and α(π̃(i)) ∈ {α1, α2, . . . , αk+1}, ∀ π̃(i) ∈ R(T ). The probability of such

α’s is pk+1

(∑k+1
b=1 pb

)|R(T )|
. Therefore, the overall probability is

k∑
a=1

pa

(
a∑
b=1

pb

)|R(T )|

+ pk+1

(
k+1∑
b=1

pb

)|R(T )|

=

k+1∑
a=1

pa

(
a∑
b=1

pb

)|R(T )|

.

Case 02: [I(αk+1, αs, T ) 6= ∅ for at least for one s ∈ [k]]. In this case, apart from the ex-
isting {α(π̃(i))}π̃(i)∈I(αr,αs,T ), and α(T ) for k support, we also have {α(π̃(i))}π̃(i)∈I(αk+1,αs,T ),
α(T ) such that α(π̃(i)) = αs, ∀ π̃(i) ∈ R(T ) \ I(αk+1, αs, T ), and α(T ) = αk+1. Thus, for
k + 1 support the probability is:∑

r,s∈[k]:αr>αs

p|R(T )|−|I(αr,αs,T )|+1
s ((pr + ps)

|I(αr,αs,T )| − p|I(αr,αs,T )|
s )

+ p|R(T )|−|I(αk+1,αs,T )|+1
s ((pk+1 + ps)

|I(αk+1,αs,T )| − p|I(αk+1,αs,T )|
s ).

From case 01 and case 02 above, for k + 1 support we have,

fT (pj , αj ; j ∈ [k + 1]) =
∑

r,s∈[k+1]:αr>αs

p|R(T )|−|I(αr,αs,T )|+1
s

(
(pr + ps)

|I(αr,αs,T )| − p|I(αr,αs,T )|
s

)

+

k+1∑
a=1

pa

(
a∑
b=1

pb

)|R(T )|

Therefore, from the principle of Mathematical induction, this is true for any l ≥ 2.
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