Appendix: On the expressivity of bi-Lipschitz normalizing flows

Alexandre Verine
Benjamin Negrevergne Yann Chevaleyre
ALEXANDRE.VERINE@DAUPHINE.PSL.EU
BENJAMIN.NEGREVERGNE@DAUPHINE.PSL.EU
YANN.CHEVALEYRE@DAUPHINE.PSL.EU
LAMSADE, Université Paris-Dauphine, PSL, Paris, France

Fabrice Rossi
ROSSI@CEREMADE.DAUPHINE.FR
CEREMADE, Université Paris-Dauphine, PSL, Paris, France

Editors: Emtiyaz Khan and Mehmet Gönen

Appendix A. Proofs

A.1. Proof of theorem 6

By definition we have $\widehat{P}(A)=\int_{A} \hat{p}(\boldsymbol{x}) d \boldsymbol{x}$, then with the change of variable formula we obtain :

$$
\begin{aligned}
\widehat{P}(A) & =\int_{A}\left|\operatorname{Jac}_{F}(\boldsymbol{x})\right| q(F(\boldsymbol{x})) d \boldsymbol{x} \\
& =\frac{1}{(2 \pi)^{d / 2}} \int_{A}\left|\operatorname{Jac}_{F}(\boldsymbol{x})\right| e^{-\|F(\boldsymbol{x})\|^{2} / 2} d \boldsymbol{x}
\end{aligned}
$$

As F is L_{1}-Lipschitz we have $\left|\operatorname{Jac}_{F}(\boldsymbol{x})\right| \leq L_{1}^{d}$, then

$$
\begin{aligned}
\widehat{P}(A) & \leq\left(\frac{L_{1}}{\sqrt{2 \pi}}\right)^{d} \int_{A} e^{-\|F(\boldsymbol{x})\|_{2}^{2}} d \boldsymbol{x} \\
& \leq\left(\frac{L_{1}}{\sqrt{2 \pi}}\right)^{d} \int_{A} d \boldsymbol{x} \\
& \leq\left(\frac{L_{1}}{\sqrt{2 \pi}}\right)^{d} \operatorname{vol}(A)
\end{aligned}
$$

and thus $T V\left(P^{*}, \widehat{P}\right)=\sup _{A}\left|P^{*}(A)-\widehat{P}(A)\right|$ implies

$$
T V\left(P^{*}, \widehat{P}\right) \geq \sup _{A}\left(P^{*}(A)-\left(\frac{L_{1}}{\sqrt{2 \pi}}\right)^{d} \operatorname{vol}(A)\right)
$$

A.2. Proof of theorem 7

By definition of the TV distance, we have

$$
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) \geq \sup _{R, \boldsymbol{x}_{0}}\left|P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-Q\left(F\left(B_{R, \boldsymbol{x}_{0}}\right)\right)\right|,
$$

where $B_{R, x_{0}}$ is the ball of a radius R centered in \boldsymbol{x}_{0}.
Then, the idea is to show that the image of a ball B_{R} by a L_{1}-Lipschitz function is in a ball of radius $L_{1} R$, and then use a reverse isoperimetric inequality the find an upper bound of the measure of a ball of a radius $L_{1} R$.

Proof of $F\left(B_{R, x_{0}}\right) \subset B_{L_{1} R, F\left(x_{0}\right)}$
First of all, for every $\boldsymbol{z} \in F\left(B_{R, \boldsymbol{x}_{0}}\right)$, there exist $\boldsymbol{x} \in B_{R}$ such that $F^{-1}(\boldsymbol{z})=\boldsymbol{x}$, we have :

$$
\begin{aligned}
\left\|F\left(F^{-1}(\boldsymbol{z})\right)-F\left(\boldsymbol{x}_{0}\right)\right\| & =\left\|F(\boldsymbol{x})-F\left(\boldsymbol{x}_{0}\right)\right\| \\
& \leq L_{1}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \\
& \leq L_{1} R
\end{aligned}
$$

Upper bound of $Q\left(B_{L_{1} R}\right)$ This bound is extracted from the work of Ball (1993) on the Reverse Isoperimetric Inequality. First of all, it can be easily establish that $Q\left(B_{L_{1} R}\left(F\left(\boldsymbol{x}_{0}\right)\right)\right)$ is at a maximum when $F\left(\boldsymbol{x}_{0}\right)=0$. From now on, we will only consider $B_{L_{1} R}$ the ball centered on 0 . Therefore the objective is to find an upper bound on :

$$
\begin{aligned}
Q\left(B_{L_{1} R}\right) & =\int_{\|\boldsymbol{z}\|<L_{1} R} q(\boldsymbol{z}) d \boldsymbol{z} \\
& =\int_{\|\boldsymbol{z}\|<L_{1} R} \frac{1}{(\sqrt{2 \pi})^{d}} e^{-\|\boldsymbol{z}\|^{2} / 2} d \boldsymbol{z}
\end{aligned}
$$

We can use the polar coordinates system to get another expression of the Gaussian measure with $S_{d-1}(r)=\frac{2 \pi^{d / 2} r^{d-1}}{Q(d / 2)}$ being the volume of the hypersphere :

$$
\begin{aligned}
Q\left(B_{L_{1} R}\right) & =\frac{1}{(2 \pi)^{d / 2}} \int_{0}^{L_{1} R} S_{d-1}(r) e^{-r^{2} / 2} d r \\
& =\frac{2}{2^{d / 2} \Gamma(d / 2)} \int_{0}^{L_{1} R} r^{d-1} e^{-r^{2} / 2} d r
\end{aligned}
$$

However $r^{d-1} e^{-r^{2} / 2}$ has a maximum value reached for $r=\sqrt{d-1}$, we can have an upper bound :

$$
\begin{aligned}
Q\left(B_{L_{1} R}\right) & \leq \frac{2}{2^{d / 2} \Gamma(d / 2)} \sqrt{d-1}^{d-1} e^{-\frac{d-1}{2}} \int_{0}^{L_{1} R} d r \\
& \leq \frac{\sqrt{2} L_{1} R}{\Gamma(d / 2)}\left(\frac{d-1}{2 e}\right)^{\frac{d-1}{2}}
\end{aligned}
$$

Then, with the Stirling approximation of the Gamma function:

$$
\begin{aligned}
\frac{1}{2} \Gamma(d / 2) & =\frac{1}{d} \Gamma(d / 2+1) \\
& \geq \frac{\sqrt{\pi} \sqrt{d}}{d}(d / 2)^{d / 2} e^{-d / 2} \\
& \geq \frac{\sqrt{\pi}}{2^{d / 2}} d^{\frac{d-1}{2}} e^{-\frac{d}{2}}
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
Q\left(B_{L_{1} R}\right) & \leq \frac{2}{2^{d / 2} \Gamma(d / 2)}(d-1)^{\frac{d-1}{2}} e^{-\frac{d-1}{2}} \\
& \leq \frac{L_{1} R \sqrt{e}}{\sqrt{\pi}}\left(\frac{d-1}{d}\right)^{\frac{d-1}{2}}
\end{aligned}
$$

Using the bound

$$
\frac{1}{\sqrt{e}}<\left(\frac{d-1}{d}\right)^{\frac{d-1}{2}}
$$

we have

$$
Q\left(B_{L_{1} R}\right)<\frac{L_{1} R}{\sqrt{\pi}}
$$

Lower Bound of the TV As soon as we have an upper bound on $Q\left(B_{L_{1} R}\right)$, we have :

$$
\begin{aligned}
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) & \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-Q\left(F\left(B_{R, \boldsymbol{x}_{0}}\right)\right)\right) \\
& \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-Q\left(B_{L_{1} R, \boldsymbol{x}_{0}}\right)\right) \\
& \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-\frac{L_{1} R}{\sqrt{\pi}}\right)
\end{aligned}
$$

A.3. Proof of Theorem 8

Value of $Q\left(B_{R, 0}\right) \quad$ By construction

$$
Q\left(B_{R, 0}\right)=\mathbb{P}\left(\|\boldsymbol{z}\|^{2} \leq R^{2}\right)
$$

when \boldsymbol{z} follows the standard Gaussian distribution in \mathbb{R}^{d}. This quantity can be computed using the cumulative distribution function of the chi-square distribution, i.e.

$$
Q\left(B_{R, 0}\right)=\frac{\gamma\left(\frac{d}{2}, \frac{R^{2}}{2}\right)}{\Gamma\left(\frac{d}{2}\right)}
$$

where γ is the lower incomplete gamma function given by

$$
\gamma(x, k)=\int_{0}^{x} t^{k-1} e^{-t} d t
$$

Lower Bound of the TV Since we have the closed form of the measure over a ball we can write :

$$
\begin{aligned}
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) & \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-Q\left(F\left(B_{R, \boldsymbol{x}_{0}}\right)\right)\right) \\
& \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-Q\left(B_{L_{1} R, \boldsymbol{x}_{0}}\right)\right) \\
& \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-\frac{\gamma\left(\frac{d}{2}, \frac{L_{1}^{2} R^{2}}{2}\right)}{\Gamma\left(\frac{d}{2}\right)}\right)
\end{aligned}
$$

A.4. Proof of theorem 9

In this section, we denote $B_{R}=B_{R, F^{-1}(0)}$. As F^{-1} is L_{2}-Lipschitz, $F^{-1}\left(B_{R / L_{2}, 0}\right) \subset B_{R}$ and thus

$$
\widehat{P}\left(B_{R}\right) \geq \widehat{P}\left(F^{-1}\left(B_{R}\right)\right)=Q\left(B_{R / L_{2}, 0}\right)
$$

Therefore, by analogy with the proof of Theorem 8:

$$
\begin{aligned}
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) & \geq \sup _{R}\left(Q\left(F\left(B_{R}\right)\right)-P^{*}\left(B_{R}\right)\right) \\
& \geq \sup _{R}\left(Q\left(B_{R / L_{2}}\right)-P^{*}\left(B_{R}\right)\right) \\
& \geq \sup _{R}\left(\frac{\gamma\left(\frac{d}{2}, \frac{R^{2}}{2 L_{2}^{2}}\right)}{\Gamma\left(\frac{d}{2}\right)}-P^{*}\left(B_{R}\right)\right)
\end{aligned}
$$

A.5. Proof of Corollary 10

Since M_{1} and M_{2} are separated by a distance D the ball centered on $F^{-1}(0)$ has a radius at least as big as D that we might call B_{D} to simplify the notation. Therefore :

$$
\begin{aligned}
\bar{\alpha} & =\widehat{P}\left(M_{1}\right)+\widehat{P}\left(M_{2}\right) \\
& =1-\widehat{P}\left(\overline{M_{2} \cup M_{1}}\right) \\
& \leq 1-\widehat{P}\left(B_{D}\right) \\
& \leq 1-Q\left(F\left(B_{D}\right)\right) \\
& \left.\leq 1-Q\left(B_{D / L_{2}}\right)\right) \\
& \leq 1-\frac{\gamma\left(\frac{d}{2}, \frac{D^{2}}{2 L_{2}^{2}}\right)}{\Gamma\left(\frac{d}{2}\right)}
\end{aligned}
$$

And since $P^{*}\left(B_{D}\right)=0$:

$$
\begin{aligned}
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) & \geq\left|\widehat{P}\left(B_{D}\right)-P^{*}\left(B_{D}\right)\right| \\
& \geq \widehat{P}\left(B_{D}\left(F^{-1}(0)\right)\right. \\
& \geq \frac{\gamma\left(\frac{d}{2}, \frac{D^{2}}{2 L_{2}^{2}}\right)}{\Gamma\left(\frac{d}{2}\right)}
\end{aligned}
$$

A.6. Bounds for learned variance

For a given variance σ^{2} and the corresponding covariance matrix $\sigma^{2} I$, the Gaussian measure of a ball $Q_{\sigma}\left(B_{R}\right)$ of radius R associated can be written as :

$$
\begin{aligned}
Q_{\sigma}\left(B_{R}\right) & =\int_{\|\boldsymbol{z}\|<L_{1} R} q_{\sigma}(\boldsymbol{z}) d \boldsymbol{z} \\
& =\int_{\|\boldsymbol{z}\|<R} \frac{1}{(\sqrt{2 \pi})^{d} \sigma^{d}} e^{-\|\boldsymbol{z}\|^{2} / 2 \sigma^{2}} d \boldsymbol{z}
\end{aligned}
$$

Then, with the proper change of variable $z^{\prime}=z / \sigma$, we have :

$$
\begin{aligned}
Q_{\sigma}\left(B_{R}\right) & =\int_{\left\|\sigma \boldsymbol{z}^{\prime}\right\|<R} \frac{1}{(\sqrt{2 \pi})^{d} \sigma^{d}} e^{-\|\boldsymbol{z}\|^{2} / 2}|\sigma I| d \boldsymbol{z}^{\prime} \\
& =\int_{\|\boldsymbol{z}\|<\frac{R}{\sigma}} \frac{1}{(\sqrt{2 \pi})^{d}} e^{-\|\boldsymbol{z}\|^{2} / 2} d \boldsymbol{z} \\
& =Q\left(B_{R / \sigma}\right)
\end{aligned}
$$

Hence the two bounds become :

$$
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) \geq \sup _{R, \boldsymbol{x}_{0}}\left(P^{*}\left(B_{R, \boldsymbol{x}_{0}}\right)-\frac{\gamma\left(\frac{d}{2}, \frac{L_{1}^{2} R^{2}}{2 \sigma^{2}}\right)}{\Gamma\left(\frac{d}{2}\right)}\right)
$$

and

$$
\mathcal{D}_{\mathrm{TV}}\left(P^{*}, \widehat{P}\right) \geq \sup _{R}\left(\frac{\gamma\left(\frac{d}{2}, \frac{\sigma^{2} R^{2}}{2 L_{2}^{2}}\right)}{\Gamma\left(\frac{d}{2}\right)}-P^{*}\left(B_{R, F^{-1}(0)}\right)\right)
$$

Appendix B. 2D datsets

Figure B.1: 2D Dataset : Circles (left) and 8 Gaussians (right).
Appendix C. Inverse image of the center of the Gaussian latent distribution

Figure C.2: Image of $F^{-1}(0)$ for MNIST of the Residual Flow of Chen et al. (2020)

Figure C.3: Image of $F^{-1}(0)$ for CIFAR10 of the Residual Flow of Chen et al. (2020)

