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Abstract

Few-shot learning (FSL) has attracted considerable attention recently. Among existing
approaches, the metric-based method aims to train an embedding network that can make
similar samples close while dissimilar samples as far as possible and achieves promising re-
sults. FSL is characterized by using only a few images to train a model that can generalize
to novel classes in image classification problems, but this setting makes it difficult to learn
the visual features that can identify the images’ appearance variations. The model training
is likely to move in the wrong direction, as the images in an identical semantic class may
have dissimilar appearances, whereas the images in different semantic classes may share a
similar appearance. We argue that FSL can benefit from additional semantic features to
learn discriminative feature representations. Thus, this study proposes a multi-task learn-
ing approach to view semantic features of label text as an auxiliary task to help boost the
performance of the FSL task. Our proposed model uses word-embedding representations
as semantic features to help train the embedding network and a semantic cross-attention
module to bridge the semantic features into the typical visual modal. The proposed ap-
proach is simple, but produces excellent results. We apply our proposed approach to two
previous metric-based FSL methods, all of which can substantially improve performance.
The source code for our model is accessible from github 1.
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1. Introduction

Few-shot learning (FSL) algorithms have been widely studied in recent years, and most of
the work has focused on the few-shot image classification problem. For the few-shot image
classification problem, it is a natural choice to use convolution neural networks (CNN) (Le-
cun et al., 1998; Krizhevsky et al., 2012) to extract visual features from the images. However,
simply using visual features can lead to the following problems when training samples in-
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volved in the training process are limited. First, images from different classes may share
a similar visual appearance. For example, Figure 1 shows that the shovel and the barn
share a similar visual appearance, but their labels appear different, which means that their
semantic meanings are different. Second, images from an identical class may have dissimilar
visual appearances. The images of the crossword puzzle as shown in Figure 1 present this
problem. Although these two crossword puzzle images have identical semantic meanings,
their visual appearances are different. We call these two problems a visual-semantic mis-
match, in which “visual” means the visual features learned from deep learning models and
“semantic” denotes their semantic labels. In particular, the images and labels in Figure 1
are all from the tiered-ImageNet dataset (Ren et al., 2018), which is a widely used dataset
in the few-shot image classification problem. It is worth mentioning that a similar concept
called Shortcut Learning (Geirhos et al., 2020; Luo et al., 2021) has been discussed in other
studies, whose main motivation is to guide the model to learn intended features rather than
shortcut features. In the context of few-shot learning, Luo et al. (2021) considered the
impact of the image background that may contain the shortcut information. However, the
motivation of this study is to handle the visual-semantic mismatch as mentioned above, so
our proposed method is different from studies considering short-cut learning.

The aforementioned visual-semantic mismatch problem is not present in an image clas-
sification model trained with a large-scale dataset and augmentation techniques. However,
in the FSL setting, the number of images in each class is very limited, so the visual features
learned by the model are difficult to reflect the appearance variations of the images. The
classical metric-based method for FSL relies on an embedding network to transform the
input images into feature embeddings that can make similar samples close while dissimilar
samples as far as possible. Many previous works (Chen et al., 2019; Xiao et al., 2020; Tian
et al., 2020) have empirically shown that the embedding network is crucial for performance.
Therefore, this study proposes a multi-task learning model to focus on learning feature
embeddings that can quickly adapt to novel classes by leveraging an auxiliary task. The
auxiliary task incorporates semantic features into the training process, and the goal is to
further refine the embedding network. In addition, we propose a semantic cross-attention
module (CAM) to guide the visual embedding network to focus on the correct semantic
areas. More specifically, we use a word-embedding model to transform text labels into soft
labels as the target of the auxiliary task to inject semantic features into the main task. It
is worth mentioning that the proposed CAM module firstly flattens the visual features into
a patch sequence and then maps the patch sequence to the key and value vectors. Still, the
query vectors are generated by the semantic auxiliary task. Therefore, the proposed CAM
module is different from the self-attention mechanism. Once the three types of vectors are
available, the dot product of the query vectors and the key vectors is used to generate the
weight matrices, and the final output is based on the weight matrices and the value vectors.
This way, semantic features can be injected into visual features, guiding the embedding
network to focus on the correct areas.

The contributions of this work are three-fold. First, we inspect the problem of FSL
and present the visual-semantic mismatch problem that is present in the FSL setting. It
is difficult to directly tackle this problem by only using limited images, which is why we
propose to incorporate semantic features into the model to help alleviate the problem of
only limited images available for each episode. Second, we simultaneously consider the
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semantic meaning of text labels and visual features to propose a multi-task learning model
that can align visual features and their semantic meanings. Finally, we apply our proposed
method to two recent metric-based methods. The experimental results indicate that these
methods can benefit from our proposed method and yield substantial improvements in the
experiments.

crossword puzzlebarnshovel

Figure 1: Examples of a similar visual appearance of images in different classes (left) and
a dissimilar visual appearance of images in an identical class (right). The images
and their labels are from the tiered-ImageNet dataset.

2. Related work

2.1. Few-shot learning

Few-shot learning methods can be roughly classified into three groups: metric-based meth-
ods, optimization-based methods, and hallucination-based methods (Chen et al., 2019).
Our proposed method uses metric-based methods as the base model, so this section fo-
cuses on metric-based approaches. The metric-based FSL method usually comprises three
key components, including the embedding network, the class representatives, and the dis-
tance metric (Xiao et al., 2020). For example, ProtoNet (Snell et al., 2017) is a classical
metric-based method and comprises an embedding network to transform each input image
into a visual embedding vector. In addition, it uses the prototype of each class’s feature
embeddings as the class representative and uses Euclidean distance as the distance met-
ric. Ren et al. (2018) extended ProtoNet in a semi-supervised manner and discussed two
semi-supervised few-shot classification settings. Liu et al. (2020) proposed a transductive
ProtoNet by introducing a bias diminishing module, which tries to refine the feature em-
beddings by introducing an extra module. They pointed out that the intra-class bias and
the cross-class bias are two key points that can influence the representativeness of class
prototypes and proposed a bias diminishing module by using pseudo-labeling and feature
shifting. However, their proposed method works in a transductive setting, which differs
from most FSL methods. Tian et al. proposed a method based on knowledge distillation to
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improve feature embeddings (Tian et al., 2020). Instead of using a typical teacher model,
they proposed using the trained model at different epochs as a teacher model, also called
self-distillation. Many works (Chen et al., 2019; Tian et al., 2020) have also discussed the
influence of a deeper embedding network and concluded that the model could generally
benefit from a deeper embedding network to achieve better performance to some extent.

RelationNet (Sung et al., 2018) improves the metric-based method by using a trainable
distance metric, which comprises convolution layers and fully connected layers. Similarly,
ProxyNet (Xiao et al., 2020) also defines a trainable metric using a 3D convolution layer
and uses trainable class representatives. Simon et al. (2020) proposed to use dynamic
classifiers that are based on a deep subspace network to extract a discriminated subspace
from the feature embeddings. The goal is to further improve the distance metric for typical
metric-based methods.

Several studies have considered using the features of the text modality to deal with
the FSL problem. Xing et al. (2019) also pointed out the drawbacks of using only visual
features to deal with FSL and proposed to use the semantic features of the text modality.
They proposed an adaptive modality mixture mechanism (AM3) that can combine the
features of visual modality and text modality adaptively and selectively. Although AM3
also considers text and visual modalities, the purpose and approach are different from our
proposed approach. More specifically, AM3 uses a weighted sum of visual and semantic
features as prototypes, and the weights are determined by an adaptive mixing network.
The semantic features generated from class labels are required input for AM3 in both meta-
training and meta-test stages, since the model relies on the semantic features to calculate
the prototypes. In contrast, our proposed method is based on a multi-task architecture
and focuses on learning visual-semantic features that can quickly adapt to novel classes by
leveraging an auxiliary task. Besides, we propose a CAM module to inject semantic features
into visual embeddings. It is worth mentioning that label information is not required in
our meta-testing stage, as the main task is a few-shot classification. The study conducted
by Pahde et al. (2021) is also a multi-modality method and uses a generative adversarial
network (GAN) framework to combine the features of the text modality with the visual
features. Moreover, this model takes images and text descriptions as inputs, and the model
comprises the semantic features of the input text description. Notably, the text description
is an additional knowledge source, which differs from the label that is available in the
meta-training set.

2.2. Multi-task learning

Multi-task learning is a learning paradigm that optimizes several tasks simultaneously,
and the goal is to use auxiliary tasks to improve the performance of the main task. The
role of auxiliary tasks is similar to that of a regularization term that can place additional
constraints on the model. Additionally, the main task can benefit from the parameter
sharing mechanism to improve the performance of the model. Many approaches have been
proposed by designing different parameter sharing mechanisms. One of the most widely
used approaches is hard parameter sharing (Caruana, 1993; Ruder, 2017). For deep learning
models, hard parameter sharing can be realized by using sharing layers to learn the feature
representations that are common for all tasks and by keeping task-specific layers to learn



Semantic Cross Attention for Few-shot Learning

the representations that are specific for all tasks. This approach is simple and easy to
implement, which is why many studies have used the hard parameter sharing approach to
develop methods and achieved promising performance (Zhang et al., 2014; Dai et al., 2016).
In contrast, soft parameter sharing (Ruder, 2017) allows each task to have its own model
with its own parameters and uses a regularization technique to make the parameters of the
tasks similar.

Besides, multi-task learning can be viewed as a transfer learning approach that transfers
knowledge between different tasks. Note that multi-task learning cannot guarantee that the
main task can benefit from the auxiliary tasks to improve performance, as negative transfer
may occur, which can degrade the performance of the main task. To alleviate negative
transfer, Lee et al. (2016) proposed a method called asymmetric multi-task learning (AMTL)
by considering the task relatedness of the task and the loss of each task to measure the
reliability of each task. In addition to task loss, other metrics, such as uncertainty (Nguyen
et al., 2020; Kendall and Gal, 2017), can also be used to measure task reliability.

3. Proposed Method

This study follows conventional meta-learning settings to train the proposed method, so the
model training is processed episodically. In each episode, the input comprises a sequence of
meta-tasks, each of which comprises a support set and a query set. The images for these two
sets are non-overlapped and are randomly drawn from the meta-training set. In particular,
we use meta-task to represent the tasks in episode-based meta-training to distinguish with
the task that is used by multi-task learning in this section.

For a K-way-N -shot problem, the support set S = {(xi, yi)}K·N
i=1 comprises K ·N images

that are randomly selected from K classes, each of which has N images. On the other hand,
the query set Q = {(xj , yi)}Mj=1 comprises M images that are randomly sampled from the
corresponding K classes and differ from the images of the support set. These sampled
meta-tasks can be not only the inputs of the main task, but also the inputs of the auxiliary
task in our multi-task learning model.

The proposed method can be applied to different metric-based methods. To explain how
our proposed model works, we use ProtoNet (Snell et al., 2017) as an example to further
illustrate the proposed method, since ProtoNet is a classical metric-based method for FSL.
In the experiments, we use different metric-based methods as base methods to show the
performance improvement brought about by our proposed method.

The embedding network plays a crucial role in metric-based methods (Chen et al., 2019;
Xiao et al., 2020; Tian et al., 2020), which is why this study aims to incorporate semantic
features into the model to help train an embedding network that can adapt to novel classes.
Unlike other metric-based methods that only use images to train the embedding network,
this study proposes using semantic features to enhance the training of the embedding net-
work, in which the proposed method comprises text and image modalities, and the text
modality can provide semantic information. To incorporate two modalities into the model,
we propose to use a multi-task learning architecture with two tasks to handle visual features
and the semantic information of text labels, respectively.

Figure 2 shows the overall architecture of the proposed method, which contains two
tasks: the main task for the visual modality and the auxiliary task for the text modality.
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Figure 2: The overall learning architecture of the proposed multi-task model.

The former deals with few-shot classification, while the latter aims to incorporate semantic
features into the model. We use the hard parameter sharing method to design the model
so that the main task and the auxiliary task share an identical embedding network Eθ. For
the main task, an input image x is first transformed into feature maps using the embedding
network Eθ; then, the feature maps are fed into the CAM denoted by Crossϕ to obtain the
final embedding of the features of each image. The entire process can be represented by
Equation (1) and Equation (2), in which chin, hin, win are the number of channels, height
and width of the input image, respectively, linter is the depth of the feature map generated
by Eθ, and lout, hout, wout are the depth, height and width of the final embedding generated
by Crossϕ. It is worth mentioning that Crossϕ also takes an input eaux from the auxiliary
task.

emain = Eθ(x), x ∈ Rchin×hin×win , e ∈ Rlinter×hout×wout (1)

eout = Crossϕ(emain, eaux), eout ∈ Rlout×hout×wout (2)

Subsequently, we can determine the class assignment based on the feature embeddings
using a distance metric. In a typical setting, metric-based methods can use the nearest-
neighbor approach to determine the assignment of the class by calculating the distance be-
tween the query image and the class representatives on the embedding space. Our proposed
method can be applied to any metric-based model, so the definition of class representatives
is determined by the base model. In ProtoNet, for a K-way-N -shot problem, the class
representative is defined as the mean of the feature embeddings of that class, as defined in
Equation (3). Assume that the prototype embedding of the kth class in the support set S is
epk. Then, for the jth image in the query set Q with the feature embedding eqj , the distance
over the class prototypes epk is defined in Equation (4).

epk =
1

N

N∑
n=1

ep{k,n}, k ∈ {1, 2, . . . ,K} (3)
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d{k,j} = Fω(e
p
k, e

q
j), k ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . ,M}, (4)

where Fω is the distance function. In ProtoNet, Fω is the Euclidean distance. Then,
for the jth query image qj with embedding eqj , the final distribution over classes should be:

pθ(y = i|qj) =
exp(−d{k,j})∑K
k=1 exp(−d{k,j})

, i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . ,M}, (5)

where M is the number of query images in each class defined in a K-way-N -shot few-shot
classification problem.

The visual feature map is available for the auxiliary task once the input image x passes
through the embedding network Eθ. Subsequently, we reshape the generated visual feature
map into a patch sequence and use a fully-connected layer FCσ to project the visual embed-
ding vector into the space of the same dimension length as the soft labels. Finally, we use
a sum operation across the dimension h× w to make the output have the same dimension
as the soft label. The entire process is defined in Equation (6) and Equation (7).

eaux = FCσ(Eθ(x)), x ∈ Rchin×hin×win , eaux ∈ Rlout×(hout×wout) (6)

ŷaux = softmax(sum(eaux)/τ), ŷaux ∈ Rlout , (7)

where lout is the vector length of a soft label, chin is the number of channels in the input
image and τ is the temperature parameter. In particular, eaux defined in Equation (6)
acts as an input to the proposed CAM, and semantic soft labels are the word-embedding
vectors of the labels leveraging the pre-trained Glove model (Pennington et al., 2014). The
semantic soft labels are the targets of the auxiliary task, and the purpose is to place an
additional constraint on the main task to tackle the visual-semantic mismatch problem.

The model can incorporate semantic and visual features into the network by sharing
the embedding network of the two tasks, and we also introduce a CAM to inject semantic
features into visual features, as shown in Figure 3. As defined in Equation (2), the CAM
takes two inputs, namely, the feature map of the main task emain = Eθ(x) and the feature
map of the auxiliary task eaux. For the feature map of the main task emain, it is first
reshaped into a patch sequence, then the patch sequence is projected into a value sequence
pvalue and a key sequence pkey by two fully-connected layers separately. Then the value
sequence, the key sequence, and the query sequence are fed into the Dot-Product Attention
module, which is defined by Equation (8), to obtain the final output embedding.

eout = MatMul(softmax(MatMul(pquery, pkey) · scale), pvalue) (8)

Finally, we use KL-divergence as the loss function of the auxiliary task to calculate the
difference between the soft labels and the outputs of the auxiliary task, and we use cross-
entropy as the loss function of the few-shot classification task. Therefore, the proposed
model has two tasks and the total loss L of the proposed method is defined in Equation (9),
in which Laux is the loss of the auxiliary task and Lcls is the loss of the few-shot classification
task, and λ is a hyperparameter that controls the weight of the auxiliary loss.

L = (1− λ)Lcls + λLaux, (9)
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Figure 3: The architecture of semantic cross attention module.

4. Experiments

4.1. Experimental settings & Results

We follow the evaluation protocol of the study (Chen et al., 2019) by using CUB (Welinder
et al., 2010), mini-ImageNet (Vinyals et al., 2016), and tiered-ImageNet (Ren et al., 2018)
to evaluate the proposed method. The mini-ImageNet dataset comprises 64 classes for
training, 16 classes for validation, and 20 classes for testing, and each class has 600 images.
Meanwhile, the CUB dataset comprises 11,788 images, among which 100 classes were for
training, 50 classes for validation, and 50 classes for testing. The tiered-IamgeNet dataset
uses 351 classes from 20 categories as the training set, 97 classes from 6 different categories
as the validation set, and 160 classes from 8 different categories as the testing set.

Note that the embedding network plays a key role in the metric-based methods for FSL.
Consequently, we fix the size of the embedding network using the Conv-4-128 architecture in
the experiments for a fair comparison. The Conv-4-128 network comprises four convolution
layers that have 64, 64, 128, and 128 filters, respectively. In particular, for the auxiliary
task, we add an extra fully-connected layer right after the embedding network to align the
visual features and the corresponding text features when they are used to calculate the
auxiliary loss, as shown in Figure 2.

To transform the text of the label into soft labels of the auxiliary task, we use Glove (Pen-
nington et al., 2014) pretrained on the Common Crawl corpus (Foundation, 2021), and the
word embedding vector is of size 300. For the label text that comprises more than one
word, we use the average of the embedding vectors for the words involved in the label text
as the soft label. All images are randomly resized and cropped to the size of 84 × 84, and
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color jitter and random flip are used as augmentation methods. The λ in Equation 9 is
0.1 in the experiments. We apply the proposed method to two metric-based methods, in-
cluding ProtoNet (Snell et al., 2017) and ProxyNet (Xiao et al., 2020). The Optimizers are
AdamW (Loshchilov and Hutter, 2019) with an initial learning rate of 0.001 for ProtoNet
and SGD with an initial learning rate of 0.1 for ProxyNet. The reduce-lr-on-plateau (Py-
torchDevTeam, 2021) method is applied to adjust the learning rate of the optimizer during
the training of the two optimizers. We set the number of epochs to 2000, each of which
comprises 100 episodes, and the model can be trained in ten hours with an NVIDIA-1080
Ti GPU. The experimental results on the 5-way-1-shot and 5-way-5-shot tasks are listed in
Table 1 and Table 2, in which the three metric-based methods with plus symbols are those
enhanced by our proposed method. The values in Table 1 and Table 2 are the accuracy and
the 95% confidence interval, and the performance values for ProtoNet are directly obtained
from (Chen et al., 2019).

Although Self-distill (Tian et al., 2020), DSN-MR (Simon et al., 2020), and BOIL (Oh
et al., 2021) are three state-of-the-art methods, Self-distill and DSN-MR do not report their
experimental results in the CUB dataset. In Self-distill (Tian et al., 2020), the knowledge
distillation method is defined as a series of generations based on the timeline, which means
that the model at time T can learn knowledge from the model at time T − 1. BOIL is a
gradient-based approach that relies on representation change, which is a crucial component
in gradient-based methods.

As shown in Table 1 and Table 2, the experimental results indicate that the two metric-
based methods can benefit from our proposed method and produce significant improvement.
Moreover, using our proposed method can allow these methods to achieve competitive per-
formance compared to state-of-the-art methods. The source code for our model is publicly
accessible, and detailed hyperparameters and settings are available in the source code.

We focus on how to train a better embedding network as it is a crucial component
for metric-based methods. Central to our proposed method is to consider the semantic
information obtained from the text labels as an auxiliary task to incorporate semantic
information into the training of the embedding network. An ablation study is conducted to
analyze the importance of these components in our proposed method.

Figure 4: Experimental results with different values of λ values, different values of temper-
ature τ and different values of scale.
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Table 1: Experimental results on CUB, mini-ImageNet, and tiered-ImageNet datasets for
5-way-1-shot tasks. + means the model trained with the proposed method using
ConvNet4-128 backbone, ‡ means our re-implementation of ProtoNet and Prox-
yNet with ConvNet4-128 backbone.

Method CUB mini-ImageNet tiered-ImageNet

ProtoNet 50.46± 0.88 44.42± 0.84 −
ProxyNet 67.52± 0.97 52.95± 0.76 −

Self-distill − 55.88± 0.59 56.76± 0.68
DSN-MR − 55.88± 0.90 −
BOIL 61.60± 0.57 49.61± 0.16 48.58± 0.27

ProtoNet‡ 62.67± 0.93 50.21± 0.82 43.62± 0.82
ProxyNet‡ 72.36± 0.84 54.40± 0.81 55.05± 0.93

ProtoNet+ 74.28± 0.87 54.34± 0.81 56.25± 0.97
ProxyNet+ 76.66± 0.87 57.45± 0.86 59.32± 0.90

Table 2: Experimental results on CUB, mini-ImageNet, and tiered-ImageNet datasets for
5-way-5-shot tasks. + means the model trained with the proposed method using
ConvNet4-128 backbone, ‡ means our re-implementation of ProtoNet and Prox-
yNet with ConvNet4-128 backbone.

Method CUB mini-ImageNet tiered-ImageNet

ProtoNet 76.39± 0.64 64.24± 0.72 −
ProxyNet 82.85± 0.60 70.35± 0.63 −

Self-distill − 71.65± 0.51 73.21± 0.54
DSN-MR − 70.50± 0.68 −
BOIL 75.96± 0.17 66.45± 0.37 69.37± 0.12

ProtoNet‡ 79.39± 0.65 69.64± 0.65 72.18± 0.76
ProxyNet‡ 86.15± 0.51 72.36± 0.67 73.77± 0.76

ProtoNet+ 86.39± 0.49 73.12± 0.63 76.89± 0.72
ProxyNet+ 88.48± 0.46 73.54± 0.62 77.83± 0.69

4.2. Sensitivity Analysis

To further investigate the impact of the proposed semantic feature alignment on the per-
formance of the model, we perform a sensitivity analysis by changing the value of λ in
Equation 9 with ProtoNet as the base model. The experiments are carried out on CUB,
mini-ImageNet, and tired-ImageNet datasets for the 5-way-1-shot problem, and the exper-
imental results are shown in Figure 4. It can be seen from the results that our proposed
method produces a relatively stable performance under different values of λ in the range
from 0.1 to 0.9. Similarly, we also perform sensitivity analysis on the other two hyper-
parameters, namely the temperature τ defined in Equation 7 and the scale value defined
in Equation 8, and the experimental results are also shown in Figure 4. Note that the
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accuracy scores listed in Figure 4 are obtained using the validation set. Overall, the ex-
perimental results show that the proposed method is robust to different choices of these
hyper-parameters, especially for τ , in the range reported in Figure 4.

4.3. Ablation Study

We conduct an ablation study to assess the effectiveness of the components involved in
our proposed method. First, we conduct experiments to verify whether the main few-shot
classification task in our model can benefit from the proposed CAM and the auxiliary task.
We compare our model with the multi-task learning model without CAM. Furthermore, the
squeeze-and-excitation network (Hu et al., 2018) is a simple but useful module on channel
attention, so we also develop a model that replaces our proposed CAM module with a
squeeze-excitation module to re-weight the importance of the channel, but without using
the inputs of aligned semantic features that are from the auxiliary task.

Figure 5: The ablation study results for 5-way-1-shot tasks. ProtoNet here is our re-
implemented version; ProtoNet+MT means the model trained only with the
multi-task architecture without using the proposed CAM component; Pro-
toNet+MT+CAM means the model trained with the multi-task architecture
and the proposed CAM component. ProtoNet+MT+CONCAT means the model
trained with the multi-task architecture and a concatenation of the feature maps
from the main task and the auxiliary task is used for the subsequent classification.

Similarly, we still use ProtoNet as the base model, and the experiments are carried
out on CUB, mini-ImageNet, and tiered-ImageNet datasets for the 5-way-1-shot problem.
The experimental results are presented in Figure 5. The experimental results point out
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Table 3: Experimental results for 5-way-1-shot tasks with different embedding networks. +
means the proposed model trained with the ConvNet4-128 backbone, and † means
the proposed model trained with the ResNet12 backbone.

Method CUB mini-ImageNet tiered-ImageNet

ProtoNet+ 74.28± 0.87 54.34± 0.81 56.25± 0.97
ProxyNet+ 76.66± 0.87 57.45± 0.86 59.32± 0.90

ProtoNet† 79.81± 0.84 57.89± 0.85 60.40± 0.98
ProxyNet† 80.20± 0.81 60.58± 0.85 63.84± 1.02

Table 4: Experimental results for 5-way-5-shot tasks with different embedding networks. +
means the proposed model trained with the ConvNet4-128 backbone, and † means
the proposed model trained with the ResNet12 backbone.

Method CUB mini-ImageNet tiered-ImageNet

ProtoNet+ 86.39± 0.49 73.12± 0.63 76.89± 0.72
ProxyNet+ 88.48± 0.46 73.54± 0.62 77.83± 0.69

ProtoNet† 89.10± 0.42 75.56± 0.63 83.60± 0.67
ProxyNet† 90.80± 0.39 76.53± 0.58 83.15± 0.69

that only using the multi-task learning architecture and semantic features can significantly
improve the performance. Thus, this can empirically show the importance of semantic
features in our proposed method. Moreover, both the squeeze-excitation module and the
proposed CAM can improve performance. The proposed CAM module can outperform
the squeeze-excitation module in all three data sets. We also list a model implemented
in the proposed multi-task manner, but the semantic features generated in the auxiliary
task are concatenated with the visual features in the main task. The results show that
this simple concatenation method of merging visual features and semantic features only
leads to performance improvement on the tiered-ImageNet dataset, demonstrating that our
proposed CAM module is adequate for combining visual and semantic features.

4.4. Embedding Network

We also explore the impact of the embedding network using ResNet12 (He et al., 2016)
to replace the Conv-4-128 network. Many studies have shown that a deeper embedding
network may improve performance. We conduct experiments on CUB, mini-ImageNet, and
tiered-ImageNet datasets for 5-way-1-shot and 5-way-5-shot problems using ProtoNet and
ProxyNet with ResNet-12 as their embedding networks. The experimental results are listed
in Table 3 and Table 4, indicating that the use of ResNet-12 can significantly improve the
performance of ProtoNet and ProxyNet. Thus, the proposed method can also benefit from
a deeper embedding network.
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Table 5: Experimental results for 5-way-1-shot tasks with different auxiliary losses. +
means the proposed model trained with KL loss as the auxiliary loss, ∗ means
the proposed model trained with MSE loss as the auxiliary loss.

Method CUB mini-ImageNet tiered-ImageNet

ProtoNet+ 74.28± 0.87 54.34± 0.81 56.25± 0.97
ProxyNet+ 76.66± 0.87 57.45± 0.86 59.32± 0.90

ProtoNet∗ 74.82± 0.87 55.05± 0.86 54.89± 0.94
ProxyNet∗ 75.98± 0.88 55.80± 0.86 58.59± 0.96

Table 6: Experimental results for 5-way-5-shot tasks with different auxiliary losses. +
means the proposed model trained with KL loss as an auxiliary loss, ∗ means
the proposed model trained with MSE loss as an auxiliary loss.

Method CUB mini-ImageNet tiered-ImageNet

ProtoNet+ 86.39± 0.49 73.12± 0.63 76.89± 0.72
ProxyNet+ 88.48± 0.46 73.54± 0.62 77.83± 0.69

ProtoNet∗ 86.35± 0.49 72.52± 0.63 76.41± 0.73
ProxyNet∗ 87.59± 0.49 73.12± 0.66 77.59± 0.72

4.5. Auxiliary task with different loss functions

In our proposed method, we use KL loss as the loss of the semantic task. Other loss
functions such as mean squared loss (MSE) can also be used in the semantic task. In
Table 5 and Table 6, we compare the performance of using the KL loss and the MSE loss
as an auxiliary loss in the semantic task. We set λ in Equation 9 to 0.1 in the experiments.
The experimental results show that MSE loss can also work well with the proposed method,
and the performance of KL loss and MSE loss are close, but overall, MSE loss does not
show any superiority compared to KL loss.

4.6. Auxiliary task with different pre-trained language models

In this study, we propose using a pre-trained language model to generate the soft labels used
in the auxiliary task. To evaluate the impact of different pre-trained language models, we
conduct experiments with three classic pre-trained language models, including Glove (Pen-
nington et al., 2014), FastText (Bojanowski et al., 2017) and Bert (Devlin et al., 2018) for
the 5-way-1shot problem. The experimental results are listed in Table 7. The experimental
results show that Glove generally performs better than the other two.



Xiao Liu Hsaio

Table 7: Experimental results for 5-way-1-shot tasks with different word embedding models.
† means using ProtoNet as the base model, while ‡ means that the base model is
ProxyNet.

Method CUB mini-ImageNet tiered-ImageNet

Glove† 74.28± 0.87 54.34± 0.81 56.25± 0.97
FastText† 74.82± 0.82 52.79± 0.83 52.20± 0.91
Bert† 74.39± 0.86 53.45± 0.86 53.46± 0.94

Glove‡ 76.66± 0.87 57.45± 0.86 59.32± 0.90
FastText‡ 74.64± 0.85 55.56± 0.84 55.81± 0.88
Bert‡ 75.63± 0.90 56.35± 0.86 54.82± 0.92

5. Conclusions

This study presents the visual-semantic mismatch problem that is present in the FSL setting
and proposes to incorporate semantic features into the model to help alleviate the problem
of only limited images available for each episode. In our proposed multi-task learning model,
we align the visual features with their semantic meanings to enforce the model to consider
the semantic meaning of text labels and visual features simultaneously, giving a base to train
an embedding network that can quickly adapt to novel classes with limited training samples.
Besides, we propose a CAM module to further refine the visual embeddings by using the
aligned features of the auxiliary task. We apply the proposed method to two classical
metric-based methods. The experimental results indicate that these methods can benefit
from our proposed method to achieve substantial improvement and competitive performance
compared to state-of-the-art models. Our proposed method can also be applied to other
metric-based methods without changing the pipeline of the original methods.
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