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Abstract

Long-tailed visual recognition tasks pose great challenges for neural networks on how to
handle the imbalanced predictions between head (common) and tail (rare) classes, i.e.,
models tend to classify tail classes as head classes. While existing research focused on
data resampling and loss function engineering, in this paper, we take a different perspec-
tive: the classification margins. We study the relationship between the margins and logits
and empirically observe that the uncalibrated margins and logits are positively correlated.
We propose a simple yet effective MARgin Calibration approach (MARC) to calibrate
the margins to obtain better logits. We validate MARC through extensive experiments
on common long-tailed benchmarks including CIFAR-LT, ImageNet-LT, Places-LT, and
iNaturalist-LT. Experimental results demonstrate that our MARC achieves favorable re-
sults on these benchmarks. In addition, MARC is extremely easy to implement with just
three lines of code. We hope this simple approach will motivate people to rethink the
uncalibrated margins and logits in long-tailed visual recognition.
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1. Introduction

Despite the great success of neural networks in the visual recognition field (Simonyan and
Zisserman, 2014; He et al., 2016), it is still challenging for neural networks to deal with the
ubiquitous long-tailed datasets in the real world (Yang et al., 2022; Buda et al., 2018; Kang
et al., 2019; Zhou et al., 2020). To be clear, in the long-tailed datasets, the high-frequency
classes (head/common classes) occupy most of the instances, whereas the low-frequency
classes (tail/rare classes) involve a small amount of instances (Liu et al., 2019; Van Horn
and Perona, 2017). Due to the imbalance of training data, the model performs well in head
classes with much worse performance in tail classes (Buda et al., 2018; Zhang et al., 2021).

Towards addressing the long-tailed recognition problem, there are several strategies such
as data re-sampling and loss function engineering. Data re-sampling aims to ‘simulate’
a balanced training dataset by over-sampling the tail class or under-sampling the head
classes (Ando and Huang, 2017; Buda et al., 2018; Pouyanfar et al., 2018; Shen et al.,
2016), while loss re-weighting is introduced to adjust the weights of losses for different
classes or different instances (Byrd and Lipton, 2019; Khan et al., 2017; Wang et al., 2017).
For more balanced gradients between classes, some class-balanced loss functions adjust the
logits instead of weighting the losses (Menon et al., 2020; Cao et al., 2019b; Ren et al., 2020).
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Figure 1: Logits, margins, and class-wise accuracy of CIFAR-10-LT with imbal-
ance factor 200. Here, the logit and margin represent the average logit and
margin of each class, before and after refers to standard training and our method,
respectively. The class indices are sorted by the number of samples (Head to tail).

However, as pointed out by existing research (Ganganwar, 2012; Zhou and Liu, 2005;
Cao et al., 2019b), data re-sampling strategies and loss re-weighting schemes will possibly
cause underfitting on the head class and overfitting on the tail class. On the other hand,
class-balanced loss functions or data re-sampling will lead to worse data representations
compared with the standard training using the cross-entropy loss and the instance-balanced
sampling (i.e., each instance has the same probability of being sampled) (Kang et al.,
2019; Ren et al., 2020). In addition, recent research reveals that the uncalibrated decision
boundary given by the classifier head seems to be the performance bottleneck of the long-
tailed visual recognition (Kang et al., 2019; Zhang et al., 2021). To benefit from both good
data representations and the unbiased decision boundary, Decoupling, a heuristic two-stage
strategy is proposed to adjust the initially-learned classifier head (Kang et al., 2019) after
the standard training. Furthermore, distribution alignment (Zhang et al., 2021) is developed
as an adaptive calibration function to adjust the initially trained logits for each data point.
However, as pointed out by existing research (Platt et al., 1999; Elsayed et al., 2018), the
margins and logits have a critical effect to the classification performance. The relation
between the uncalibrated margin and the logits is neglected in existing research, where the
margin is the distance from the data point to the decision boundary.

In this paper, we study the relationship between margins and logits, which are critical
factors that dominate the long-tailed performance. As shown in Figure 1, we empirically
find that the margin and the logit are correlated with the cardinality of each class. To be
concrete, before any calibration, head classes tend to have much larger margins and logits
than tail classes. Therefore, it is necessary to calibrate the margin to obtain the balanced
logits. More importantly, as shown in Figure 1(c)subfigure, the uncalibrated margins and
logits will have a negative impact on the classification performance. Therefore, it remains
challenging to design an efficient method for such calibration that can achieve satisfying
performance without introducing much computational burden.

The model can perform better with the confidence calibration (Platt et al., 1999; Guo
et al., 2017; Zhang et al., 2021). however, in this work, we focus on calibrating the biased
margins and propose a simple yet effective MARgin Calibration (MARC) approach for
long-tailed recognition. In detail, after getting the representations and the classifier head
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from the standard training, we propose a simple class-specific margin calibration function
with only 2K learnable parameters to adjust the initially learned margins, where K is the
number of classes. As demonstrated in Figure 1, the logits are more balanced when using
MARC. We conduct experiments on several popular long-tail benchmark datasets: CIFAR-
10-LT (Krizhevsky et al., 2009), CIFAR-100-LT (Krizhevsky et al., 2009), Places-LT (Zhou
et al., 2017), iNaturalist 2018 (Van Horn et al., 2018), and ImageNet-LT (Liu et al., 2019).
The results demonstrate that our proposed MARC approach performs remarkably well while
remaining very simple to implement. We hope that our exploration will attract attention
to the imbalanced margins in long-tailed recognition.

To sum up, our contributions are as follows:

• For the first time in long-tailed recognition, we study the uncalibrated predictions
from a margin-based perspective. We empirically find that uncalibrated margins will
cause imperfect predictions, which could lead to future algorithm designs.

• Based on our observations, we propose a simple yet effective margin calibration
(MARC) approach with only 2K trainable parameters to adjust the margins to get
the unbiased prediction for long-tailed visual recognition problem.

• Compared with SOTA methods (Zhang et al., 2021; Hong et al., 2021), MARC is
competitive on various long-tailed visual benchmarks like CIFAR-10-LT (Krizhevsky
et al., 2009), CIFAR-100-LT (Krizhevsky et al., 2009), ImageNet-LT (Liu et al., 2019),
Places-LT (Zhou et al., 2017) and iNaturalist2018 (Van Horn et al., 2018). In addition,
it is extremely easy to implement with just three lines of code.

2. Related Work

Long-tailed visual recognition has attracted much attention for its commonness in the real
world (Yang et al., 2022; He and Garcia, 2009; Buda et al., 2018; Kang et al., 2019; Ren
et al., 2020; Yang and Xu, 2020; Hong et al., 2021). Existing methods can be divided into
four categories.

Data re-sampling. Data re-sampling techniques re-sample the imbalanced training
dataset to ‘simulate’ a balanced training dataset. These methods include under-sampling,
over-sampling, and classed-balanced sampling. Under-sampling decreases the probability of
the instance of head classes being sampled (Drummond et al., 2003), whereas over-sampling
makes instances of tail classes more likely to be sampled (Chawla et al., 2002; Han et al.,
2005; Wang et al., 2021a). Class-aware sampling chooses instances of each class with the
same probabilities (Shen et al., 2016).

Loss function engineering. Loss function engineering is another direction to ob-
tain balanced gradients during the training. The typical methods can be categorized as
loss-reweighting and logits adjustment. Loss re-weighting adjusts the weights of losses for
different classes or different instances in a more balanced manner, i.e. the instances in
tail classes have larger weights than those in head classes (Byrd and Lipton, 2019; Khan
et al., 2017; Wang et al., 2017). On the other hand, instead of re-weight losses, some class-
balanced loss functions adjust the logits to get balanced gradients during training (Menon
et al., 2020; Cao et al., 2019b; Ren et al., 2020; Yang et al., 2009).
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Decision boundary adjustment. Nevertheless, data re-sampling or loss function
engineering will influence the representations of data (Ren et al., 2020). Lots of empirical
observations show that we can acquire good representation when using the standard training
and the classifier head is the performance bottleneck (Kang et al., 2019; Zhang et al., 2021;
Yu et al., 2020; Kim and Kim, 2020). To solve the above problem, decision boundary
adjustment methods re-adjust the classifier head after the standard training in a learnable
way (Kang et al., 2019; Zhang et al., 2021) or using maximum likelihood estimation such
as the Platt scaling (Platt et al., 1999). However, they ignore the relationship between
the uncalibrated margins and logits. Moreover, MARC targets a multi-class classification
problem and Platting scaling targets binary classification (based on sigmoid), and their
updating manners are also different since MARC adopts an end-to-end manner that updates
2K learnable parameters.

Other methods. There also exist other paradigms to deal with the long-tailed recogni-
tion task, including task-specific architecture design (Wang et al., 2021c; Zhou et al., 2020;
Wang et al., 2021a), transfer learning (Liu et al., 2019; Yin et al., 2019), domain adapta-
tion (Jamal et al., 2020), semi supervised learning and self supervised learning (Yang and
Xu, 2020). But these methods either rely on the non-trivial architecture design or external
data. In contrast, our proposed MARC is very simple to implement and does not require
external data. Detailed comparison is shown in Table 1.

3. Method

3.1. Preliminaries

In the popular setting of long-tailed recognition (Kang et al., 2019; Cui et al., 2019; Ren
et al., 2020), the training data distribution is imbalanced while the test data distribution
is balanced. More formally, let D = {(xi, yi)}ni=1 be a training set, where yi denotes the
label of data point xi. Specifically, n =

∑K
j=1 nj is the total number of training samples,

where nj is the number of training samples in class j and K is the number of classes.
We assume n1 > n2 > · · · > nK without loss of generality. Normally, the prediction
function is composed of two modules: the feature representation learning function f : x 7→ z
parameterized by θr and the classifier g : z 7→ y parameterized by θc, where z ∈ Rp denotes
the feature representation and p is the feature dimension. Typically, g is a linear classifier
that gives the classification score of class j as:

ηj = g(z) := Wjz+ bj , (1)

where Wj and bj are the weight vector and bias for class j, respectively. Finally, using the
softmax function, the probability of xi being classified as label yi is expressed as:

p(y = yi|xi; θr, θc) =
exp(ηyi)∑K
j=1 exp(ηj)

, (2)

and its loss is computed as the cross-entropy loss:

ℓ(xi, yi; θr, θc) = − log

(
exp(ηyi)∑K
j=1 exp(ηj)

)
. (3)
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3.2. Uncalibrated Margins and Logits

The decision boundary is often uncalibrated in long-tailed recognition, which will lead to
imperfect predictions, i.e., the model tends to classify tail classes as head classes. To allevi-
ate this issue, data re-sampling and loss function engineering are two directions to simulate
a ‘balanced’ training dataset. However, such techniques will do harm to the representa-
tion learning of the model and lead to low overall accuracy (Kang et al., 2019; Ren et al.,
2020). These methods including ours will sometimes do harm to the performance of head
classes. However, the ”good” performance of head classes is sometimes not always ensuring
positive overall results. To benefit from both the good representation that will improve
the overall accuracy and the calibrated decision boundary, decision boundary adjustment
methods are developed (Kang et al., 2019; Zhang et al., 2021). However, existing decision
boundary adjustment methods ignore such calibration in the margins, which is essential to
avoid uncalibrated predictions. Thus, we aim to calibrate the margins to obtain balanced
predictions.

Figure 2: Illustration
of margins.
The red and
blue dots denote
majority and
minority classes,
respectively.

In this paper, we find that the margins (Hastie et al., 2009)
and logits are biased in long-tailed recognition. The margins
are illustrated in Figure 2. We define an affine hyperplane
Hj ∈ Rp−1 of class j as Wjz+bj = 0, i.e. any representation
point falling on the positive side of Hj can be attributed to
class j. Assume that z0 is a point satisfying Wjz0 + bj = 0,
i.e., z0 is on the hyperplane Hj . Suppose z1 is an arbitrary
point in the feature space. We construct the vector z1 − z0
pointing from z0 to z1 and project it onto the normal vector
Wj . The length of the projection vector projWj (z1 − z0) is
the margin from z1 to Hj . More formally, such margin is
calculated as:

dj =
∥∥projWj (z1 − z0)

∥∥
=

∥∥∥∥Wj · (z1 − z0)

Wj ·Wj
Wj

∥∥∥∥
=

Wj · z1 −Wj · z0
∥Wj∥

=
Wjz1 + bj

∥Wj∥
(since Wjz0 + bj = 0),

(4)

where ∥ · ∥ denotes L2 norm. Thus, the logit Wj · z1 +bj can
also be expressed as ∥Wj∥dj . Based on this conclusion, we
can rewrite (2) as:

p(y = yi|xi; θr, θc) =
exp(ηyi)∑K
j=1 exp(ηj)

=
exp(∥Wyi∥dyi)∑K
j=1 exp(∥Wj∥dj)

. (5)

Consider a data point is on the decision boundary of class j and class t (on the hyperplane
in Figure 2), i.e., such data point has the same probability of being classified as class j or
class t. Clearly, the assumed data point on the decision boundary satisfies:

ηj = ηt = ∥Wj∥dj = ∥Wt∥dt. (6)
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According to (6), data will be classified as class t because dj < dt when ∥Wj∥ = ∥Wt∥.
And our empirical observations show that head classes tend to have much larger margins
and logits than tail classes:

d̄1 > d̄2 > · · · > d̄K ,

η̄1 > η̄2 > · · · > η̄K ,

if n1 > n2 > · · · > nK ,

(7)

where d̄j and η̄j are the average margin and logit of class j after the standard training,
respectively. In detail, on sub-dataset Dj = {(xi, yi = j)}nj

i=1, η̄j =
1
nj
ηj , d̄j =

η̄j
∥Wj∥ .

3.3. Margin Calibration (MARC)

To get the calibrated logits, we propose MARC to calibrate the margins after the standard
training. Concretely speaking, we train a simple class-specific margin calibration model
with the original margin fixed:

d̂j = ωj · dj + βj , (8)

where ωj and βj are learnable parameters for class j and j ∈ [1,K]. It is worth noting that
MARC is extended from class j to the whole dataset in practise. In other words, MARC
only has 2K trainable parameters. Thus, the calibrated logit is computed as:

∥Wj∥d̂j = ∥Wj∥(ωj · dj + βj)

= ωj · ∥Wj∥dj + βj · ∥Wj∥
= ωj · ηj + βj · ∥Wj∥,

(9)

where ηj is the initial fixed logit. Then, we can get the calibrated prediction distribution:

p(y = yi|xi; θr, θc) =
exp(ωyi · ηyi + βyi · ∥Wyi∥)∑K
j=1 exp(ωj · ηj + βj · ∥Wj∥)

. (10)

The training process of the margin calibration approach can be written with just three lines
of Pytorch codes as shown in Line 4-6 of Algorithm 1.

Algorithm 1 The torch-like code for MARC.

1: Initialization of the margin calibration approach:
omega=torch.nn.Parameter(torch.ones(1,K))

beta=torch.nn.Parameter(torch.zeros(1,K))

2: Input: training data x, standard pre-trained neural network model.
3: with torch.no grad():

4: w norm = torch.norm(model.fc.weight, dim=1)

5: logit before = model(x)

6: logit after = omega * logit before + beta * w norm

7: Compute loss and update parameters of omega and beta.
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Furthermore, for more balanced gradients during training, we re-weight the loss as the
previous work does (Zhang et al., 2021). Finally, the loss for training the margin calibration
approach is:

ℓ(xi, yi; θ̃r, θ̃c, ω, β) = −Uyi · log

(
exp (ωyi · ηyi + βyi · ∥Wyi∥)∑K
j=1 exp(ωj · ηj + βj · ∥Wj∥)

)
, (11)

where θ̃r and θ̃c denote that these parameters are frozen during training. The weight for
class yi is calculated as:

Uyi = K · (1/nyi)
γ∑K

j=1(1/nj)γ
, (12)

where γ is a scale hyper-parameter. When γ = 0, the weight for all classes is 1, which
means no re-weighting at all.

To be more clear, the whole detailed training procedure including both standard training
and margin calibration function training is demonstrated in Algorithm 2. Lines 2-6 include
the training procedure of the standard training using the instance-balanced sampling and
the cross-entropy loss. Lines 7-11 contain the training process of our margin calibration
function. It is worth noting that in the second stage, parameters θr and θc are all fixed.

3.4. Discussion

We clarify the differences between MARC and other learnable decision boundary adjustment
methods in detail. As shown in Table 1, Decouple-cRT (Kang et al., 2019) retrains the whole
parameters of the classifier, while Decouple-LWS (Kang et al., 2019) only adjusts the norm of
weight vectors ∥Wj∥. Instead of adjusting the classifier head, DisAlign (Zhang et al., 2021)
chooses to calibrate the logit for each data point. But their calibration method is heuristic
that simply adds the calibrated logit and the original logit with a re-weighting scheme. To
be more clear, the weighted sum of logits for DisAlign is σ(zj)(ωjηj + β) + (1 − σ(zj))ηj ,
where σ(·) is an instance-specific confidence function. However, different from previous
methods, our MARC focuses on calibrating the margin which we believe is the performance
bottleneck of the long-tailed classifier.

Table 1: The difference between MARC and other decision boundary adjustment methods.
j ∈ [1,K] is class index.

Method calibration method

Decouple-cRT (Kang et al., 2019) retrain Wj ,bj

Decouple-LWS (Kang et al., 2019) ∥Wj∥1−ωj

DisAlign (Zhang et al., 2021) σ(zj)(ωjηj + β) + (1− σ(zj))ηj
MARC ωj · dj + βj

4. Experiments

In this section, we conduct extensive experiments compared with the state-of-the-art meth-
ods to validate the effectiveness of MARC. First, we report performance on common bench-
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Algorithm 2 The detailed training procedure including both standard training and margin
calibration function training.

1: Input: The training dataset D = {(xi, yi)}ni=1, the parameters of the representation
function θr, the parameters of the classifier θc, parameters of the margin calibration
function ω and β, number of classes K and the pre-defined scale hyper-parameter γ.

2: First stage: the standard training use the instance-balanced sampling and the cross
entropy loss.

3: while not reach the maximum iteration do
4: Use instance-balanced sampling to sample a batch of data Ds = {(xi, yi)}si=1 from

the training dataset D, where s is the batch size.
5: Compute the loss and update the model parameters.

ℓ(Ds; θr, θc) =
−1
s

∑s
i=1 log

(
exp(ηyi )∑K
j=1 exp(ηj)

)
, where ηj is classification score of class j.

6: end while
7: Second stage: Calibrate the margins trained in the first stage.
8: while not reach the maximum iteration do
9: Use instance-balanced sampling to sample a batch of data Ds = {(xi, yi)}si=1 from

the training dataset D, where s is the batch size.
10: Compute the loss and update the model parameters.

ℓ(Ds; θ̃r, θ̃c, ω, β) = 1
s

∑s
i=1(−Uyi · log

(
exp(ωyi ·ηyi+βyi ·∥Wyi∥)∑K
j=1 exp(ωj ·ηj+βj ·∥Wj∥)

)
, where parameters

with ·̃ are fixed during training and Uj is calculated as shown in Eq. 12.
11: end while
12: Return: Model parameters θr, θc, ω, β.

marks like CIFAR-LT (Krizhevsky et al., 2009), ImageNet-LT (Liu et al., 2019), Places-
LT (Zhou et al., 2017) and iNaturalist2018 (Van Horn et al., 2018). The results of MARC
are competitive even though MARC is simple. Then we conduct further analysis to explain
the reason for the success of MARC.

4.1. Setup

Datasets We follow the common evaluation protocol (Liu et al., 2019) and conduct exper-
iments on CIFAR-10-LT (Krizhevsky et al., 2009), CIFAR-100-LT (Krizhevsky et al., 2009),
ImageNet-LT (Liu et al., 2019), Places-LT (Zhou et al., 2017) and iNaturalist2018 (Van Horn
et al., 2018). The imbalance factor used in CIFAR datasets is defined as Nmax/Nmin where
Nmax is the number of samples on the largest class and Nmin the smallest. We report
CIFAR results with two different imbalance ratios: 100 and 200. For ImageNet-LT and
Places-LT experiments, we further split classes into three sets: Many-shot (with more than
100 images), Medium-shot (with 20 to 100 images), and Few-shot (with less than 20 images).

Training Configuration For a fair comparison, our experiments are conducted under
the most commonly used codebase of long-tailed studies: Open Long-Tailed Recognition
(OLTR) (Liu et al., 2019), using PyTorch (Paszke et al., 2019) framework. The model struc-
tures used for CIFAR, ImageNet-LT, Places-LT and iNaturalist18 datasets are ResNet32,
ResNeXt50, ResNet152 and ResNet50, respectively. The model for Places-LT is pre-trained
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on the full ImageNet-2012 dataset while models for other datasets are trained from scratch.
For ImageNet-LT, Places-LT, and iNaturalist18, we train 90, 30, and 200 epochs in the first
standard training stage; and 10, 10, and 30 epochs in the second margin calibration stage,
with the batch size of 256, 128, and 256, respectively. For CIFAR-10-LT and CIFAR-100-
LT, the models are trained for 13,000 iterations with a batch size of 512. We use the SGD
optimizer with momentum 0.9 and weight decay 5e − 4 for all datasets except for iNatu-
ralist18 where the weight decay is 1e − 4. In the standard training stage, we use a cosine
learning rate schedule with an initial value of 0.05 for CIFAR and 0.1 for other datasets,
which gradually decays to 0. In the margin calibration stage, we use a cosine learning rate
schedule with an initial learning rate starting from 0.05 to 0 for all datasets. γ is set to
1.2 for all datasets. The hyper-parameters of compared methods follow their paper. For
fairness, we use the same pre-trained model for decision boundary adjustment methods.

Table 2: Accuracy on CIFAR-LT.
Dataset CIFAR-10-LT CIFAR-100-LT

Imbalance Factor 100 200 100 200

Softmax 78.7 74.4 45.3 41.0

Data Re-sampling
Class Balanced Sampling (CBS) 77.8 68.3 42.6 37.8

Loss Function Engineering
Class Balanced Weighting (CBW) 78.6 72.5 42.3 36.7
Class Balanced Loss (Cui et al., 2019) 78.2 72.6 44.6 39.9
Focal Loss (Lin et al., 2017) 77.1 71.8 43.8 40.2
LADE (Hong et al., 2021) 81.8 76.9 45.4 43.6
LDAM (Cao et al., 2019a) 78.9 73.6 46.1 41.3
Equalization Loss (Tan et al., 2020) 78.5 74.6 47.4 43.3
Balanced Softmax (Ren et al., 2020) 83.1 79.0 50.3 45.9

Decision Boundary Adjustment
DisAlign (Zhang et al., 2021) 78.0 71.2 49.1 43.6
Decouple-cRT (Kang et al., 2019) 82.0 76.6 50.0 44.5
Decouple-LWS (Kang et al., 2019) 83.7 78.1 50.5 45.3

Others
BBN (Zhou et al., 2020) 79.8 - 42.6 -
Hybrid-SC (Wang et al., 2021c) 81.4 - 46.7 -

MARC 85.3 81.1 50.8 47.4

Table 3: Accuracy on iNaturalist-LT.
Method Top-1 Accuracy

Softmax 65.0

Loss Function Engineering
Class Balanced Loss (Cui et al., 2019) 61.1
LDAM (Cao et al., 2019b) 64.6
Balanced Softmax (Ren et al., 2020) 69.8
LADE (Hong et al., 2021) 70.0

Decision Boundary Adjustment
Decouple-π-norm (Kang et al., 2019) 69.3
Decouple-LWS (Kang et al., 2019) 69.5
DisAlign (Zhang et al., 2021) 70.3

Others
Casual Norm (Tang et al., 2020) 63.9
Hybrid-SC (Wang et al., 2021c) 68.1

MARC 70.4

4.2. Comparison with previous methods

In this section, we compare the performance of MARC to other recent works. We select some
recent methods from each of the following four categories for comparison: data re-sampling,
loss function engineering, decision boundary adjustment, and others. The standard training
with the cross-entropy loss and instance balance sampling is called Softmax in our results.

CIFAR Table 2 presents results for CIFAR-10-LT and CIFAR-100-LT. MARC outper-
forms all other methods in CIFAR-LT. Compared with other decision boundary adjustment
methods, MARC shows favorable results. The accuracy of MARC outruns Decouple-LWS
1.6%, 3%, 0.3% and 1.9% on CIFAR-10-LT(100), CIFAR-10-LT(200), CIFAR-100-LT(100)
and CIFAR-100-LT(200) respectively, where (·) denotes the imbalance factor. In addition,
MARC outperforms all data re-sampling and loss function engineering methods that my
need laborious hyper-parameter. The performance of well-designed networks such as BBN
and Hybrid-SC are also not as good as that of MARC.
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ImageNet-LT We further evaluate MARC on the ImageNet-LT dataset. As Table 4
shows, MARC is better than all loss function engineering methods. Compared with LADE,
although our overall accuracy is 0.4% higher, the accuracy on the few-shot classes is 5.4%
higher. The few-shot accuracy and overall accuracy of MARC are 1.9% and 0.1% higher
than DisAlign respectively. Our results are quite surprising considering the simplicity of
MARC (See next section for time comparison).

Table 4: Accuracy on ImageNet-LT.
Method Many Medium Few Overall

Softmax 65.1 35.7 6.6 43.1

Loss Function Engineering
Focal Loss (Lin et al., 2017) 64.3 37.1 8.2 43.7
Seesaw (Wang et al., 2021b) 67.1 45.2 21.4 50.4
Balanced Softmax (Ren et al., 2020) 62.2 48.8 29.8 51.4
LADE (Hong et al., 2021) 62.3 49.3 31.2 51.9

Decision Boundary Adjustment
Decouple-π-norm (Kang et al., 2019) 59.1 46.9 30.7 49.4
Decouple-cRT (Kang et al., 2019) 61.8 46.2 27.4 49.6
Decouple-LWS (Kang et al., 2019) 60.2 47.2 30.3 49.9
DisAlign (Zhang et al., 2021) 60.8 50.4 34.7 52.2

Others
OLTR (Liu et al., 2019) 51.0 40.8 20.8 41.9
Causal Norm (Tang et al., 2020) 62.7 48.8 31.6 51.8

MARC 60.4 50.3 36.6 52.3

Table 5: Accuracy on Places-LT
Method Many Medium Few Overall

Softmax 46.4 27.9 12.5 31.5

Loss Function Engineering
Focal Loss (Lin et al., 2017) 41.1 34.8 22.4 34.6
Balanced Softmax (Ren et al., 2020) 42.0 38.0 17.2 35.4
LADE (Hong et al., 2021) 42.8 39.0 31.2 38.8

Decision Boundary Adjustment
Decouple-LWS (Kang et al., 2019) 40.6 39.1 28.6 37.6
Decouple-π-norm (Kang et al., 2019) 37.8 40.7 31.8 37.9
DisAlign (Zhang et al., 2021) 40.0 39.6 32.3 38.3

Others
OLTR (Liu et al., 2019) 44.7 37.0 25.3 35.9
Causal Norm (Tang et al., 2020) 23.8 35.8 40.4 32.4

MARC 39.9 39.8 32.6 38.4

Places-LT For the Places-LT dataset, MARC achieves better performance than other
decision boundary adjustment methods. Though our overall accuracy is lower than LADE,
our few-shot accuracy is still 1.4% higher than LADE. Though MARC is not the best in
Places-LT, the results of MARC are still competitive compared with other methods.

iNaturalist-LT Finally, we present the Top-1 accuracy results for iNaturalist-LT dataset
in Table 3. We can observe a similar trend that our proposed method wins all the existing
approaches and surpasses DisAlign by 0.1% absolute improvement.

4.3. Effectiveness validation

Comparison of the trainable parameters of decision boundary adjustment meth-
ods As shown in Table 6, MARC achieves the best performance among other compared
methods on CIFAR-100-LT(200) and ImageNet-LT. Even though our trainable parameters
are more than Decouple-LWS, our performance is better. Besides, it is surprising that
MARC obtains such a favorable performance with only so few parameters.

Table 6: Comparison of the trainable parameters (#Param.) of the learnable
decision boundary adjustment methods. p is the feature dimension and K
is the number of classes (ResNeXt50 for ImageNet-LT: p = 2048,K = 1000).

Method CIFAR-100-LT ImageNet-LT #Param.

Decouple-cRT 44.5 49.6 pK +K
Decouple-LWS 45.3 49.9 K
DisAlign 43.6 52.2 p+ 2K
MARC 47.4 52.3 2K
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Effects of different standard pre-trained model We use different standard pre-
trained models on CIFAR-100-LT(200) to explore their effects. As Table 7 illustrates,
as the pre-trained dataset gets more balanced, the performance of our margin calibration
method gets better. This shows that when comparing decision boundary methods, using
the same standard training model is very important for fairness. And the codebase will
also affect the standard training. This is the reason why the result of DisAlign in our paper
is inconsistent with the original paper since we cannot get the same standard pre-trained
model they used. So instead, we use our own standard pre-trained model for MARC and
DisAlign for fairness. Table 7 also demonstrates that the margin calibration method can
achieve better performance when given better representations. So our future works include
how to get better representations.

Table 7: Top-1 accuracy on CIFAR-100-LT(200) with different standard pre-trained models.

Standard pre-trained dataset Top-1 Accuracy

CIFAR-100-LT(200) 47.1
CIFAR-100-LT(100) 50.7
CIFAR-100-LT(50) 54.5

4.4. Further analysis

In this section, we conduct different experiments for further analysis. To be concrete, we
empirically show that MARC can achieve more balanced margins and logits compared with
DisAlign. Moreover, the class-wise accuracy of MARC is much better than the standard
training baseline model on CIFAR-LT, which indicates that we can alleviate the imbalanced
prediction problem and reduce the performance gap between the head and the tail classes.
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Figure 3: (a) and (b): Logits and margins of CIFAR-100-LT(200). Here, the logit
and margin represent the average logit and margin of each class, before refers to
the standard training results and after refers to the results after our calibration
method. The class indices are sorted by the number of samples (Head to tail).
(c) and (d): Confusion matrix of the standard training and MARC on
long-tailed CIFAR-10-LT(200). The fading color of diagonal elements refers
to the disparity of the accuracy.
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Figure 4: The values of margins and logits for each class on the ImageNet-LT
dataset. The logit and margin represent the average logit and margin of each
class. The class indices are sorted by the number of samples (Head to tail). Before
refers to the standard training results and after refers to the results after using
the decision boundary adjustment method.
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(b) F1 scores on CIFAR-
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Figure 5: The detailed performance of CIFAR-100-LT(200). Before refers to the standard
training results and after refers to the results after MARC.

Visualization of the margin and logit In this subsection, we visualize the values of
margins and logits for each class to show the effect of MARC. As illustrated both in Figure 3,
Figure 4(c)subfigure and Figure 4(d)subfigure, before margin calibration, the margins and
the logits are uncalibrated, i.e. the head classes tend to have much larger margins and logits
than tail classes. We believe the bias in margins and logits will lead to imperfect predictions
in long-tailed visual recognition. The margins and logits become more balanced after the
margin calibration. This result proves that we can get better predictions by calibrating the
margin. Moreover, as shown in Figure 4(a)subfigure and Figure 4(b)subfigure, MARC will
obtain more balanced margins and gradients than DisAlign. The instability of DisAlign
may be caused by their heuristic design of the combination of the calibrated logits and the
origin logits.

Class-wise performance on CIFAR-LT As we can see in Figure 3(c)subfigure and
3(d)subfigure, after our margin calibration method, the performance on tail classes is im-
proved while that on head classes is not severely affected. More intuitively, Figure 5 shows
the class-wise performance. The accuracy of the tail class is much higher than that of the
head class. The performance degradation on head classes may be caused by the false pos-
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itive predictions on head classes, i.e., the standard training method tends to classify tail
classes as head classes, resulting in high accuracy on the head classes. The bad perfor-
mance on tail classes when using standard training also proves this. In addition, the overall
accuracy and F1-score show that MARC alleviates the uncalibrated prediction problem.
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Figure 6: Accuracy on CIFAR-100-
LT(200) with different γ.

Effects of different γ To explore the effect of dif-
ferent γ, we also conduct experiments and visualize
the performances on all CIFAR-100-LT(200). The
results are shown in Figure 6. We can observe that
compared 1.2 is the best compared with other values.
γ can not be too large since in this way the weight
for head classes is too small. It is worth noting that
MARC also achieves 45.2% accuracy when γ is 0.
This means MARC still works even if we do not use
any loss re-weighting techniques in the second stage.
For other datasets, we directly use 1.2 for γ.

5. Conclusions

This paper studied the long-tailed visual recognition problem. Specifically, we found that
head classes tend to have much larger margins and logits than tail classes. Motivated by
our findings, we proposed a margin calibration function with only 2K learnable parameters
to obtain the balanced logits in long-tailed visual recognition. Even though our method
is very simple to implement, extensive experiments show that MARC achieves favorable
results compared with previous methods without altering the model representation. We
hope that our study on logits and margins could provide experience for joint optimization
of the model representation and margin calibration.In the future, we aim to develop a unified
theory to better support our algorithm design and apply this algorithm to more long-tailed
applications.
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