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Supplementary of Probabilistic Fusion of Neural Networks that
Incorporates Global Information

1. Permutation invariance of deep neural architecture

Permutation invariance of deep FCs We naturally extend Eq. (1) in main text to iteratively define
deep FC network:

fs(x(n)) =σ(x(n−1)T
A(n−1)T

s W (n)
s A(n)

s ), (1)

where n = 1,2, . . . , N is the layer index, W (0)
s is a identity matrix indicating non-ambiguity in the

ordering of input features x = x0 and W (N )
s is a identity matrix for the same purpose in output

classes. Conventionally σ(·) is any non-linearity except for xN where it is the identity function
(or softmax if we want probabilities instead of logits). To perform matched aggregating of deep
FCs acquired from S clients we need to align every layer of every client. Here we consider an
iteratively (in layers) matched aggregating formulation which will be detailedly described in later
subsections.
Permutation invariance of CNNs Before our work, there is seldom study that implement model
fusion algorithms on CNNs. Therefore, we introduce permutation invariance of CNNs before
applying model fusion methods on CNNs. To understanding permutation invariance of CNNs,
the key observation is that instead of neurons, channels define the invariance. To be more spe-
cific, define Conv(x,Ws) as the convolutional operation on input data x with weights Ws ∈
RC i n×w×h×C out

, where C i n , C out respectively are the numbers of input/output channels and w ,
h are the width and height of the filters. Applying any permutation to the output channel of the
weights and then same permutation to the input channel of the subsequent layer will make the
result of corresponding CNN’s forward pass consistent:

fs(x(n)) =σ(Conv(x(n−1),A(n−1)T

s W (n)
s A(n)

s )). (2)

To apply matched aggregating for the nth CNN layer we form inputs as {ws j ∈ RD }
C out

n

j=1 , j =
1, · · · , Js , where D is the dimension of RC i n

n ×w×h , to which the flattened A
(n−1)T

s W (n)
s belongs.

Similar to deep FCs, we can also iteratively perform matched aggregating on deep CNNs.

2. BBP and IBP

Beta-Bernoulli Process and Indian Buffet Process Denote Q as a random measure drawn from
a Beta process: Q|γ0, H ∼ BP(1,γ0H), where γ0 is the mass parameter, H is the base measure
over some domain Ω such that H(Ω) = 1. One can show that Q is a discrete measure with
Q = ∑

i qiδθi , which can be characterized by an infinitely countable set of (weight, atom) pairs
(qi ,θi ) ∈ [0,1]×Ω. The atoms θi can be drawn i.i.d from H and the weights {qi }∞i=1 can be gen-

erated via a stick-breaking process (?): q1 ∼ Beta(γ0,1), qi = ∏i
g=1 qg . Then subsets of atoms
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in the random measure Q can be picked via a Bernoulli process. That is, each subset Ts for
s = 1, · · · ,S can be distributed via a Bernoulli process with base measure Q: Ts |Q ∼ BeP(Q).
Hence, subset Ts can also be viewed as a discrete measure Ts := ∑

i asiδθi , which is formed by
pairs (asi ,θi ) ∈ {0,1}×Ω, where asi |qi ∼ Bernoulli(qi ),∀i is a binary random variable indicating
whether θi belongs to subset Ts . We call such collection of subsets a Beta-Bernoulli process (?).

The Indian buffet process (IBP) specifies distribution on sparse binary matrices (?). IBP in-
volves a metaphor of a sequence of customers tasting dishes in an infinite buffet: the first cus-
tomer tastes Poisson(γ0) dishes, every subsequent sth customer tastes each dish that is previ-
ously selected with probability ni /s, where ni = ∑S−1

s=1 asi , and then tastes Poisson(γ0/s) new
dishes. Marginalizing over Beta Process distributed Q above will induce dependencies among
subsets and recover the predictive distribution TS |T1, · · · ,TS−1 ∼ BeP(H γ0

S +∑
i

ni
S δθi ). That is

equivalent to the IBP.

3. Iteratively Layer-wise Matched Aggregation via GI-FNM

As the empirical study in Wang et al. (2020) demonstrates, directly applying the matching al-
gorithms fails on deep architectures which are necessary to solve more complex tasks. Thus to
alleviate this problem , we also extend GI-FNM to the following layer-wise matching scheme.
Firstly, the server only collects the first layer weights from the clients and applies GI-FNM to ac-
quire the first layer weights of the federated model. Then, the server broadcasts these weights
to the clients, which proceed to train all consecutive layers on their datasets while keeping the
matched layers frozen. Repeat this process until the last layer, where we make a weighted average
based on class proportions of each client’s data points. We summarize our layer-wise version of
GI-FNM in Algorithm 1. The layer-wise approach requires communication rounds that equal to
the number of layers in a neural network. Experimental results show that with layer-wise match-
ing, GI-FNM performs well on the ConvNets even for U-nets which has a complex architecture.
In the more challenging heterogeneous setting, GI-FNM outperforms FedAvg, FedProx trained
with same number of communication rounds (5 for ConvNet and 19 for U-net).

4. Incorporating GI-FNM with Batch Normalization Layers

Although Wang et al. (2020) shows how to apply the PFNM to CNNs, it doesn’t enable additional
deep learning building blocks, e.g., batch normalization layer, to the matching algorithm. How-
ever, widely used deep CNNs such as U-net often contain batch normalization layer in their
architectures. In this paper, we utilize a common setup which merges the batch normalization
layer with a preceding convolution to incorporate GI-FNM with batch normalization layer.

Without loss of generality, we assume that the feature map size is the same as the filter size.
Let Wconv ∈ RC out×(C i n ·w ·h) and bconv ∈ RC out

be the parameters of the convolutional layer that
precedes batch normalization. Given a input data x ∈ R(C i n ·w ·h), the convolutional operator can
be simply expressed as:

f =Wconv ∗x +bconv. (3)

Batch normalization (BN) is a popular method used in modern neural networks as it often re-
duces training time and potentially improves generalization. Given the outputting feature of



SHORT TITLE

Algorithm 1 Iteratively Layer-wise GI-FNM
Require:

Collected local weights of N -layer architectures {W (0)
s , · · · ,W (N−1)

s }S
s=1 from S clients;

Ensure:
New constructed global weights {W (0), · · · ,W (N−1)}.

1: n = 0;
2: while layers n ≤ N do
3: if n < N-1 then
4: { As}S

s=1 = GI-PNM({W (n)
s }S

s=1);

5: W (n) = 1
S

∑
s W

(n)
s AT

s ;
6: else
7: W (n) = ∑

s ps ·W (n)
s where ps is vector of fraction of data points with each label on

worker s, and · denotes the dot product;
8: end if
9: for s ∈ {1, · · · ,S} do

10: W (n+1)
s =AsW

(n+1)
s ;

11: Train {W (n+1)
s , · · · ,W (N−1)

s } with W (n)
s frozen;

12: end for
13: n = n +1
14: end while

preceding convolutional layer, it can be normalized as follows:

f̂ = γ
f −µp
σ2 +ϵ

+β, (4)

whereµ andσ2 are the mean and variance computed over a batch of feature, ϵ is a small constant
included for numerical stability, γ is the scaling factor and β the shift factor. The parameters γ
and β are slowly learned with gradient descent together with the other parameters of the net-
work.

If we take Wconv and bconv into the Eq. (4) we can get the new weights and bias as:

• weights: WBN = γ · Wconvp
σ2+ϵ ;

• bias: bBN = γ · (bconv−µ)p
σ2+ϵ +β.

Thus the batch normalized feature can be directly obtained by:

f̂ =WBN ∗x +bBN. (5)

By matching the fused weights WBN and bias bBN, we enable the batch normalization layer in
GI-FNM.

5. Proofs

5.1. Proof of Proposition 1

Proof PFNM maximizes a posterior probability of the global atoms{θi }∞i=1 and assignments of
observed neural network weight estimates to global atoms{As}S

s=1. Given estimates of the client



weights {ws j for j = 1, . . . , Js}S
s=1, it has:

max
{θi },{As }

P ({θi }, {As}|{ws j }) ∝ P ({ws j }|{θi }, {As})P ({As})P ({θi }), (6)

by taking negative natural logarithm it can obtain:

min
{θi },{As }

−∑
i

(∑
s, j

As
i , j log(p(ws j | ∼ θi ))+ log(q(θi ))

)
− log(P ({As})), (7)

expand probability function of multi-dimensional Gaussian distributions in Eq. (7), it obtains:

min
{θi },{As }

1

2

∑
i

( ||θ̂i −µ0||2
σ2

0

+ (D +K ) log(2πσ2
0)+∑

s, j
As

i , j

||ws j − θ̂i ||2
σ2

s

)
− log(P ({As})). (8)

We now consider the first part of Eq. (8). Through the closed-form expression of {θi } estimated
according to the Gaussian-Gaussian conjugacy:

θ̂i =
µ0/σ2

0 +
∑

s, j As
i , jws j /σ2

s

1/σ2
0 +

∑
s, j As

i , j /σ2
s

for i = 1, ..., J , (9)

where for simplicity we assume Σ0 = Iσ2
0 and Σs = Iσ2

s , we can now cast first part of Eq. (8) with
respect only to {As}S

s=1:

1

2

∑
i

( ||θ̂i −µ0||2
σ2

0

+ (D +K ) log(2πσ2
0)+∑

s, j
As

i , j

||ws j − θ̂i ||2
σ2

s

)
∼=1

2

∑
i

(
〈θ̂i , θ̂i 〉( 1

σ2
0

+∑
s, j

As
i , j

σ2
s

)+ (D +K ) log(2πσ2
0)−2〈θ̂i ,

∑
s, j

As
i , j

ws j

σ2
s

)〉
)

=− 1

2

∑
i

( ||∑
s, j
As

i , j
ws j−µ0

σ2
s

||2

(1/σ2
0 +

∑
s, j
As

i , j /σ2
s
− (D +K ) log(2πσ2

0)

)
.

(10)

Partition Eq. (10) between i = 1, ..., J−s′ and i = J−s′ +1, ..., J−s′ + Js′ , and because it is now solving
for As′ , it can subtract terms independent of As′ :

∑
i

( ||∑s, j A
s
i , j

ws j−µ0

σ2
s

||2

(1/σ2
0 +

∑
s, j A

s
i , j /σ2

s
− (D +K ) log(2πσ2

0)

)

∼=
J−s′∑
i=1

( ||∑ j A
s′
i , j

ws′ j−µ0

σ2
s′

+∑
s∈−s′, j A

s
i , j

ws j−µ0

σ2
s

||2

1/σ2
0 +

∑
j A

s′
i , j /σ2

s′ +
∑

s∈−s′, j A
s
i , j /σ2

s

−
||∑s∈−s′, j A

s
i , j

ws j−µ0

σ2
s

||2

1/σ2
0 +

∑
s∈−s′, j A

s
i , j /σ2

s

)

+
J−s′+Js′∑

i=J−s′+1

( ||∑ j A
s′
i , j

ws′ j−µ0

σ2
s′

||2

1/σ2
0 +

∑
j A

s′
i , j /σ2

s′

)
,

(11)
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observe that
∑

j A
s′
i , j ∈ {0,1}, i.e. it is 1 if some neuron from dataset s′ is matched to global neuron

i and 0 otherwise. Thus Eq. (11) can rewritten as a linear sum assignment problem:

J−s′∑
i=1

Js′∑
j=1

As′
i , j

( ||ws′ j−µ0

σ2
s′

+∑
s∈−s′, j A

s
i , j

ws j−µ0

σ2
s

||2

1/σ2
0 +1/σ2

s′ +
∑

s∈−s′, j A
s
i , j /σ2

s
−
||∑s∈−s′, j A

s
i , j

ws j−µ0

σ2
s

||2

1/σ2
0 +

∑
s∈−s′, j A

s
i , j /σ2

s

)

+
J−s′+Js′∑

i=J−s′+1

Js′∑
j=1

As′
i , j

( ||ws′ j−µ0

σ2
s′

||2

1/σ2
0 +

∑
j A

s′
i , j /σ2

s′

)
.

(12)

Then consider the second term of Eq. (8), by subtracting terms independent of As′ it has:

log(P (As′)) = log(P (As′ |A−s′))+ log(P (A−s′)). (13)

First, it can ignore log(P (A−s′)) since now are optimizing forAs′ . Second, due to exchange ability
of datasets (i.e. customers of the IBP), As′ can always be treated as the last customer of the IBP.
Denote n−s′

i = ∑
−s′, j A

s′
i , j as the number of times local weights were assigned to global atom i

outside of group s′. Now it can obtain the following:

logP (As′ |A−s′) ∼=
J−s′∑
i=1

(( Js′∑
j=1

As′
i , j

)
log

n−s′
i

S
+

(
1−

Js′∑
j=1

As′
i , j

)
log

S −n−s′
i

S

)

− log

( J−s′+Js′∑
i=J−s′+1

Js′∑
j=1

As′
i , j

)
+

( J−s′+Js′∑
i=J−s′+1

Js′∑
j=1

As′
i , j

)
log

γ0

J
.

(14)

Eq. (14) thus can be rearranged as a linear sum assignment problem:

J−s′∑
i=1

Js′∑
j=1

As′
i , j log

n−s′
i

S −n−s′
i

+
J−s′+Js′∑

i=J−s′+1

Js′∑
j=1

As′
i , j

(
log

γ0

S
− log(i − J−s′)

)
. (15)

Combining Eq. (12) and Eq. (5.1), we arrive at the cost specification shown in Eq. (2) of the main
text. And this is induced in Yurochkin et al. (2019b). The assignment cost specification for finding
{As′} is

C s′
i , j =


−
∥µ0

σ2
0
+

ws′ j

σ2
s′

+∑
s∈−s′ , j A

s
i , j

ws j

σ2
s
∥2

1
σ2

0
+ 1

σ2
s′
+∑

s∈−s′ , j A
s
i , j

1
σ2

s

+
∥µ0

σ2
0
+∑

s∈−s′ , j A
s
i , j

ws j

σ2
s
∥2

1
σ2

0
+∑

s∈−s′ , j A
s
i , j

1
σ2

s

−2log
n−s′

i

S−n−s′
i

, i ≤ J−s′

−
∥µ0

σ2
0
+

ws′ j

σ2
s′
∥2

1
σ2

0
+ 1

σ2
s′

+
∥µ0

σ2
0
∥2

1
σ2

0

+2log i−J−s′
γ0/S , J−s′ < i ≤ J−s′ + Js′ ,

(16)

The norm is l2-norm. Therefore, the following inequality is useful for us to rewrite the above cost
specification in this study.

As declared in PFNM, global neuron θi can be estimated according to the Gaussian-Gaussian
conjugacy:

θ̂i =
µ0/σ2

0 +
∑

s, j A
s
i , jws j /σ2

s

1/σ2
0 +

∑
s, j A

s
i , j /σ2

s
, (17)



where i = 1,2, . . . , J . When As′
i , j is unknown for local model s′, the global neuron θi can be esti-

mated by local neurons excluding neurons in model s′, that is

θ̃i =
µ0/σ2

0 +
∑

s∈−s′, j A
s
i , jws j /σ2

s

1/σ2
0 +

∑
s∈−s′, j A

s
i , j /σ2

s
. (18)

For simplicity, we use characters to denote items as follows.

α=µ0/σ2
0 +

∑
s∈−s′, j

As
i , j (ws j /σ2

s ),

β =ws′ j /σ2
s′ ,

C1 = 1/σ2
0 +

∑
s∈−s′, j

As
i , j (1/σ2

s ),

C2 = 1/σ2
s′ .

Besides, we denote COSTη as the cost defined by norm η. For example, COSTl2 denote the cost
function defined by l2-norm.

When i ≤ J−s′ and when the norm is l2-norm, the first two terms of the cost could be rewritten
as

−
∥µ0

σ2
0
+ ws′ j

σ2
s′
+∑

s∈−s′, j A
s
i , j

ws j

σ2
s
∥2

2

1
σ2

0
+ 1

σ2
s′
+∑

s∈−s′, j A
s
i , j

1
σ2

s

+
∥µ0

σ2
0
+∑

s∈−s′, j A
s
i , j

ws j

σ2
s
∥2

2

1
σ2

0
+∑

s∈−s′, j A
s
i , j

1
σ2

s

=− ∥α+β∥2
2

C1 +C2
+ ∥α∥2

2

C1

=
∥ α

C1
− β

C2
∥2

2 − (1+ C2
C1

)∥ β
C2

∥2
2

C1+C2
C1C2

(19)

=
∥µ0/σ2

0+
∑

s∈−s′ , j A
s
i , j (ws j /σ2

s )

1/σ2
0+

∑
s∈−s′ , j A

s
i , j (1/σ2

s )
−ws′ j∥2

2 − (1+ 1/σ2
s′

1/σ2
0+

∑
s∈−s′ , j A

s
i , j (1/σ2

s )
)∥ws′ j∥2

2

1
σ2

0
+∑

s∈−s′ , j A
s
i , j ( 1

σ2
s

)+ 1
σ2

s′(
1
σ2

0
+∑

s∈−s′ , j A
s
i , j ( 1

σ2
s

)
)

( 1
σ2

s′
)

(20)

=
∥θ̃i −ws′ j∥2

2 − (1+ 1/σ2
s′

1/σ2
0+

∑
s∈−s′ , j A

s
i , j (1/σ2

s )
)∥ws′ j∥2

2

1
σ2

0
+∑

s∈−s′ , j A
s
i , j ( 1

σ2
s

)+ 1
σ2

s′(
1
σ2

0
+∑

s∈−s′ , j A
s
i , j ( 1

σ2
s

)
)

( 1
σ2

s′
)

, (21)

(22)

Similarly, when J−s′ < i ≤ J−s′+Js′ and the norm is l2-norm, we use characters to denote items
as follows:

α̃=µ0/σ2
0,

β =ws′ j /σ2
s′ ,

C̃1 = 1/σ2
0,
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C2 = 1/σ2
s′ .

The first two terms of the cost could be rewritten as

−
∥µ0

σ2
0
+ ws′ j

σ2
s′
∥2

2

1
σ2

0
+ 1

σ2
s′

+
∥µ0

σ2
0
∥2

2

1
σ2

0

=− ∥α̃+β∥2
2

C̃1 +C2
+ ∥α̃∥2

2

C̃1

=
∥ α̃

C̃1
− β

C2
∥2

2 − (1+ C2

C̃1
)∥ β

C2
∥2

2

C̃1+C2

C̃1C2

(23)

=
∥µ0 −ws′ j∥2

2 − (1+ σ2
0

σ2
s′

)∥ws′ j∥2
2

( 1
σ2

0
+ 1

σ2
s′

)(σ2
0σ

2
s′)

. (24)

Let

L1 = (1+ 1/σ2
s′

1/σ2
0 +

∑
s∈−s′, j A

s
i , j (1/σ2

s )
),

L2 =
( 1

σ2
0

+ ∑
s∈−s′, j

As
i , j

1

σ2
s
+ 1

σ2
s′

)
,

L3 =
(
(

1

σ2
0

+ ∑
s∈−s′, j

As
i , j

1

σ2
s

)
1

σ2
s′

)
,

L4 = (1+ σ2
0

σ2
s′

),

we get the formulation in main text.

5.2. Proof of Proposition 3

Proof
Without loss of generality, we denote ws′ j by w, and assume w = (w0,0, . . . ,0)T and w0 >= 0.

We also assume the mean of global neurons µ0 = 0. Then ∥w∥2 = |w0|. From Eq. (??), we have

P
(
KL(q∥pθi∗ ) ≥ KL(q∥pθi )

)
=P

(
q(θi∗) ≤ q(θi )

)
=P (∥θi∗∥2 ≥ ∥θi∥2)

=P (∥θi∗∥2 ≥ ∥θi∥2 | ∥θi∥2 = R1,∥θi∗∥2 = R2) (25)

We firstly prove the conclusion for ϵ ≥ 2∥w∥2. Suppose θi and θi∗ satisfy Assumption (A),
that is, ∥θi −w∥2 = ∥θi∗−w∥2+ϵ, then they are on two hyper-spheres whose radii differ by ϵ. For



hyper-sphere ∥θi −w∥2
2 = R2

1 , the shortest distance to the origin is R1 −∥w∥2. For hyper-sphere
∥θi∗ −w∥2

2 = R2
2 = (R1 − ϵ)2, the longest distance to the origin is ∥w∥2 + R2 = ∥w∥2 + (R1 − ϵ).

Apparently, if the minimum l2-norm of θi is greater than the maximum l2-norm of θi∗ , that is
ϵ≥ 2∥w∥2 which is induced from R1 −∥w∥2 ≥ ∥w∥2 + (R1 −ϵ), there would be no possibility that

∥θi∗∥2 ≥ ∥θi∥2. By Eq. (25), when ϵ≥ 2∥w∥2, P
(
KL(q∥pθi∗ ) ≥ KL(q∥pθi )

)
= 0.

We now prove the conclusion for ϵ < 2∥w∥2. We will start from dimension n = 1. Then we
prove the situation when n = 2. In the end , we will use B1(ϵ) and B2(ϵ) to approximate the lower
bound for n = k.

When n = 1, from ∥θi −w∥2 = ∥θi∗ −w∥2 + ϵ, we know θi = R1 +w or −R1 +w, and θi∗ =
R2 +∥w∥2 or −R2 +∥w∥2. In all four combinations of θi and θi∗ , there are two combinations
which satisfy that ∥θi∗∥2 ≥ ∥θi∥2. Hence, we have

P1(∥θi∗∥2 ≥ ∥θi∥2 | ∥θi∥2 = R1,∥θi∗∥2 = R2)

=P (θi = ∥w∥2 −R1,θi∗ = ∥w∥2 +R2)+P (θi = ∥w∥2 −R1,θi∗ = ∥w∥2 −R2)

=P (θi = ∥w∥2 −R1)P (θi∗ = ∥w∥2 +R2)+P (θi = ∥w∥2 −R1)P (θi∗ = ∥w∥2 −R2)

= q(∥w∥2 −R1)q(∥w∥2 +R2)+q(∥w∥2 −R1)q(∥w∥2 −R2)(
q(R1 +∥w∥2)+q(−R1 +∥w∥2)

)(
q(R2 +∥w∥2)+q(−R2 +∥w∥2

)
= e

− (∥w∥2−R1)2+(∥w∥2+R2)2

2σ2
0 +e

− (∥w∥2−R1)2+(∥w∥2−R2)2

2σ2
0(

e
− (∥w∥2+R1)2

2σ2
0 +e

− (∥w∥2−R1)2

2σ2
0

)(
e
− (∥w∥2+R2)2

2σ2
0 +e

− (∥w∥2−R2)2

2σ2
0

)
= e

R1∥w∥2−R2∥w∥2
σ2

0 +e
R1∥w∥2+R2∥w∥2

σ2
0

(e−R1∥w∥2/σ2
0 +eR1∥w∥2/σ2

0 )(e−R2∥w∥2/σ2
0 +eR2∥w∥2/σ2

0 )

= e
R1∥w∥2

σ2
0

e−R1∥w∥2/σ2
0 +eR1∥w∥2/σ2

0

=B1. (26)

Apparently, B1 is a constant.
When n = 2, as shown in Fig. 1, there are three total cases. The first case contain three differ-

ent parts, of which the green arc and light blue arc contain θi that makes P (∥θi∗∥2 ≥ ∥θi∥2) > 0.
The second case contains two parts, of which the light blue arc contain θi that makes P (∥θi∗∥2 ≥
∥θi∥2) > 0. And in the third case,P (∥θi∗∥2 ≥ ∥θi∥2) = 0 induced by ϵ≥ 2∥w∥2. As we can see, case
2 is a special case of case 1 when the green arc disappears. And case 3 is a special case of case 1
when the green arc and light blue arc disappear. Therefore, we only need to estimate the lower
bound function of P (∥θi∗∥2 ≥ ∥θi∥2) in case 1.

As before, we let w =ws′ j = (w0,0)T. As we assumed before, ∥θi∥2 = R1 and ∥θi∗∥2 = R1 −ϵ=
R2. For the sake of simplicity, suppose θi and θi∗ can be represented by parameter function

θi =
{

R1 cosα+w0

R1 sinα
, θi∗ =

{
R2 cosβ+w0

R2 sinβ
,

where α and β belong to [0,2π]. Then, we have

P (∥θi∗∥2 ≥ ∥θi∥2 | R1,R2)
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Figure 1: Three cases in estimating the lower bound of P (∥θi∗∥2 ≥ ∥θi∥2) when n = 2. The
first case contain three different parts, of which the green arc and light blue arc con-
tain θi that makes P (∥θi∗∥2 ≥ ∥θi∥2) > 0. The second case contains two parts, of
which the light blue arc contain θi that makes P (∥θi∗∥2 ≥ ∥θi∥2) > 0. And in the third
case,P (∥θi∗∥2 ≥ ∥θi∥2) = 0 is induced by ϵ≥ 2∥w∥2.

=P
(
(R2 cosβ+w0)2 + (R2 sinβ)2 ≥ (R1 cosα+w0)2 + (R1 sinα)2 | R1,R2

)
=P (R2

2 +2w0R2 cosβ≥ R2
1 +2w0R2 cosα | R1,R2). (27)

For the sake of briefness, we set fϵ(α,β) = R2
2 +2w0R2 cosβ−R2

1 −2w0R2 cosα, then Eq. (27)
can be rewrote to

P ( fϵ(α,β) ≥ 0 | R1,R2)

=
∫
α̃∈Ωα

P
(

fϵ(α= α̃,β) ≥ 0 | R1,R2
)
p(α̃ | R1,R2)dα̃

=
∫
α̃∈Ωα

(∫
β̃∈Ωβ

P
(

fϵ(α= α̃,β= β̃) ≥ 0 | R1,R2
)
p(β̃ | R2)d β̃

)
p(α̃ | R1)dα̃, (28)

whereΩα andΩβ are sets to which α and β belong. As shown in Fig. 2 (a), for the green arc of θi ,
θi ∈ [π−α2,π+α1]. And for fixed θi , Ωβ is [0,2π]. α1 can be computed via the Law of cosines,
that is

α1 = arccos
R2

1 +w2
0 − (w0 −R2)2

2R1w0
= arccos

R2
1 −R2

2 +2R2w0

2R1w0
. (29)

As a consequence, for the green arc in Fig. 2 (a), we have

Pg ( fϵ(α,β) ≥ 0 | R1,R2)

=
∫ π+α1

π−α1

P
(

fϵ(α= α̃,β) ≥ 0 | R1,R2
)
p(α̃ | R1)dα̃

=
∫ π+α1

π−α1

p(α̃ | R1)dα̃. (30)
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Figure 2: In the third case, there are two parts on the circle of θi , the green arc and light blue arc,
which contain θi that makes P (∥θi∗∥2 ≥ ∥θi∥2) > 0. For fixed θi = θ̃i on the green arc
and light blue arc, the available θi∗ is on the smaller green arc.

For the light blue arc, we can also compute the α2 in Fig. (2) (a) as

α2 = arccos
R2

1 +w2
0 − (w0 +R2)2

2R1w0
= arccos

R2
1 −R2

2 −2R2w0

2R1w0
. (31)

The Integration range of α is [π−α2,π−α1]∪ [π+α1,π−α2]. As shown Fig. (2) (b), for fixed α̃,
Ωβ is [0,π−β1]∪ [π+β1,2π]. β1 can also be computed by the Law of cosines as

β1 = arccos
R2

2 +w2
0 −∥θi∥2

2

2R2w0

= arccos
R2

2 +w2
0 −

(
(R1 cos α̃+w0)2 + (R1 sin α̃)2

)
2R2w0

= arccos
R2

2 −R2
1 −2R1w0 cos α̃

2R2w0
. (32)

Consequently, for the light blue part, considering the symmetry of the integral, we have

Pb( fϵ(α,β) ≥ 0 |R1,R2)

=
∫

α̃∈Ωα

( ∫
β̃∈Ωβ

P
(

fϵ(α= α̃,β= β̃) ≥ 0 | R1,R2
)
p(β̃ | R2)d β̃

)
p(α̃ | R1)dα̃

=4

π−α1∫
π−α2

( π−β1∫
0

P
(

fϵ(α= α̃,β= β̃) ≥ 0 | R1,R2
)
p(β̃ | R2)d β̃

)
p(α̃ | R1)dα̃



SHORT TITLE

=4

π−α1∫
π−α2

( π−β1∫
0

p(β̃ | R2)d β̃
)
p(α̃ | R1)dα̃. (33)

Thus,

P ( fϵ(α,β) ≥ 0 | R1,R2)

=Pg ( fϵ(α,β) ≥ 0 | R1,R2)+Pb( fϵ(α,β) ≥ 0 | R1,R2)

=
∫ π+α1

π−α1

p(α̃ | R1)dα̃+4

π−α1∫
π−α2

( π−β1∫
0

p(β̃ | R2)d β̃
)
p(α̃ | R1)dα̃. (34)

By using Eq. (??), we can compute p(α) and p(β) as follows.

p(α |R1) = p
(
θi (α) | ∥θi∥2 = R1

)
= p

(
θi (α)

)
p

(∥θi∥2 = R1
) (35)

= p(θi (α))∫
∥θi ∥2=R1

p(θ̂i (α̂))d θ̂i (α̂)

= p(θi (α))∫ 2π
0 p(θ̂i (α̂))dα̂

= e−R1w0 cosα/σ2
0∫ 2π

0 e−R1w0 cos α̂/σ2
0 dα̂

. (36)

Similarly, we acquire

p(β |R2) = e−R2w0 cosβ/σ2
0∫ 2π

0 e−R2w0 cos β̂/σ2
0 d β̂

. (37)

For briefness, we let

∆1 =
∫ 2π

0
e−R1w0 cos α̂/σ2

0 dα̂,∆2 =
∫ 2π

0
e−R2w0 cos β̂/σ2

0 d β̂.

Since cos x is lower bounded by y =−x +1 for x ∈ [0,π], we have following upper bounds for ∆1

and ∆2:

∆1 ≤
∫ 2π

0
e−R1w0(−α̂+1)/σ2

0 dα̂= σ2
0

R1w0
e−R1w0/σ2

0
(
e2πR1w0/σ2

0 −1
)
, (38)

∆2 ≤
∫ 2π

0
e−R2w0(−β̂+1)/σ2

0 d β̂= σ2
0

R2w0
e−R2w0/σ2

0
(
e2πR2w0/σ2

0 −1
)
. (39)

Substitute the p(α |R1) and p(β |R2) into Eq. (34), we get

P ( fϵ(α,β) ≥ 0 | R1,R2)

= 1

∆1

π+α1∫
π−α1

e
−R1 w0 cos α̃

σ2
0 dα̃+ 1

∆1∆2

π−α1∫
π−α2

( π−β1∫
0

e
−R2 w0 cos β̃

σ2
0 d β̃

)
e

−R1 w0 cos α̃

σ2
0 dα̃



(∗)≥ 1

∆1

π+α1∫
π−α1

e
R1 w0(α̃+1−π)

σ2
0 dα̃+ 1

∆1∆2

π−α1∫
π−α2

( π−β1∫
0

e
R2 w0(β̃+1−π)

σ2
0 d β̃

)
e

R1 w0(α̃+1−π)

σ2
0 dα̃

=σ
2
0e

(1−π)R1 w0
σ2

0

R1w0∆1

(π+α1)R1 w0
σ2

0∫
(π−α1)R1 w0

σ2
0

e t d t + 4σ2
0e

(1−π)w0(R1+R2)

σ2
0

R2w0∆1∆2

π−α1∫
π−α2

( (π−β1)R2 w0
σ2

0∫
0

e t ′ d t ′
)
e

R1 w0α̃

σ2
0 dα̃

=σ2
0e

R1 w0
σ2

0

R1w0∆1

(
e

α1R1 w0
σ2

0 −e
− α1R1 w0

σ2
0

)+ 4σ2
0e

(1−π)w0(R1+R2)

σ2
0

R2w0∆1∆2

π−α1∫
π−α2

(
e

(π−β1)R2 w0
σ2

0 −1
)
e

R1 w0α̃

σ2
0 dα̃, (40)

where (∗) is induced by that the lower bound of −cos(x) is y = x −π+1. We now substitute
∆1 and ∆2 into Eq. (40), we get

P ( fϵ(α,β) ≥ 0 | R1,R2)

≥ e
2R1 w0
σ2

0

e
2πR1 w0

σ2
0 −1

(
e

α1R1 w0
σ2

0 −e
− α1R1 w0

σ2
0

)

+ 4R1w0

σ2
0

e
(2−π)w0(R1+R2)

σ2
0

(e
2πR1 w0

σ2
0 −1)(e

2πR2 w0
σ2

0 −1)

π−α1∫
π−α2

(
e

(π−β1)R2 w0
σ2

0 −1
)
e

R1 w0α̃

σ2
0 dα̃

= e
2R1 w0
σ2

0

e
2πR1 w0

σ2
0 −1

(
e

α1R1 w0
σ2

0 −e
− α1R1 w0

σ2
0

)

+ 4R1w0

σ2
0

e
(2−π)w0(2R1−ϵ)

σ2
0

(e
2πR1 w0

σ2
0 −1)(e

2π(R1−ϵ)w0
σ2

0 −1)

π−α1∫
π−α2

(
e

(π−β1)(R1−ϵ)w0
σ2

0 −1
)
e

R1 w0α̃

σ2
0 dα̃

≥ e
2R1 w0
σ2

0

e
2πR1 w0

σ2
0 −1

(
e

α1R1 w0
σ2

0 −e
− α1R1 w0

σ2
0

)

+ 4R1w0

σ2
0

e
−(2π−4)R1 w0

σ2
0

(e
2πR1 w0

σ2
0 −1)(e

2πR1 w0
σ2

0 −1)

π−α1∫
π−α2

(
e

(π−β1)(R1−ϵ)w0
σ2

0 −1
)
e

R1 w0α̃

σ2
0 dα̃ (41)

≥4R1w0

σ2
0

e
−(2π−4)R1 w0

σ2
0

(e
2πR1 w0

σ2
0 −1)(e

2πR1 w0
σ2

0 −1)

π−α1∫
π−α2

(
e

(π−β1)(R1−ϵ)w0
σ2

0 −1
)
e

R1 w0α̃

σ2
0 dα̃. (42)

Since β ∈ [0,π] and ϵ ∈ [0,R1], the above equation is obviously non-negative. Now we will show
that Eq. (42) is a monotonically decreasing function of ϵ.

According to R2 = R1 −ϵ, Eq. (29) and Eq. (31), we have

α1 = arccos
R2

1 − (R1 −ϵ)2 +2(R1 −ϵ)w0

2R1w0
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= arccos
−[ϵ− (R1 −w0)]2 + (R1 +w0)2 −2R1w0

2R1w0
,

α2 = arccos
R2

1 − (R1 −ϵ)2 −2(R1 −ϵ)w0

2R1w0

= arccos
−[ϵ− (R1 +w0)]2 + (R1 +w0)2 −2R1w0

2R1w0
.

Firstly, ϵ< R1 < R1 +w0 and arccos(x) is monotonically decreasing for x ∈ [−1,1]. Thus, α2 is
a monotonically decreasing function of ϵ. Besides, from the three cases, we know that if α1 > 0,
w0−R2 > R1−w0 must hold. This induce ϵ> 2(R1−w0). Therefore, when R1−w0 < 0, ϵ> R1−w0

because ϵ≥ 0; when R1 −w0 ≥ 0, ϵ> R1 −w0 because ϵ> 2(R1 −w0). As a result, α2 increases as ϵ
increases and α1 is a monotonically decreasing function of ϵ.

For the term of Eq. (42), the term integrated is non-negative. In addition, the integral range
[π−α1,π−α2] will expand as ϵ increases. Therefore, Eq. (42) is a monotonically decreasing func-
tion of ϵ.

We already proved (B) in the proposition holds for n = 1,2. Now we need to prove (B) in the
proposition holds for θi , θi∗ ∈ Rn where n > 2. In the first place, we assume (B) holds for n −1.
This means

Pn−1(∥θi∗∥2 ≥ ∥θi∥2 | R1,R2) ≥ Bn−1(ϵ), (43)

where Bn−1(ϵ) is monotonically decreasing and non-negative. For clearness, we write n dimen-
sional θi , θi∗ as θi ,n , θi∗,n separately. Therefore,

θi = (θ(1)
i ,n ,θ(2)

i ,n , . . . ,θ(n−1)
i ,n ,θ(n)

i ,n )T = (θ
T
i ,n−1,θ(n)

i ,n )T,

θi∗ = (θ(1)
i∗,n ,θ(2)

i∗,n , . . . ,θ(n−1)
i∗,n ,θ(n)

i∗,n)T = (θ
T
i∗,n−1,θ(n)

i∗,n)T.

This induces that

∥θi ,n∥2
2 = ∥θi ,n−1∥2

2 +∥θ(n)
i ,n∥2

2,

∥θi∗,n∥2
2 = ∥θi∗,n−1∥2

2 +∥θ(n)
i∗,n∥2

2.

Using the above results, we have

Pn(∥θi∗∥2 ≥ ∥θi∥2 |R1,R2)

=Pn(∥θi∗∥2
2 ≥ ∥θi∥2

2 |R1,R2)

=Pn(∥θi∗,n−1∥2
2 +∥θ(n)

i∗,n∥2
2 ≥ ∥θi ,n−1∥2

2 +∥θ(n)
i ,n∥2

2 |R1,R2)

=Pn(∥θi∗∥2
2 ≥ ∥θi∥2

2 |R1,R2,∥θi∗,n−1∥2
2 ≥ ∥θi ,n−1∥2

2,∥θ(n)
i∗,n∥2

2 ≥ ∥θ(n)
i ,n∥2

2)

+Pn(∥θi∗∥2
2 ≥ ∥θi∥2

2 |R1,R2,∥θi∗,n−1∥2
2 ≤ ∥θi ,n−1∥2

2,∥θ(n)
i∗,n∥2

2 ≥ ∥θ(n)
i ,n∥2

2)

+Pn(∥θi∗∥2
2 ≥ ∥θi∥2

2 |R1,R2,∥θi∗,n−1∥2
2 ≥ ∥θi ,n−1∥2

2,∥θ(n)
i∗,n∥2

2 ≤ ∥θ(n)
i ,n∥2

2)

≥Pn(∥θi∗∥2
2 ≥ ∥θi∥2

2 |R1,R2,∥θi∗,n−1∥2
2 ≥ ∥θi ,n−1∥2

2,∥θ(n)
i∗,n∥2

2 ≥ ∥θ(n)
i ,n∥2

2)

=Pn(∥θi∗,n−1∥2
2 ≥ ∥θi ,n−1∥2

2,∥θ(n)
i∗,n∥2

2 ≥ ∥θ(n)
i ,n∥2

2 |R1,R2)



=Pn−1(∥θi∗,n−1∥2
2 ≥ ∥θi ,n−1∥2

2 |R1,R2)P1(∥θ(n)
i∗,n∥2

2 ≥ ∥θ(n)
i ,n∥2

2 |R1,R2)

≥Bn−1(ϵ)B1. (44)

Repeat the recursion process, and choose the maximum function between B2(ϵ) and B1(ϵ), we
get

Bn(ϵ) =
{

max
{
B n

1 ,B2(ϵ)n/2
}
,n is even,

max
{
B n

1 ,B2(ϵ)(n−1)/2B1(ϵ)
}
,n is odd,

(45)

where B1,B2(ϵ) are referred to Eq. (26) and Eq. (42) respectively.

5.3. Proof of Proposition 4

Proof Combine Eq. (13) in the main text with Eq. (17) it can cast optimization with respect to
only {As}S

s=1,

min
{As }

1

2

∑
i

∑
s, j

As
i , j

( ||∑s, j A
s
i , j

ws j−µ0

σ3
s

||2

(1/σ2
0 +

∑
s, j A

s
i , j /σ2

s )2
+ (D +K )(

σ2
0

σ2
s
−1+ log

σ2
s

σ2
0

)

)
, (46)

We now consider the first part of Eq. (46). We partition it between i = 1, · · · , J−s′ and i = J−s′ +
1, · · · , J−s′ + Js′ , and since we are solving for As′ , we can subtract terms independent of As′ (we
use∼= to say that two objective functions are equivalent up to terms independent of the interested
variables):

∑
i

∑
s, j

As
i , j

∥∥∥ ∑
s, j
As

i , j
ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +

∑
s, j A

s
i , j /σ2

s )2

∼=
J−s′∑
i=1

(∑
j
As′

i , j

∥∥∥∑
j
As′

i , j

ws′ j−µ0

σ3
s′

+ ∑
s∈−s′, j

As
i , j

ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +

∑
j
As′

i , j /σ2
s′ +

∑
s∈−s′, j

As
i , j /σ2

s )2

+ ∑
s∈−s′, j

As
i , j

∥∥∥∑
j
As′

i , j

ws′ j−µ0

σ3
s′

+ ∑
s∈−s′, j

As
i , j

ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +

∑
j
As′

i , j /σ2
s′ +

∑
s∈−s′, j

As
i , j /σ2

s )2

− ∑
s∈−s′, j

As
i , j

∥∥∥ ∑
s∈−s′, j

As
i , j

ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +

∑
s∈−s′, j

As
i , j /σ2

s )2

)
+

J−s′+Js′∑
i=J−s′+1

(∑
j
As′

i , j

∥∥∥∑
j
As′

i , j

ws′ j−µ0

σ3
s′

∥∥∥2

(1/σ2
0 +

∑
j
As′

i , j /σ2
s′)

2

)
,

(47)

observe that
∑

j A
s′
i , j ∈ {0,1}, i.e., it equals to 1 if some neuron from dataset s′ is matched to global

neuron i and 0 otherwise. Thus Eq. (47) can be rewritten as a linear sum assignment problem:

J−s′∑
i=1

Js′∑
j=1

As′
i , j

( ∥∥∥ws′ j−µ0

σ3
s′

+ ∑
s∈−s′, j

As
i , j

ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +1/σ2

s′ +
∑

s∈−s′, j
As

i , j /σ2
s )2

+
( ∥∥∥ws′ j−µ0

σ3
s′

+ ∑
s∈−s′, j

As
i , j

ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +1/σ2

s′ +
∑

s∈−s′, j
As

i , j /σ2
s )2
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−

∥∥∥ ∑
s∈−s′, j

As
i , j

ws j−µ0

σ3
s

∥∥∥2

(1/σ2
0 +

∑
s∈−s′, j

As
i , j /σ2

s )2

)
n−s′

i

)
+

J−s′+Js′∑
i=J−s′+1

Js′∑
j=1

As′
i , j

( ∥ws′ j−µ0

σ3
s′

∥2

(1/σ2
0 +

∑
j A

s′
i , j /σ2

s′)
2

)
. (48)

Then we consider the second term of Eq. (46). By subtracting terms independent of As′ it has:

∑
i

∑
j
As′

i , j (D +K )
(σ2

0

σ2
s′
−1+ log

σ2
s′

σ2
0

)
. (49)

Because Eq. (49) is only varied by s′, that means it adds equal cost in each item of {C̃ s′
i , j }i , j , thus

we can ignore it in the cost specification. From what has been discussed above, we obtain the
assignment cost specification.

6. Experiment

6.1. Hyperparameters of training neural network

Hyperparameters of training neural networks in our experiments are shown in Table 1.

Table 1: Hyperparameter settings for training neural networks
MNIST CIFAR-10 CIMC

Model FCNN ConvNet U-net
Optimizer Adam SGD RMSprop

Learning rate 0.01 0.01 0.01
Size of minibatch 32 32 3

Epochs 10 10 3

6.2. Sensitivity Analysis

In GI-FNM, we induce a hyper-parameter λ, the weight of the KL-divergence term. Therefore, it
is necessary to testify the sensitivity of λ. Here, we set λ to various positive values for GI-FNM
applied on fusing FCNs and CNNs trained in MNIST and CIFAR10 respectively. We also consider
the effect of number of clients. As shown in Fig. 3, the heat map indicates the accuracy on the
test data for different data sets, and for various neural network types and number of clients,
there is only tiny fluctuation of prediction accuracy for fused global model when 10−8 ≤ λ ≤ 1.
Although GI-FNM with λ= 10−8 performs significantly worse than GI-FNM with 10−3 ≤ λ≤ 0.5,
the performance of fused global model still maintains a high level. The performance of fused
global model declines suddenly when λ = 1 but is still high . In summary, GI-FNM is robust on
hyper-parameter λ under various conditions.

As we described in Sect. 4 of the main text, KL divergence term can be viewed as a regular-
ization term related to selecting global neurons. From an optimization perspective, It is obvious
that the performance of GI-FNM will close to PFNM when λ decreases to number around zero.



(a) MNIST multiple nets (b) CIFAR10 multiple nets

Figure 3: KL regularization coefficients sensitivity analysis

This explains why the performance of GI-FNM declines when λ = 10−8. In Sect. 4 of the main
text , we also theoretically prove that KL term we induced can fix the drawback of PFNM, i.e.,
KL penalty has a higher probability of selecting a higher prior probability global neuron when
the difference among distance of different global neurons to the local neuron is small, and it will
select global neurons closer to local neurons as the original PFNM when the difference among
distance of different global neurons to the local neuron is large. In other words, KL penalty can
function theoretically only after the local neurons matched to the same global neuron were well
selected by PFNM. This explains why the performance of GI-FNM declines suddenly when λ= 1.
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