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Abstract
As one of the approaches in Federated Learning, model fusion distills models trained on lo-
cal clients into a global model. The previous method, Probabilistic Federated Neural Matching
(PFNM), can match and fuse local neural networks with varying global model sizes and data het-
erogeneity using the Bayesian nonparametric framework. However, the alternating optimiza-
tion process applied by PFNM causes absence of global neuron information. In this paper, we
propose a new method that extends PFNM by introducing a Kullback-Leibler (KL) divergence
penalty, so that it can exploit information in both local and global neurons. We show theoreti-
cally that the extended PFNM with a penalty derived from KL divergence can fix the drawback
of PFNM by making a balance between Euclidean distance and the prior probability of neurons.
Experiments on deep fully-connected as well as deep convolutional neural networks demon-
strate that our new method outperforms popular state-of-the-art federated learning methods in
both image classification and semantic segmentation tasks.

Keywords: Federated learning;Model fusion;Neural networks.

1. Introduction

The rapid development of artificial intelligence (especially the subdomain, machine learning) in
the last decade is mainly due to the availability of huge quantities of data. However, the growing
privacy concerns are an obstacle in the accessibility to some datasets in several applications,
especially in medical and financial fields. Hence, federated learning (FL), in which a model is
learned from siloed data, is proposed to tackle this challenge.

Federated learning provides a learning paradigm where local trained models are fused into a
shared global model. The initial aggregation method in FL is FedAvg (McMahan et al., 2017) in

†. These authors contributed equally to this work
∗. Corresponding author

© 2022 P. Xiao†, B. Zhang†, S. Cheng∗, K. Wei & S. Zhang.



XIAO† ZHANG† CHENG∗ WEI ZHANG

which parameters of local models are averaged coordinate-wisely. FedAvg was shown to be not
optimal (Karimireddy et al., 2020; Deng et al., 2021; Xiao et al., 2020) and the performance of Fe-
dAvg can also deteriorate significantly when data is non-i.i.d (Independent and Identically Dis-
tributed). Subsequent improved optimizing methods (Zhang et al., 2020; Li et al., 2018; Karim-
ireddy et al., 2020; Mohri et al., 2019; Deng et al., 2021; Smith et al., 2017) in FL are either con-
strained by the Lipschitz continuous assumption (Li et al., 2018; Karimireddy et al., 2020; Deng
et al., 2021) or not generalized to non-convex problem (Mohri et al., 2019; Zhang et al., 2020;
Smith et al., 2017), which means they are not suitable for neural network (NN) applications. Dif-
ferent from those methods, model fusion, the problem of learning a unified global model from
a collection of pre-trained local models, provides an alternative approach to FL. Model fusion
based approaches are widely used in FL applications currently (Yurochkin et al., 2019b; Wang
et al., 2020; Singh and Jaggi, 2020; Claici et al., 2020; Lin et al., 2020; Zhu et al., 2021; Chen and
Chao, 2020). These works can further be broadly divided into two categories. One category is
knowledge distillation (Hinton et al., 2015; Buciluǎ et al., 2006; Schmidhuber, 1992), where the
key idea is to employ the knowledge of pre-trained teacher neural networks (local models) to
learn a student neural network (global model) (Lin et al., 2020; Chen and Chao, 2020; Zhu et al.,
2021). The main disadvantage of distillation is its high computational complexity: in a global
model, the distillation process requires collecting extra datasets or generating data with a Gener-
ative Adversarial Network (GAN), which is essentially as expensive as training a local model from
scratch. Another category is parameter matching, where the key idea is matching the parame-
ters with inherent permutation invariance from different local models before aggregating them
together. In Singh and Jaggi (2020), the authors utilize optimal transport to minimize a trans-
portation cost matrix to align neurons across different NNs, and it fixes the number of neurons
in global model which make it infeasible when data is highly heterogeneous across clients. Some
work (Claici et al., 2020) optimizes the assignments between global and local components under
a KL divergence through variational inference. But the optimization process is not straightfor-
ward, and the calculation of variational inference is complicated.

Probabilistic Federated Neural Matching (PFNM) (Yurochkin et al., 2019b) is one of the rep-
resentative parameters matching methods in FL. It develops a Bayesian nonparametric model
to match and combine NNs across data sources. By applying Bayesian framework, PFNM can
easily accommodate unobserved global model in the presence of local modelsDunson (2001).
PFNM extends well in modern architectures such as convolutional neural networks (CNNs) and
long short-term memory (LSTMs) (Wang et al., 2020), and its variants are also utilized in aggre-
gating various statistical models such as Gaussian topic models, hierarchical Dirichlet process
based hidden Markov models (Yurochkin et al., 2019a, 2018), etc. PFNM treats the local neu-
rons, i.e., neurons of local NNs, as noisy realizations of latent global neurons, i.e., neurons of the
fused global NN, and formally characterize the generative process through Beta-Bernoulli pro-
cess (BBP) (Thibaux and Jordan, 2007). The matching is then governed by maximum a posterior
(MAP) of the BBP via alternating optimization. In each step, PFNM allows neurons of current lo-
cal NN to either match existing global neurons or create new global neurons if existing matches
are poor. Due to the complexity of the objective function, alternative optimization generally can
not achieve a global optima in PFNM (Beck, 2017). Specifically, for one local neuron, PFNM will
select a global neuron which has smaller Euclidean distance to this local neuron. However, this
ignores the differences in prior probabilities among global neurons. Therefore, PFNM may not
pick those global neurons with higher prior probability and probably acquires a biased solution.
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Kullback-Leibler (KL) divergence between the distribution of the global and local neural
weights is a natural measure of model fusion performance. Thus in this paper we extend the
MAP inference in PFNM through an additional penalty derived via KL divergence that incorpo-
rates global neuron information under BBP. In summary, our contributions include:

• Theory: We theoretically analyze that PFNM only uses Euclidean distance to measure the
importance of neurons and ignores the prior probability of neurons in the fused model,
thus leading to a biased solution. We further prove that KL divergence can fix the drawback
of PFNM by making a balance between Euclidean distance and the prior probability of
neurons. The theoretical results we demonstrate about KL may have implications in other
fields as well.

• Algorithms: We propose a novel algorithm that substantially improves the performance
of the fused model. Compared to other typical FL methods, it requires significantly fewer
neurons, which indicates that not every neuron in the neural network can play a positive
role. This further justifies the rationality of model fusion. Moreover, our method is robust
to its hyperparameter.

• Experiments: Through a series of experiments over different client amounts, network ar-
chitecture and tasks, we demonstrate the superiority of our method. In addition, to the
best of our knowledge, it is the first work to extend the parameter matching method to
batch normalization layer and then apply it in the U-net architecture.

2. Preliminaries and Problem Formulation

This section introduces some notations of federated learning in neural networks and the per-
mutation invariance property of NN architectures. Then, we formulate the matched aggregating
problem of local neurons.
Preliminaries For simplicity and without loss of generality, we suppose there are S fully con-
nected (FC) NNs with one hidden layer trained from different datasets: fs(x) =σ(xTW (0)

s )W (1)
s ,for

s = 1,· · · ,S (biases are omitted to simplify notation), where σ(·) is the nonlinear activation func-
tion, W (0)

s ∈RD×Js and W (1)
s ∈RJs×K are the weights; with D being the input dimension, Js being

the number of neurons on the hidden layer of sth NN, and K being the output dimension (i.e.,
number of classes). In federated learning, given the collection of weights {W (0)

s ,W (1)
s }S

s=1, we
want to learn a global neural network with weights Θ(0) ∈RD×J ,Θ(1) ∈RJ×K , where J ≪∑S

s=1 Js is
an inferred variable denoting the number of hidden neurons of the global network.
Permutation invariance of one-layer FCNNs Expanding the preceding expression of a FCNN:
fs(x) = ∑Js

j=1W
(1)
s, j ·σ(〈x,W (0)

s,· j 〉), where j · and · j denote the j th row and column correspond-

ingly. Summation is a permutation invariant operation, thus for any {W (0)
s ,W (1)

s } there are Js !
practically equivalent parametrizations, which can be expressed as

fs(x) =σ(xTW (0)
s As)AT

s W
(1)
s , (1)

where As is any Js × Js permutation matrix. Supposing {W (0)
s ,W (1)

s } are optimal weights, then
weights acquired from two datasets Xs1 , Xs2 are {W (0)

s As1 ,AT
s1
W (1)

s } and {W (0)
s As2 ,AT

s2
W (1)

s }. With

a high probability As1 ̸=As2 and (W (0)
s As1 +W (0)

s As2 )/2 ̸=W (0)
s As1 for any permutation matrix.

Thus to meaningfully aggregate neural networks in the weight space we should first align the
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weights (W (0)
s As1A

T
s1
+W (0)

s As2A
T
s2

)/2 =W (0)
s . Permutation invariance of deep neural architec-

tures demonstrated in Supplement Sect. 1.
Matched Aggregation Formulation Here we present federated local neurons aggregation in one
hidden layer NN under the permutation invariance. Let ws j be the j th neuron learned on
dataset s, θi denote the i th neuron in the global model (ws j ,θi ∈ RD+K can be viewed as a con-
catenated vector of weight matrices). The solution of the following optimization problem is the
required matching assignments:

min
{θi },{As }

S∑
s=1

J∑
i=1

Js∑
j=1

As
i , jC

s
i , j

s.t .
∑

i
As

i , j = 1;
∑

j
As

i , j ≤ 1;As
i , j ∈ {0,1}, (2)

where C s
i , j = c(θi ,ws j ) is an appropriate cost specification of assignment between local neuron

ws j and global neuron θi . And {As}S
s=1 is the collection of assignment variables of each dataset

s, AT
s,i , j =As

i , j , where As
i , j = 1 implies the local neuron ws j matched with global neuron θi and

vice versa. After assignments are inferred, the global model {θi = argmin
θi

∑
s, j A

s
i , jC

s
i , j }J

i=1 can

typically be solved in a closed form. The equality constraint implies that neurons of one client are
a subset of aggregated global neurons. The inequality constraint indicates that neurons across
clients may overlap only partially because of data heterogeneity in Federated Learning. Thus the
size of constructed global model J satisfying max

s
Js ≤ J ≤∑

s Js . The overall matched aggregation

procedure is illustrated in Fig. 1.

Match by optimizing{𝑨𝑖 ,𝑗
𝑠 }and

then merge through it

Outputs ( ∈ ℝ𝐾 )

Hidden neurons ( {𝑾𝑠𝑗 } )

Inputs (∈ ℝ𝐷 )

Local NN 1 Local NN 2 Local NN 3

Figure 1: The matching progress of three local NNs via Federated Neural matched aggregation.
Colored nodes here indicate hidden neurons; the same colored hidden neurons have
been matched.
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3. Probabilistic Federated Neural Matching

In this section, we show how to deduce the cost specifications in Eq. (2). Specifically, PFNM
models the generative process of neurons through BBP and acquires the cost specifications via
maximizing a posterior estimation of the model. We firstly introduce some basic mathematical
tools required by PFNM and our framework. Then we briefly review the PFNM model (Yurochkin
et al., 2019b).

PFNM models the generative process of observed local neurons via a Beta-Bernoulli process
(Yurochkin et al., 2019b) which described in Supplement Sect. 2. In PFNM, global atoms (hid-
den layer neurons) are drawn from a Beta process prior with a base measure H indicating the
distribution of neurons and mass parameter γ0, M = ∑

i miδθi . Base measure H is chosen as
multivariate Gaussian distribution H =N (µ0,Σ0) with µ0 ∈RD+K and diagonal Σ0.

Local atoms are observed as noisy measurements of subsets of global atoms ws j | Ts ∼
N (Ts j , Σs) for s = 1, · · · ,S; j = 1, · · · , Js ; Js := cardinality(Ts). The subset Ts is selected via the
Bernoulli process: Ts := ∑

i asiδθi where asi |mi ∼ Bern(mi ) for any i . Ts is supported by atoms
{θi : asi = 1, i = 1,2, · · · } and represent the identities of the atoms (neurons) used by subset s. Un-
der this model, there is a one-to-one correspondence between {asi }∞i=1 and assignment variables
{As}S

s=1 to be inferred, where As
i , j = 1 implies Ts j = θi .

To formulate the objective function in Eq. (2), PFNM maximizes a posterior estimation of
global neurons for the above model:

max
{θi },{As }

P ({θi }, {As}|{ws j }) ∝ P ({ws j }|{θi }, {As})P ({As})P ({θi }), (3)

and by taking negative natural logarithm it can obtain:

min
{θi },{As }

−∑
i

(∑
s, j

As
i , j log(p(ws j |θi ))+ log(q(θi ))

)
− log(P ({As})), (4)

where p(ws j |θi ) denotes the probability density function of ws j parameterized by mean θi ,
q(θi ) denotes the probability density function of θi , P ({As}) is interpreted by IBP and demon-
strated in Supplement Sect. 2. Given {As}S

s=1, the closed form of {θi } can be estimated according
to the Gaussian-Gaussian conjugacy:

θ̂i =
µ0/σ2

0 +
∑

s, j A
s
i , jws j /σ2

s

1/σ2
0 +

∑
s, j A

s
i , j /σ2

s
for i = 1, · · · , J , (5)

where for simplicity we assume Σ0 = Iσ2
0 and Σs = Iσ2

s .
PFNM solves the assignments and constructs the global model in an iterative approach. Let

−s′ be "all but s′", fixing assignments {As
i , j }i , j ,s∈−s′ , it can find the optimal assignments {As′

i , j }i , j

corresponding to dataset s′ at current iteration via Hungarian algorithm (Kuhn, 1955), and then
it iterates over remaining datasets. At each iteration, given current estimates of {As

i , j }i , j ,s∈−s′ ,

it find a corresponding matched aggregating global model {θi = argmin
θi

∑
s∈−s′, j A

s
i , jC

s
i , j }

J−s′
i=1 via

the closed form expression, i.e. Eq. (5), where J−s′ = max{i : As
i j = 1, for s ∈ −s′, j = 1, . . . , Js}

denote the number of active global neurons outside of s′.
The following proposition describes the assignment cost {C s′

i , j }i , j obtained by PFNM corre-
sponding in Eq. (2):
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Proposition 1 The assignment cost specification C s′
i , j for finding {As′} corresponding to objective

Eq. (4) is 
∥θ̃i −ws′ j∥2

2 −L1∥ws′ j∥2
2

L2
/

L3
−2log

n−s′
i

S −n−s′
i

, i ≤ J−s′ ,

∥µ0 −ws′ j∥2
2 −L4∥ws′ j∥2

2

σ2
0 +σ2

s′
+2log

i − J−s′

γ0/S
, J−s′ < i ≤ J−s′ + Js′ ,

(6)

where the norm is l2-norm, L1,L2,L3,L4 are constants whose expressions are given in the Supple-

ment Sect. 5.1, and θ̃i =
µ0/σ2

0+
∑

s∈−s′ , j A
s
i , jws j /σ2

s

1/σ2
0+

∑
s∈−s′ , j A

s
i , j /σ2

s
denotes the neuron in the estimated global model at

current iteration, n−s′
i =∑

s∈−s′, j A
s
i , j denotes the times that client neurons were assigned to global

neuron i outside of s′.

The proof can be found in Supplement Sect. 5.1. Thus PFNM can be summarized as a alter-
native optimization process in Algorithm 1.

Algorithm 1 Alternating optimization in PFNM
Input:

Local weights ws j from S clients;
Output:

Global weights {θi }, matching assignments {As}S
s=1;

1: for k = 1, 2, 3, · · · do
2: for s′ = 1, 2, · · · , S do
3: Fixing assignments {As

i , j }i , j ,s∈−s′ , construct corresponding global model via Eq. (5): θ̃i =
µ0/σ2

0+
∑

s∈−s′ , j A
s
i , jws j /σ2

s

1/σ2
0+

∑
s∈−s′ , j A

s
i , j /σ2

s
;

4: Obtain the assignment cost {C s′
i , j }i , j via Eq. (6);

5: Solve the linear assignment problem via Hungarian algorithm to obtain {As′
i , j }i , j .

6: end for
7: Use {As}S

s=1 to update the global model.
8: end for

4. Extended Probabilistic Federated Neural Matching

In this section, we firstly point out that the alternating optimization method used in PFNM
brings bias of solution, and can not optimize Eq. (4) globally in a supposed way. After that, to mit-
igate the bias, we introduce Kullback-Leibler (KL) divergence between the distribution of global
and local neural components.

4.1. Analysis of PFNM

As we point out above, PFNM applies alternative optimizing to solve the assignments between
global neurons and local neurons. However, alternative optimization generally can not achieve
a global optima in PFNM (Beck, 2017). For simplicity, we only consider the prior probability of
global neurons in Eq. (4), that is

min
{As }

− log q(θ̂i ) (7)
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=min
{As }

∥θ̂i −µ0∥2
2 +C

=min
{As }

∥∥∥∑
s, j As

i j (ws j −µ0)

σ2
s /σ2

0 +
∑

s, j As
i j

∥∥∥2

2
+C

=min
{As }

∥∥∥ f1(As′)+ f2(A−s′)

g1(As′)+ g2(A−s′)

∥∥∥2

2
+C . (8)

where C is a constant and f1, f2,g1 and g2 are real functions. However, in the alternating mini-
mization step of PFNM, the problem becomes

min
{As′ }

∥∥∥ f1(As′)+C1

g1(As′)+C2

∥∥∥2

2
+C , (9)

where C1 = f2(A−s′), C2 = g2(A−s′) are constants independent of As′ . Obviously, As′ solved from
Eq. (9) may be quite different from the original problem of Eq. (7). Therefore, in each iterative
step the optimism of the assignments is not guaranteed.

Considering the above general analysis, as shown in Eq. (6), for model s′, to minimize the
cost function essentially minimizes the l2-distance between local neuron ws′ j and estimated
global neuron θ̃i , and selects local neuron ws′ j which has smaller l2-norm. Recall that PFNM
assumes neurons obey Gaussian distribution whose covariance matrix is simply Σ0 = Iσ2

0 for
global neurons and Σs′ = Iσ2

s′ for local neurons in model s′. For local neurons ws′ j assigned to
global neuron θi , the probability density function of ws′ j is

pθi (ws′ j ) = 1√
(2π)D+K |Σs′ |

e
− 1

2

∥ws′ j −θi ∥2
2

σ2
s′ ,

where D +K is the dimension of neurons. Therefore, when i ≤ J−s′ , for fixed global neuron θi ,
to minimize the first part of the cost function related to ∥θ̃i −ws′ j∥2

2 is essentially picking a local
neuron with higher prior probability. When two local neurons ws′ j and ws′ j∗ have almost equal
prior probability, i.e., ∥θ̃i −ws′ j∥2

2 = ∥θ̃i −ws′ j∗∥2
2, to minimize the cost function means to pick

a local neuron with higher l2-norm. When J−s′ < i ≤ J−s′ + Js′ , as seen in Eq. (6), since we do
not yet have an estimate of global neuron θi , we just use the mean of global neurons as a rough
estimation of global neuron. The situation is similar for the case when i ≤ J−s′ . This is in corre-
spondence with the maximization of posterior probability in PFNM model. However, we will see
that the cost function does not optimize well on prior probability of global neurons.

For global neurons, the prior density function of θi is

q(θi ) = 1p
(2π)n |Σ0|

e
− 1

2

∥θi −µ0∥2
2

σ2
0 . (10)

As we have seen in Eq. (6), there is no term related to ∥θi−µ0∥2
2, or to be specific, prior probability

of q(θi ). Therefore, for fixed local neuron ws′ j , let us assume that ws′ j have almost equal prob-
ability to be assigned to global neuron θi and θi∗ , that is, ∥θ̃i −ws′ j∥2

2 = ∥θ̃i∗ −ws′ j∥2
2 where θ̃i ,

θ̃i∗ are estimations of global neurons θi and θi∗ , respectively. We also assume n−s′
i = n−s′

i∗ in the

remaining part, since in the initial stage of iteration all n−s′
i are identical. In such case, the cost

function has no discrimination on θi and θi∗ . However, based on the model assumptions, the
cost function is supposed to pick a global neuron with higher prior probability between θi and
θi∗ . We will show that a term derived through Kullback-Leibler divergence can fix this problem.
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4.2. Kullback-Leibler Divergence Penalty

How to evaluate the performance of model fusion for neural networks without the knowledge of
the datasets? A natural measurement is that, the distribution of local neurons should be close to
the distribution of global neurons to which those local neurons are assigned to. Hence, we pro-
pose Kullback-Leibler (KL) divergence between joint probability distributions of local neurons
and their corresponding global neurons, i.e.,

min
{θi },{As }

∑
s

KL
(∏

j
q
(∑

i
As

i , jθi
)∥∥∥∏

j
pθi (ws j )

)
, (11)

and q
(∑

i A
s
i , jθi

)
represents the distribution of global neuron that matches tows j . Decomposing

over joint distributions in KL(·∥·) allows us to rewrite problem (11) as

min
{θi },{As }

∑
i

∑
s, j

As
i , j KL

(
q∥pθi

)
. (12)

As mentioned previously, for local neuron ws′ j which is assigned to global neuron θi , ws′ j

obeys a Gaussian distribution whose mean is θi and covariance matrix is Σs′ = σ2
s′I . For global

neuron θi , it obeys Gaussian distribution with mean µ0 and covariance matrixΣ0 =σ2
0I . There-

fore, KL divergence between distribution of local neuron ws′ j and distribution of global neuron
θi , i.e., KLi

s′ j [θi ], can be expanded as

KLi
s′ j [θi ]

=KL(q∥pθi )

=
∫
x

q(x) log
q(x)

pθi (x)
dx

=1

2

(
(D +K )(

σ2
0

σ2
s
−1+ log

σ2
s

σ2
0

+ ∥θi −µ0∥2
2

σ2
s

)
. (13)

Since only the term ∥θi −µ0∥2
2 /σ2

0 containsθi , to minimize KLi
s′ j [θi ] onθi is actually minimizing

∥θi −µ0∥2
2 /σ2

0. As we see in Eq. (10), this is equal to maximizing the prior probability of global
neuron θi .

For fixed local neuron ws′ j ∈ Rn and two global neurons θi ∈ Rn and θi∗ ∈ Rn , we suppose
ws′ j has almost equal probability to be assigned to global neuron θi and θi∗ , i.e.,

∥θ̃i −ws′ j∥2 = ∥θ̃i∗ −ws′ j∥2.

The difference of KL penalty between them,

KL(q∥pθi )−KL(q∥pθi∗ )

is equivalent to ∥θi −µ0∥2
2−∥θi∗ −µ0∥2

2. It indicates that while the cost function in PFNM model
can not discriminate between θi and θi∗ , to minimize KL divergence will essentially pick a global
neuron with higher prior probability. This indeed fixes the problem of the cost function in PFNM
model. Besides, when PFNM model can discriminate between θi and θi∗ , which means θi and
θi∗ have different l2-distance to local neuron ws′ j , to minimize KL divergence will still probably
pick a global neural with higher prior probability. We also need some assumptions as listed in
Assumption 2.
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Assumption 2 For one fixed local neuron ws′ j ∈Rn and two global neurons θi ∈Rn and θi∗ ∈Rn ,
we assume

(A) ∥θi −ws′ j∥2 = ∥θi∗ −ws′ j∥2 +ϵ, where ϵ≥ 0;
(B) ∥θi∥2 = R1 is fixed;
(C) θi and θi∗ are sampled from N (µ0,Σ0) = N (0,σ2

0I).

Based on Assumption 2, we have Proposition 3.

Proposition 3 Under Assumption (2), let P
(
KLi∗

s′ j [θi∗ ] ≥ KLi
s′ j [θi ]

)
be the probability that KLi∗

s′ j [θi∗ ]

is greater than KLi
s′ j [θi ], thenP

(
KLi∗

s′ j [θi∗ ] ≥ KLi
s′ j [θi ]

)
= 0, ϵ≥ 2∥ws′ j∥2,

P
(
KLi∗

s′ j [θi∗ ] ≥ KLi
s′ j [θi ]

)
≥ Bn(ϵ), ϵ< 2∥ws′ j∥2,

(14)

where Bn(ϵ) is a monotonically decreasing non-negative function of ϵ.

The proof can be found in Supplement Sect. 5.2. When there are two global neurons that
have different l2-distances to a local neuron, minimizing the cost function of PFNM will directly
pick the global neuron closer to the local neuron while the prior probabilities of global neurons
are not used. As shown in the above proposition, ϵ is the difference between distances of global
neurons to the same local neuron. As a lower bound, the monotonically decreasing non-negative
function of ϵ implies that to minimize the KL divergence can make a balance between l2-distance
and prior probability, instead of only using distance to select global neurons. When the distance
difference of two global neurons between one local neuron is small (which means it can hardly
distinguish different global neurons via l2-distance), the KL term has a higher probability of se-
lecting a higher prior probability global neuron; and when the distance discrepancy of different
global neurons is large, it will select global neurons closer to local neurons as the original PFNM
does. Therefore, an extended PFNM model by adding a KL penalty theoretically performs better
than the original PFNM method. In the remaining part, we prove Eq. (11) can also be derived as
a linear sum assignment problem similar to the form of Eq. (6).

For the iterative optimization procedure, we have the following proposition where Eq. (11)
also enjoys a linear sum assignment form like

∑
i
∑

j A
s′
i , j C̃

s′
i , j :

Proposition 4 The assignment cost specification for finding As′ corresponding to Eq. (11) is C̃ s′
i , j =

∥∥∥ws′ j −µ0

σ3
s′

+ ∑
s∈−s′ , j

As
i , j

ws j −µ0

σ3
s

∥∥∥2

( 1
σ2

0
+ 1

σ2
s′
+ ∑

s∈−s′ , j
As

i , j /σ2
s )2 (n−s′

i +1)−
∥ ∑

s∈−s′ , j
As

i , j

ws j

σ3
s
∥2

( 1
σ2

0
+ ∑

s∈−s′ , j
As

i , j /σ2
s )2 n−s′

i , i ≤ J−s′ ,

∥ws′ j −µ0

σ3
s′

∥2

( 1
σ2

0
+ 1

σ2
s′

)2 , J−s′ < i ≤ J−s′ + Js′ .

(15)

The proof can be found in the Supplement Sect. 5.3.
Reverse KL. How about using the reverse KL term KL

(
pθi ∥q

)
instead of KL

(
q∥pθi

)
in euqa-

tion (12)? Although KL
(
pθi ∥q

)
is different from KL

(
q∥pθi

)
in common sense, both of them have

identical effect in the cost specification. According to equation (13) in our paper, only
||θi−µ0||22

σ2
s
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has effect in the cost specification. And for KL
(
pθi ∥q

)
, this term becomes

||µ0−θi ||22
σ2

0
, and the front

term is
σ2

s

σ2
0

scale to the behind term. As all σs are the same in our setting, the front term is pro-

portional to the behind term. Thus they both have indentical effect in the cost specification of
the linear sum assignment formulation.

As we discuss above, PFNM only utilizes l2-distance to measure the importance of neurons
and ignores prior probability of neurons in the fused model. KL divergence can fix the drawback
of PFNM by making a balance between l2-distance and the prior probability of neurons. Hence,
we directly acquire a more reasonable model by treating Eq. (11) as a penalty to adding to Eq. (4),
and thus we acquire a new model:

min
{θi },{As }

−∑
i

(∑
s, j

As
i , j log(p(ws j |θi ))+ log(q(θi ))

)
− log(P ({As}))+

λ
∑

s
KL

(∏
j

q
(∑

i
As

i , jθi
)∥∥∥∏

j
pθi (ws j )

)
, (16)

and the cost specifications of the new model is:

C=C+λC̃, (17)

which makes a balance between l2-distance and prior probability instead of only using distance
to select global neurons. We call this matched aggregation with global information (MAGI). Co-
efficient λ is the adjusting ratio.

As the study in Wang et al. (2020) demonstrates, directly applying the matching algorithms
fails on deep architectures designed for more complex tasks. Thus to alleviate this problem,
we also extend MAGI to layer-wise matching scheme which can be found in the Supplement
Sect. 3. Besides, although some studies (Wang et al., 2020) shows how to apply the PFNM to
CNNs, it doesn’t enable batch normalization layer to the matching algorithm. However, widely
used deep CNNs such as U-net often contain batch normalization layer in their architectures.
In this paper, we utilize a common setup which merges the batch normalization layer with a
preceding convolution to incorporate MAGI with batch normalization layer. This is also included
in Supplement Sect. 4.

Algorithm 2 MAGI
Input:

Local weights ws j from S clients;
Output:

Global weights {θi }, matching assignments {As}S
s=1;

1: Form each assignment cost matrix via Eq. (17);
2: Use Hungarian algorithm to compute {As}S

s=1;
3: List all resulting distinct global neurons and then apply Eq. (5) to infer associated global

weights from all instances of global neurons across S datasets;
4: Aggregate the global neurons to construct the new global model.
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5. Experiments

This section presents an empirical study of MAGI and compares it with PFNM, FedAvg (McMa-
han et al., 2017), and FedProx (Li et al., 2018). Our experiments are conducted over three different
datasets with various neural networks, that is, FCNN, shallow CNN and U-net. And the experi-
ments below show that our framework can aggregate multiple NNs into an efficient global one.
We also present how the number of neurons change along with, λ, the weight of the KL diver-
gence term. The source code is publicly available on Github: https://github.com/moon24x/
MAGI.
Datasets, models and metrics We evaluate our algorithm on three datasets: MINST, CIFAR 10
and Carvana Image Masking Challenge (CIMC). The first two are standard image classification
datasets and each contains ten classes on handwriting digits and objects in real life respectively.
The third one, CIMC, is a binary semantic segmentation dataset composed of photos of cars,
and the task is to split out the car and the background. For MNIST, we apply a FCNN model
and evaluate it with accuracy; for CIFAR 10, we apply a ConvNet with with 3 convolutional and 2
fully-connected layer and evaluate it with accuracy; for CIMC, we apply the U-net (Ronneberger
et al., 2015) architecture and evaluate it with dice coefficient.
Partition strategies of client data Here we consider a heterogeneous partition strategy to simu-
late a federated learning scenario where the number of data points and class proportions in each
client is unbalanced. In heterogeneous partition of client data, for three datasets, we follow prior
works (Yurochkin et al., 2018) which apply K -dimensional Dirichlet distribution Di r (α) to create
non-iid data, in which a smaller α indicates higher data heterogeneity. Specifically, for dataset
with class number K , we sample the proportion of the instances of class k to client s, pk,s , via
pk,s ∼ Di rk (α). For MNIST and CIFAR10, K = 10. For CIMC, K = 1 as it is a binary semantic seg-
mentation dataset. In each dataset, we execute 5 trials to obtain mean and standard deviation of
the performances.

Table 1: Performance overview on different tasks, S denotes the number of local models, N de-
notes the number of layers in a neural network

Datasets
(Architectures) S N Local NN FedAvg FedProx PFNM MAGI

15 1 71.9 ± 2.57 75.47 ± 5.90 75.65 ± 5.93 83.93 ± 0.14 86.25 ± 0.88
20 1 69.44 ± 2.50 75.02 ± 4.03 75.17 ± 3.99 83.23 ± 3.31 85.64 ± 3.09

MNIST 25 1 67.99 ± 2.00 75.46 ± 3.33 75.24 ± 3.30 84.87 ± 1.66 86.95 ± 3.21
(FCNN) 30 1 65.90 ± 2.66 73.43 ± 4.49 73.11 ± 4.44 83.39 ± 2.23 86.68 ± 2.64

10 2 73.21 ± 3.05 66.56 ± 6.82 66.34 ± 6.75 79.09 ± 4.73 82.77 ± 4.17
10 3 70.28 ± 2.97 52.01 ± 6.52 51.79 ± 6.49 60.71 ± 4.59 70.66 ± 4.83
5 5 25.21 ± 2.30 51.26 ± 2.97 51.43 ± 3.01 50.39 ± 0.94 51.83 ± 0.81

CIFAR10 10 5 18.92 ± 1.41 46.78 ± 2.36 46.94 ± 2.32 46.27 ± 1.73 48.32 ± 1.32
(ConvNet) 15 5 15.85 ± 0.51 42.40 ± 2.25 42.06 ± 2.20 42.82 ± 2.46 45.34 ± 1.78

20 5 14.11 ± 0.53 34.20 ± 2.54 34.02 ± 2.52 42.61 ± 2.07 44.44 ± 1.85
CIMC 8 19 67.60 ± 9.38 53.28 ± 10.63 41.53 ± 0.82 90.31 ± 2.90 96.01 ± 0.84

(U-net) 16 19 27.84 ± 12.16 42.62 ± 0.87 48.50 ± 9.52 75.47 ± 3.54 82.57 ± 2.91

https://github.com/moon24x/MAGI
https://github.com/moon24x/MAGI
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Baselines We compare our method with original PFNM, FedAvg, and FedProx. Here the FedAvg
and FedProx are operated in local neural networks trained with the same random initialization
as proposed by McMahan et al. (2017). We note that a federated averaging variant without the
shared initialization would likely be more realistic when trying to aggregate pre-trained models,
but it performs significantly worse than all other baselines.
Training setup We use PyTorch (Paszke et al., 2017) to implement these networks and train them
by the Adam (Kingma and Ba, 2014), SGD (Bottou, 2010) and RMSprop (Hinton et al., 2012) with
default hyperparameters. All hyperparameter settings are summarized in Supplement Sect. 6.1.
Performance Overview For applications of Federated Learning in real world, the discrepancy of

(a) MNIST multiple nets (b) MNIST multiple layers (c) CIFAR10 multiple nets

Figure 2: Amount of parameters varies with the KL regularization coefficients.

data distribution among clients and communication cost will grow up naturally as the number of
clients increases due to the variability of data generation paradigms in the system (Li et al., 2020).
Consequently, the model fusion problem is harder under configuration of more clients. This
implies that it is meaningful to test the neural networks fusing algorithms for various number
of clients. For MNIST, we firstly apply various methods such as FedAVG, FedProx and PFNM,
with 15, 20, 25 and 30 local clients with one hidden layer FCNN. Local NN in Table 1 reports the
average of separately tested network accuracies. The performance of local NNs define the lower
extremes of aggregating. As the number of clients S increases, the performance of each method
decreases. Because in our partition setting, each client contains fewer training data and probably
fewer labels as S increases. As shown in Table 1, accuracy of MAGI on MNIST is 3% higher than
PFNM on average. We also test how number of hidden layers N affect the performance of model
fusion methods. We train 10 neural networks with 2 and 3 hidden layers respectively and then
use various methods to fuse them. Similarly, MAGI achieves the best performance among all
the methods. In addition, the priority of MAGI increases as deepness of the neural networks
increases. This can be explained by an accumulating error effect. On the one hand, in Sect. 3 and
Sect. 4, we analyzed the problem of PFNM and concluded that PFNM is unable to discriminate
those global neurons who have the same l2-distance to a local neuron, and MAGI furnished with
KL divergence can fix this. On the other hand, the fusing process of neural networks is actually
going layer-by-layer, from the first layer to the last layer. For each layer, when fusing local models,
the drawback of PFNM we described will take into effect and global neurons are not generated
correctly. Therefore, for the whole local models, as the iteration process directed by Hungarian
algorithm goes on, the incorrectness of PFNM on picking global neurons is superimposed and
the performance discrepancy between PFNM and MAGI is amplified as presented in Table 1.

In real-world applications of deep learning, CNNs are far more widely used than FCNNs.
Consequently for this, we set ConvNet (2 convolutional layers and 3 fully connected layers) on
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5, 10, 15 and 20 local clients and apply various methods to fuse the models trained in heteroge-
neous dataset partition of CIFAR 10. For PFNM and MAGI, we apply them in iteratively layer-wise
way, thus we also set the communications rounds of FedAvg and FedProx to 5 equal to the num-
ber of layers in ConvNet for equality. As shown in Table 1, MAGI outperforms the other methods
on fusing convolutional neural networks. Concretely, accuracy of MAGI on CIFAR 10 is 2% higher
than PFNM on average for various number of clients.

For advanced deep learning methods, the architectures are often complex, typically, being
furnished with skip connection across layers and number of layers is many more than three. In
previous Federated Learning methods, those complex networks are rarely tested and it is not
clear whether those large-scale neural networks can be fused as well as those light-weighted
nets by those model fusion methods. U-Net (Ronneberger et al., 2015) is widely used on medi-
cal image segmentation (Du et al., 2020), and heterogenous medical images such as tumor scan
images generated by multiple institutions are generally forbidden to be exchanged for privacy
issues. Therefore, it is urgent to make popular image segmentation algorithms federated. To
this end, we apply several popular federated learning methods on U-Net. The architecture de-
tails of U-Net can be found in Ronneberger et al. (2015). In this paper, we technically matched
aggregate neurons over skip connection. In addition, U-Net also applies batch normalization
technique on feature maps which distinguish U-Net from general FCNNs. As shown in Table 1,
the performances of FedAvg and FedProx are very poor. FedAvg and FedProx cannot converge
to a stationary result in such complex network architecture (the results go up and down during
communication rounds), the result shown in the table is taken from the best result during all 19
communication rounds which is equal to the number of layers in U-net. As shown in Table 1,
compared to the case of 2 or 3 layer neural networks, the priority of MAGI is much more signif-
icant among popular Federated Learning methods. Accuracy of MAGI on CIMC is at least 6%
higher than PFNM with 8 local clients and almost 7% higher with 16 local clients.

In MAGI, we induce a hyper-parameter λ, the weight of the KL-divergence term. We testify
the sensitivity of λ which can be referred in Supplement Sect. 6.2. In summary, MAGI is robust
on hyper-parameter λ under various conditions.
Number of Neurons in Global Model In deep learning, over-parameterization is still not clearly
understood (Zhang et al., 2021; Zhou, 2021). Deep neural networks often contain a great number
of parameters even larger than the number of training examples, however, it seems that these
over-parameterized models do not suffer from overfitting. Due to this, neural network can be
compressed, e.g., pruned to a lighter neural network with fewer parameters (Blalock et al., 2020),
while maintaining an acceptable performance. For two neural networks those achieve the same
performance on a certain task, the one which comes with fewer parameters would be viewed
as a more efficient model. Since generally the more parameters a neural network contains, the
more computational resources to deploy it would consume (Cheng et al., 2017). In our study,
MAGI is found to have an additional compressing function on neural networks. Considering the
discrepancy of dimensions among neurons in different layers, we use the scale of parameters to
show the amount of neurons.

As shown in Fig. 2, compared to PFNM, global model obtained by MAGI contains signifi-
cantly less neurons. In addition, as the weight of the KL divergence termλ in MAGI increases, the
amount of neurons in the global neural network declines almost linearly. Compared to PFNM,
on MNIST, MAGI with λ close to 1 fuses local models to a global model with almost 8 times fewer
parameters for one hidden layer FCNNs, and close to 3 times fewer for multi-layer FCNNs. For
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CIFAR 10, MAGI reduces the number of global neurons to around 80% of that fused by PFNM.
This phenomenon can be explained as follows. In Proposition 3, we have shown that to minimize
the KL penalty essentially picks global neurons with higher prior probability. During the optimiz-
ing process directed by the Hungarian algorithm, MAGI tends to match neurons in each local
neural network to global neurons with higher prior probability. Therefore, compared to PFNM,
in MAGI, those global neurons with high prior probability are more promisingly matched to by
neurons in different local models while the other global neurons are less promisingly matched
to. Thus, the amount of global neurons in MAGI is less than PFNM. As the weight of KL term
increases, the tendency to pick global neuron with high prior probability in MAGI strengthens
and the number of global neurons declines as in Fig. 2.

6. Conclusion

In this paper, we have proposed a new federated neural matching method by incorporating the
global information into PFNM. It is empirically shown that the new method outperforms other
state-of-the-art algorithms for federated learning of neural networks. In future work, it is in-
teresting to extend our model to more advanced architectures. Additionally, the success of KL-
divergence suggests it is also likely to try other divergences of probability distributions.
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