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Abstract

Learning to control from complex observations remains a major challenge in the appli-
cation of model-based reinforcement learning (MBRL). Existing MBRL methods apply
contrastive learning to replace pixel-level reconstruction, improving the performance of
the latent world model. However, previous contrastive learning approaches in MBRL fail
to utilize task-relevant information, making it difficult to aggregate observations with the
same task-relevant information but the different task-irrelevant information in latent space.
In this work, we first propose Constrained Contrastive Reinforcement Learning (C2RL),
an MBRL method that learns a world model through a combination of two contrastive
losses based on latent dynamics and task-relevant state abstraction respectively, utilizing
reward information to accelerate model learning. Then, we propose a hyperparameter β
to balance two kinds of contrastive losses to strengthen the representation ability of the
latent dynamics. The experimental results show that our approach outperforms state-of-
the-art methods in both the natural video and standard background setting on challenging
DMControl tasks.

Keywords: Model-based reinforcement learning; Representation learning; Contrastive
learning

1. Introduction

Deep Reinforcement Learning (DRL) achieves great success in various domains such as
game playing (Mnih et al., 2013; Berner et al., 2019; Vinyals et al., 2019), autonomous driv-
ing (Chen et al., 2021). In model-based reinforcement learning (MBRL), a dynamic world
model predicts the observation in latent space, improving sample efficiency and enabling
generalization (Thrun and Littman, 2000; Lee et al., 2020; Hafner et al., 2019a). Previ-
ous MBRL methods (Hafner et al., 2019a) learn a latent world model by minimizing the
reconstruction error of the past observations (Hafner et al., 2019a). However, pixel-level
reconstruction leads to the waste of representation capacity to capture the information that
is unpredictable or task-irrelevant. For example, a robot arm should ignore the random
background pixels when grasping objects.

To avoid the limitation of reconstruction methods, recent work applies contrastive learn-
ing on RL for latent world model learning (Dwibedi et al., 2018; Zhang et al., 2020; Liu
et al., 2021). Contrastive Learning maps the positive inputs to be close while mapping the
negative inputs to be further away in latent space (Le-Khac et al., 2020; He et al., 2020). To
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achieve better performance, especially in tasks with noisy pixels, different approaches apply
different division methods of positive and negative samples (Laskin et al., 2020; Ma et al.,
2020; Okada and Taniguchi, 2021; Zhang et al., 2020; Nguyen et al., 2021). However, prior
contrastive learning approaches in MBRL fail to utilize task-relevant information, making it
difficult to aggregate observations with the same task-relevant information but with differ-
ent task-irrelevant information in latent space (Nguyen et al., 2021). Since these methods
aim to strengthen the ability to represent each observation, the observations happen to be
mapped further away in the latent space. However, when the different observations refer to
a similar state of the task in some cases, the latent dynamics may fail to capture available
information for the agent. Considering a “reacher” task that a robot arm tries to reach
a target and get rewards. In an episode, the arm may reach the target multiple times.
Intuitively, all the observations when the robot arm reaches the target should be regarded
as similar samples, namely positive samples. But with task-irrelevant division methods,
they will be, by contrast, regarded as dissimilar samples, namely negative samples, which
will result in poor representation learning.

In this paper, we propose Constrained Contrastive Variational Reinforcement Learn-
ing (C2RL), an MBRL method that learns the world model through a combination of
two contrastive losses based on latent dynamics and task-relevant state abstraction respec-
tively. We name the two loss functions same-segmentation contrastive learning (SSCL) and
different-segmentation contrastive learning (DSCL). Inspired by Contrastive Variational
Model-Based Reinforcement Learning (CVRL) (Ma et al., 2020), we introduce SSCL to
increase the distance between one observation and the others in latent space to strengthen
the representation ability of the latent dynamics. Compared with CVRL, SSCL considers
only the observation itself and its corresponding latent state as the positive samples in each
episode. To decrease the distance among the observations in latent space that contain sim-
ilar task-relevant information, DSCL is proposed to aggregate the observations with similar
returns while discriminating the observations with dissimilar returns in latent space. In-
spired by Zπ-irrelevance abstraction (Liu et al., 2021), DSCL considers the observations
in the whole replay buffer that has similar online scaled returns as the positive samples.
In the case of the conflict sample division between SSCL and DSCL, we also introduce a
hyperparameter β to balance the two different contrastive losses which will be detailed in
Section 3.1. The key contributions of our algorithm are summarized:

• Utilizing task-relevant information to accelerate model learning We utilize
task-relevant information for representation learning through state abstraction to ac-
celerate model learning.

• Balancing contrastive learning We propose a hyperparameter to balance the two
kinds of contrastive losses to strengthen the representation ability of the latent dy-
namics.

We choose Standard DeepMind Control (DMC) tasks (Tassa et al., 2018) and Natural
DeepMind Control tasks (Ma et al., 2020) which replace the background of DMC tasks with
random videos for experiment. Compared with recent MBRL methods, C2RL achieved
comparable or better performance in most tasks. We performed a detailed analysis of the
Standard and Natural experiments in Section 3.
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2. Backgrounds

2.1. Related Works

World Models: In MBRL, world models are trained as the core component to extract fea-
tures from high-dimensional observations, which can be used to control with multi-step pre-
dictions or multi-step rewards. The majority relies on sequential variational autoencoders,
which aim to reconstruct observations by optimizing the evidence lower bound (ELBO), to
capture the stochastic dynamics of the environment via three kinds of losses: reconstructing
observations in pixel spaces, reconstructing rewards, constraining latent dynamics (Ha and
Schmidhuber, 2018). Lee et al. (2020) learn the world model with hierarchical stochastic
latent states. Hafner et al. (2019b,a) propose RSSM models based on GRU (Cho et al.,
2014) with stochastic latent states and deterministic latent states. Zhang et al. (2020) accel-
erate learning world models using bisimulation metrics. However, these methods all fail to
reconstruct high-dimensional observations such as images with noisy pixel backgrounds in
complex tasks, which leads to an accumulated compositional error of the world model (Ma
et al., 2020; Nguyen et al., 2021).
Contrastive Learning in MBRL: Contrastive learning is widely used as an auxiliary task
to construct world models in MBRL by scoring positive sample pairs and negative sample
pairs, motivated from different perspectives. Van den Oord et al. (2018); Guo et al. (2018);
Anand et al. (2019); Mazoure et al. (2020) propose different temporal contrastive losses in
reinforcement learning environments. Laskin et al. (2020) propose data augmentation to
construct positive samples. Ghosh et al. (2018); Castro (2020); Zhang et al. (2020); Liu
et al. (2021) use elements based on reinforcement learning to construct positive samples
and negative samples. Ma et al. (2020) optimizes contrastive losses by maximizing the
mutual information between latent states and observations. Nguyen et al. (2021) present
an information-theoretic approach through contrastive learning. Although existing methods
have proposed different losses for contrastive learning, they failed to aggregate observations
with the same task-relevant information but the different task-irrelevant information in
latent space. Compared to the mentioned methods, our work focuses on the combination
of world models and task-relevant contrastive learning based on state abstraction to solve
this problem.

2.2. Preliminary

Sequential Latent World Model: Visual input contains only part of the information of
the environment state, thus we assume the environment can be formulated as a partially
observable Markov decision process (POMDP). We define discrete time step as t, high
dimensional observation as ot, action as at, reward as rt and latent state as zt. In POMDP,
we can sample sequential data by interacting with the environments and build Sequential
Latent World Model for learning representation and decision making. We use three parts
of the recurrent state-space model (RSSM) (Hafner et al., 2019b) as our model:

Deterministic state model : ht = f(ht−1, st−1, at−1)

Stochastic state model : st ∼ p(st|ht)
Reward model : rt ∼ p(rt|ht, st)

(1)
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Where latent state zt = [st, ht] includes the deterministic state and stochastic state and zt
are divided into posterior state and prior state. Previous works generalize Evidence Lower
Bound (ELBO) of VAEs from Equation (2) (Kingma and Welling, 2013) to world models of
MBRL (Ha and Schmidhuber, 2018), where p(z) denotes prior distribution of z and q(z|o)
denotes the proposal distribution that samples z conditioned on the observation o.

log p(o) = log

∫
z
p(o|s)p(z)dz ≥ Eq(z|o)[p(o|z)] −KL[q(z|o)||p(z)] (2)

Given sequential samples from an episode, we can derive the variational bound from
Equation (3). Maximizing the data log-likelihood log p(o1:T , r1:T |a1:T ) can be converted to
maximize the variational bound (Hafner et al., 2019b).

log p(o1:T , r1:T |a1:T ) = log

∫ ∏
t

p(zt|zt−1, at−1)p(ot|zt)p(rt|zt)dz1:T

≥
T∑
t=1

Eq(zt|o≤t,a<t)[log p(ot|zt)]
observation reconstruction

+ Eq(zt|o≤t,a<t)[log p(rt|zt)]
reward reconstruction

− Eq(zt−1|o≤t−1,a<t−1)[KL[q(zt|o≤t,a<t)||p(zt|zt−1, at−1)]]

latent dynamics


(3)

However, reconstructing observations in pixel space means that we encode all the infor-
mation of observations with thousands of dimensions into latent space regardless of whether
the information is valid or not (Ha and Schmidhuber, 2018). To tackle this problem, ob-
servation reconstruction can be replaced with contrastive learning (Ma et al., 2020). The
variational bound can be rewritten as Equation (4) where the latent state zt maps the
corresponding observation ot and is distinguished from other observations with contrastive
learning. In the Equation (4), Ot is a set of irrelevant observations sampled from a re-
play buffer, fθ(ot, zt) is a trainable non-negative function that measures the compatibility
between latent state zt and observation ot with parameter θ.

log p(o1:T , r1:T |a1:T ) ≥
T∑
t=1

Eq(zt|o≤t,a<t)[log
fθ(ot, zt)∑

o
′
t∈Ot,

fθ(o
′
t, zt)

]

contrastive learning

+

Eq(zt|o≤t,a<t)[log p(rt|zt)]
reward reconstruction

− Eq(zt−1|o≤t−1,a<t−1)[KL[q(zt|o≤t,a<t)||p(zt|zt−1, at−1)]]

latent dynamics


(4)

State Abstraction: State abstraction such as bisimulation metric (Givan et al., 2003)
is a way to address high-dimensional sensory inputs, aggregating similar states to the one
abstract state, which results the reduction of the state space. However, it is computationally
expensive to directly perform bisimulation metric in reinforcement leaning, in which case Liu
et al. (2021) demonstrate Zπ-irrelevance as the simplification of bisimulation.
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When performing Zπ-irrelevance, the returns are empirically divided into K discrete
equal bins [R0, R1...RK ]. The samples from the same discrete bin are mapped as the same
abstraction while the samples from different bins are mapped different abstraction (Liu
et al., 2021). In world models, the latent space can also be modeled as low-dimensional
abstraction space in which similar samples should be aggregated. One reasonable latent
space should satisfy both the variational bound and state abstraction. In this paper, we
focus on the abstraction constraint of samples from different episodes.

3. Constrained Contrastive Reinforcement Learning

We introduce Constrained Contrastive Reinforcement Learning (C2RL), an MBRL frame-
work for complex image-input tasks. The basic architecture of C2RL is built upon Dreamer
(Hafner et al., 2019a), learning behaviors based on imagination in a latent world model. For
decision-making, C2RL uses model predictive control (MPC) as CVRL does, maximizing the
expected future return through latent gradients (Ma et al., 2020). As the major difference,
C2RL introduces four main components for world model learning: reward reconstruction
and latent dynamics as in Equation (4), the same-segment contrastive learning (SSCL), and
the different-segment contrastive learning (DSCL). In this part, we first introduce SSCL and
DSCL theoretically, then present practical implementation details of C2RL.

3.1. SSCL and DSCL

SSCL is namely the contrastive learning method proposed in CVRL (Ma et al., 2020) but
chooses sample pairs from a single episode instead of the whole replay buffer. Thus, SSCL
can be described as Equation (4) but with a different definition of Ot. SSCL increases the
distance between one observation and the others in latent space to strengthen the represen-
tation ability of the latent dynamics. Since SSCL aims to discriminate each observation in
an episode, the observations are naturally mapped further away in the latent space. How-
ever, it does not explicitly constrain whether the two latent states should be aggregated or
not. When the different observations refer to a similar state of the task in some cases, the
latent dynamics may fail to capture available information for the agent. To tackle this prob-
lem, we propose DSCL aggregate the observation with a similar return while discriminating
the observation with dissimilar returns in latent space. Figure 1 demonstrates the different
sample division methods of SSCL and DSCL. It is worth noting that DSCL includes the
samples in the same episodes except for the samples from different episodes.

Considering a division set ΦO =
{

(oi, oj)|oi, oj ∈ O, oi ∼ p(oi), oj ∼ p(oj), ϕ̂(oi) = ϕ̂(oj)
}

,

where ϕ̂ is the encoder in state abstraction, and p(ot) = p(ot|o<t, a<t). Given zt ∈ Z, we
define a set ψ(zt) = {oj |(ot, oj) ∈ ΦO} which contains all the positive samples of ot. We
use DSCL constraint as an auxiliary task of major optimization in Equation(4). DSCL
constraint based on a variant of original InfoNCE (Van den Oord et al., 2018) to aggregate
the latent states considering state abstraction:

T∑
t=1

(
Eq(zt|o≤t,a<t) log

∑
oj∈Ot,

fθ(oj , zt)∑
oj∈ψ(zt) fθ(oj , zt)

)
≤ ϵ (5)
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Figure 1: Division methods of SSCL and DSCL. In a single episode(left), SSCL considers
observation and latent state pairs with the same color as positive samples and
considers observations and latent state pairs with different colors as negative sam-
ples. In episodes in replay buffer(left and right), DSCL considers observation
and latent state pairs with the same or similar returns as positive samples(marked
as the same color also) and considers others as negative samples. R refers to the
return of the state.

where ϵ > 0 specifies the strength of the constraint, Ot is a set of irrelevant observations
sampled from a replay buffer, fθ(ot, zt) is a non-negative function that measures the compat-
ibility between latent state zt and observation ot. For any (oi, oj) ∈ ΦO, we desire that the
corresponding latent states (zi, zj) are aggregated. The intuition for Equation (5) is that we
want to maximize the compatibility between the latent state z and a set of corresponding
observations ψ(zt) (positive sample) while minimizing its compatibility between a set of
irrelevant observations (negative samples), with the different division of the episodes (Ma
et al., 2020; Liu et al., 2021). Based on Equation(4) and Equation(5), we can derive the
joint optimization:

max log p(o1:T , r1:T |a1:T )

subject to.

T∑
t=1

(
Eq(zt|o≤t,a<t) log

∑
oj∈Ot,

fθ(oj , zt)∑
oj∈ψ(zt) fθ(oj , zt)

)
≤ ϵ

(6)

Equation(6) can be rewritten as a Lagrangian using KKT conditions (Bertsekas, 1997):

L = log p(o1:T , r1:T |a1:T ) − β

T∑
t=1

(
Eq(zt|o≤t,a<t) log

∑
oj∈Ot,

fθ(oj , zt)∑
oj∈ψ(zt) fθ(oj , zt)

− ϵ

)

> log p(o1:T , r1:T |a1:T ) − β

T∑
t=1

(
Eq(zt|o≤t,a<t) log

∑
oj∈Ot,

fθ(oj , zt)∑
oj∈ψ(zt) fθ(oj , zt)

) (7)

where β > 0 is the regularisation coefficient for constraining state abstraction. Since
β, ϵ > 0, we can obtain the lower bound in Equation(7). Introducing the lower bound in
Equation(4), we obtain the final lower bound optimization in Equation(9), which includes
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four models: same-segment contrastive learning(SSCL), reward reconstruction, latent dy-
namics, and different-segment contrastive learning(DSCL).

posterior model :qϕ

SSCL model :fθ1

reward reconstruction :pθ

prior model :pω

DSCL :fθ2

(8)

L >

T∑
t=1

Eqϕ(zt|o≤t,a<t)[log
fθ1(ot, zt)∑

o
′
t∈Ot,

fθ1(o
′
t, zt)

]

LSSCL

+ Eqϕ(zt|o≤t,a<t)[log pθ(rt|zt)]
LRR:reward reconstruction

− Eqϕ(zt−1|o≤t−1,a<t−1)[KL[qϕ(zt|o≤t, a<t)||pω(zt|zt−1, at−1)]]

LLD:latent dynamics


− β

T∑
t=1

(
Eqϕ(zt|o≤t,a<t) log

∑
oj∈Ot,

fθ2(oj , zt)∑
oj∈ψ(zt) fθ2(oj , zt)

)
LDSCL

(9)

ϵ and β: DSCL is weighted with a parameter β. Varying the parameter β changes the
influence of state abstraction pressure during training, which encourages similar observa-
tions can be encoded into the corresponding latent states. We optimize the parameter ϵ
in Equation(7) indirectly by changing the value of β . For different tasks, the optimal ϵ
is different and β depends on the value of ϵ, thus the optimal β is difficult to determine.
In this paper, we empirically choose β as a hyperparameter that is not optimized during
training.
Different compatibility functions: The two contrastive learning losses may conflict in
some samples. This is because SSCL maps the latent state st to ot while DSCL maps the
latent state st to other observations except for ot. Since the compatibilities in SSCL and
DSCL are not equivalent, the functions fθ(st, ot) that measure the compatibility between
latent state and observation are different in SSCL and DSCL.

3.2. Practical Implementation Details

Sample division: When optimizing the loss LDSCL in experiments, we introduce two
hyperparameters to divide the positive and negative samples. The first hyperparameter is
N , the number of bins for discrete limited returns. The second hyperparameter M is the
number of adjacent samples for calculating the limited returns. Given sequential samples,
we calculate the limited returns by summing rewards of the adjacent M samples. Then
we discretize the limited returns in nth bin n ∈ {0, 1, 2...N}. We record the maximum
and minimum limited returns of samples Rmax and Rmin during training. The positive
samples of LDSCL are determined by discrete limited returns: given sequential samples, we
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first calculate limited returns by summing rewards of the adjacent M samples, and then the
limited returns are discretized into N values.The discretized limited return of the sample
{st, at, rt, st + 1} can be calculated:

Rlimt = [

∑t
i=t−M+1 ri

δ + (Rmax−Rmin)
N

] (10)

where δ is a small value to deal with the case in which Rmax = Rmin and the denominator
becomes zero; [.] indicates rounding. The samples with the same discretized limited return
are considered as the positive samples of LDSCL in Equation(9).
Behavior Learning: In C2RL, we use latent imagination to learn a parameterized policy
for control following (Ma et al., 2020). For selfcontainedness, this section gives a sum-
mary of this approach. Firstly, the action model and the value model are the main com-
ponents for behavior learning. The action model aτ ∼ qη(aτ |sτ ) is parameterized as a
tanh-transformed Gaussian model. The value model vµ(sτ ) is estimated using the imagined

trajectories{sτ , aτ , sτ}t+Hτ=t , where H is the imagine horizon based on the latent dynamics.

aτ = tanh(µη(sτ ) + ση(sτ )ϵ), ϵ ∼ Normal(0, I)

vµ(sτ ) = Eqη
∑
t=τ

γt−τrt
(11)

To learn the action and value model, in this work, we use value estimation presented in (Ha
and Schmidhuber, 2018). The values are estimated by TD(λ) (Thrun and Littman, 2000)
which trade-off bias and variance.

V k
N (sτ )

.
= Eqη ,pθ(

h−1∑
t=τ

γt−τrt + γh−tvµ(sh))

Vλ(sτ )
.

= (1 − λ)
H−1∑
n=1

λn−1V n
N (sτ ) + λH−1V H

N (sτ )

(12)

where h = min(τ + k, t + H). The values are estimated under the imagined trajectories.
The actor model is optimized to maximize the imagined value estimates. The value model
is trained to regress the value estimates.

max
η

Eqη ,pθ(

t+H∑
τ=t

Vλ(sτ )) (13)

min
µ
Eqη ,pθ(

t+H∑
τ=t

1

2
∥vµ(sτ ) − Vλ(sτ )∥2) (14)

4. Experiments

In this section, we empirically evaluate our C2RL model in various settings. First, we
design experiments to compare the relative performance of our model with the state-of-
the-art methods in both the natural-video and standard background setting on challenging
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(a) Standard Mujoco control
tasks

(b) Natural Mujoco control
tasks

Figure 2: We show the observation of Standard Mujoco control task walker walk and Nat-
ural Mujoco control task walker walk. The difference is that the Natural Mujoco
control task includes more noisy pixels.

DMControl tasks (Tassa et al., 2018), as is shown in Figure 2. Second, we evaluate the
cosine similarity in both positive and negative samples of C2RL and discuss how our model
is superior in the latter case compared to other existing methods. Finally, we analyze the
ability of the hyperparameter, in which we test the performance of the agent with different
values of β.

4.1. DMControl

For the model training, two types of hyperparameters need to be determined in C2RL. The
first pair is the hyperparameters M and N to calculate discrete limited returns. We deter-
mine the values of the hyperparameters by searching (M,N) in the set {(10, 30), (10, 40),
(10, 50), (10, 60), (60, 60)}. We choose (M,N) = (10, 60) in the benchmark tasks except for
the Cup Catch task; (M,N) = (60, 60) in the benchmark task cup catch. The second hyper-
parameter β is searched in the candidate set {0.0, 0.5, 1.5, 3.0}. We have found that β = 1.5
performs best in the candidate set. We performed a search for the two types of hyperpa-
rameters on the tasks Walker Walk task and Cup Catch task. All of the tasks except the
Cup Catch task with sparse reward share the same hyperparameters. We compare C2RL
with the following algorithms: CVRL(Ma et al., 2020), which is the baseline of C2RL;
TPC(Nguyen et al., 2021), which is a recent model-based method based on information
theory.
Natural Mujoco control tasks: Figure 3 shows that C2RL (ours) achieves better per-
formance on 4 out of 5 tasks in final scores and data efficiency compared with the other two
baselines. C2RL (ours) achieves comparable performance in the remaining task. Since the
framework of C2RL is an extension of CVRL, we can see that C2RL brings improvement
over the base algorithm in the five tasks.
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Figure 3: Experiments on five Natural Mujoco control tasks, where the background is re-
placed with images from the natural videos. The solid line and the shaded area
indicate the mean and the standard deviation over 3 different seeds respectively.

Standard Mujoco control tasks: As is shown in Figure 4, C2RL achieves limited per-
formance improvement on 3 out of 5 tasks in final scores compared with the other two
baselines, while achieving comparable performance in the remaining two tasks.

4.2. Analysis of Latent States

To analyse how the two different losses LSSCL and LDSCL affect the latent space, we use
cosine similarity to measure the similarity of different latent states compared with CVRL.
Given two samples oi ∼ p(ot|o<i, a<i) and oj ∼ p(ot|o<j , a<j), the corresponding latent
states are si and sj respectively. The cosine similarity S(si, sj) ∈ [−1, 1] can be written as:

S(si, sj) =
sTi · sj
∥si∥∥sj∥

(15)

The larger the cosine similarity, the more similar the two latent states are. We show the
similarities between positive pairs and negative pairs by using cosine similarity. We only



Constrained Contrastive Reinforcement Learning

0 0.2 0.4 0.6 0.8 1.0
Environment steps (Millions)

0

100

200

300

400

500

600

700

800

900

Ep
iso

de
 re

wa
rd

s

walker walk
C2RL
CVRL
TPC

0 0.2 0.4 0.6 0.8 1.0
Environment steps (Millions)

0

100

200

300

400

Ep
iso

de
 re

wa
rd

s

walker run
C2RL
CVRL
TPC

0 0.2 0.4 0.6 0.8 1.0
Environment steps (Millions)

0

100

200

300

400

500

600

700

800

900

1000

Ep
iso

de
 re

wa
rd

s

cup catch
C2RL
CVRL
TPC

0 0.2 0.4 0.6 0.8 1.0
Environment steps (Millions)

0

100

200

300

400

500

600

700

800

Ep
iso

de
 re

wa
rd

s

cartpole swingup
C2RL
CVRL
TPC

0 0.2 0.4 0.6 0.8 1.0
Environment steps (Millions)

0

100

200

300

400

500

600

Ep
iso

de
 re

wa
rd

s

cheetah run
C2RL
CVRL
TPC

Figure 4: Experiments on five Standard Mujoco control tasks, where the background is not
changed. The solid line and the shaded area indicate the mean and the standard
deviation over 3 different seeds respectively.

consider the samples for LDSCL since they can be from different episodes. Figure 5 (a,b)
shows 1) The similarity of positive pairs of C2RL (blue) is greater than that of CVRL (red)
and the similarity of positive pairs of C2RL (yellow) is close to that of CVRL (green). To a
certain extent, the distance among the observations in latent space that contain similar task-
relevant information has been successfully achieved. 2) The cosine similarity is much less
than 1 for both C2RL and CVRL, due to our simultaneous optimization of two losses LSSCL
and LDSCL. In latent space, SSCL may increase the distance between one observation and
the others, while DSCL may decrease the distance between the observations with the same
returns. 3) Combining the two losses, the performance has been significantly improved by
aggregating the observations with a similar return while discriminating the observations
with dissimilar returns in latent space.
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Figure 5: (a,b) The experiments on Natural Mujoco control task Walker Walk. We exper-
iment with the seeds (0, 1, 2). (c) Experiments on Natural Mujoco control task
Walker Walk over the same seeds. All of the experiments share the same param-
eters except for β

4.3. Analysis of β

Since the conflict sample division between SSCL and DSCL, we introduce the hyperparam-
eter β to balance the two different contrastive losses. To analyze the joint optimization of
SSCL and DSCL affected by β, we conduct an ablation experiment to verify the effect of
β on performance. We test β from the set {0.0, 0.5, 1.5, 3.0} on Walker Walk environment
with the seeds (0, 1, 2) and found that β = 1.5 works well. So we choose β = 1.5 for all
experiments and the performance is better than baselines, which means we don’t need to
tune β much for different tasks.

5. Conclusion

In the paper, we proposed Constrained Contrastive Reinforcement Learning (C2RL), a
model-based reinforcement learning method for image-input tasks. The key contribution is
that we optimize the world model through a combination of two contrastive losses based
on latent dynamics and task-relevant state abstraction respectively, utilizing reward infor-
mation to accelerate model learning. We also introduce a hyperparameter to balance the
two optimization targets. Experiments on both the natural-video and standard background
setting DMControl tasks demonstrate that our algorithm achieves superior performance
compared with other state-of-the-art methods.

However, since the task-relevant state abstraction we use is based on Z-learning (Liu
et al., 2021), which is the coarse method of (Givan et al., 2003), the performance of our
method is sensitive to the hyperparameter β. Another disadvantage is that our method
is sensitive to the tasks with sparse rewards which can be improved by using other state
abstraction methods such as bisimulation metric (Givan et al., 2003).
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Munos. Neural predictive belief representations. arXiv preprint arXiv:1811.06407, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.



Wang Yang Wang Lan

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
conference on machine learning, pages 2555–2565. PMLR, 2019b.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9729–9738, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised repre-
sentations for reinforcement learning. In International Conference on Machine Learning,
pages 5639–5650. PMLR, 2020.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning:
A framework and review. IEEE Access, 8:193907–193934, 2020.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-
critic: Deep reinforcement learning with a latent variable model. Advances in Neural
Information Processing Systems, 33:741–752, 2020.

Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu, Jian Li, Nenghai Yu, and
Tie-Yan Liu. Return-based contrastive representation learning for reinforcement learning.
arXiv preprint arXiv:2102.10960, 2021.

Xiao Ma, Siwei Chen, David Hsu, and Wee Sun Lee. Contrastive variational reinforcement
learning for complex observations. arXiv preprint arXiv:2008.02430, 2020.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R De-
von Hjelm. Deep reinforcement and infomax learning. Advances in Neural Information
Processing Systems, 33:3686–3698, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive
coding for model-based planning in latent space. In International Conference on Machine
Learning, pages 8130–8139. PMLR, 2021.

Masashi Okada and Tadahiro Taniguchi. Dreaming: Model-based reinforcement learning
by latent imagination without reconstruction. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 4209–4215. IEEE, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.



Constrained Contrastive Reinforcement Learning

Sebastian Thrun and Michael L Littman. Reinforcement learning: an introduction. AI
Magazine, 21(1):103–103, 2000.

Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv e-prints, pages arXiv–1807, 2018.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Woj-
ciech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al.
Alphastar: Mastering the real-time strategy game starcraft ii. DeepMind blog, 2, 2019.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learn-
ing invariant representations for reinforcement learning without reconstruction. arXiv
preprint arXiv:2006.10742, 2020.


	Introduction
	Backgrounds
	Related Works
	Preliminary

	Constrained Contrastive Reinforcement Learning
	SSCL and DSCL
	Practical Implementation Details

	Experiments
	DMControl
	Analysis of Latent States
	Analysis of 

	Conclusion

