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Abstract

Human activity recognition (HAR) attracts widespread attention from researchers recently,
and deep learning is employed as a dominant paradigm of solving HAR problems. The pre-
vious techniques rely on domain knowledge or attention mechanism extract long-range
dependency in temporal dimension and cross channel correlation in sensor’s channel di-
mension. In this paper, a HAR model with positional attention (PA), termed as PA-HAR,
is presented. To enhance the features in both sensor’s channel and temporal dimensions,
we propose to split the sensor signals into two 1D features to capture the long-range de-
pendency along the temporal-axis and signal’s cross-channel information along the sensor’s
channel-axis. Furthermore, we embed the features with positional information by encoding
the generated features into pairs of temporal-aware and sensor’s channel-aware attention
maps and weighting the input feature maps. Extensive experiments based on five public
datasets demonstrate that the proposed PA-HAR algorithm achieves a competitive perfor-
mance in HAR related tasks compared with the state-of-the-art approaches.

Keywords: Human activity recognition (HAR), Positional Attention (PA), Wearable De-
vice, Deep learning.

1. Introduction

Utilizing data collected from embedded sensor for the purpose of HAR is a highly active
research area in ubiquitous computing. HAR system based on wearable devices detects
various daily activities (such as jogging, walking), and more complicated activities like as-
sembly line worker behaviors. Hence, HAR system has a wide application in mobile social
networks, environmental monitoring, and health monitoring. For example, in health mon-
itoring, HAR system is used to track individuals’ diseases like Alzheimer, Parkinson, and
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emergencies like children fall detection. More specifically, HAR system can help Alzheimer
patients’ family record patients’ daily behaviors (such as sitting, walking, and running)
and detect abnormal behaviors (such as falling) throughout the disease process, to prevent
events that may endanger patients’ health. We use the inertial measurement unit (IMU) in
the wearable device to measure the values of the accelerometer, gyroscope, magnetometer.
Then, the data is preprocessed, which needs to fill the missing values and resample the
gyroscope, accelerometer, and magnetometer signal to adjust to a uniform sampling fre-
quency. Finally, we concatenate the multiple channel signals. Then, we use sliding window
technology to split the signal data of multiple channels to signal images. The existed ap-
proaches mostly split the sensor signal into fixed-size sequences and then classify the signal
frame by activity type using various machine learning methods. Qian et al. (2018a) employ
a distribution kernel embedding method to extract all orders of moments as statistical fea-
tures. Semwal et al. (2021b) employ the extreme learning machine (ELM) for HAR. Yang
et al. (2014) employ ELM for timeliness online sequential predicting. Such conventional
machine learning methods depend significantly on handcrafted features, which are largely
constrained by human domain knowledge.

An increasing number of researchers introduce deep neural networks (DNN) to solve
HAR problems. DNN is constructed of various layers, such as convolutional neural networks
(CNN) layer, recurrent neural networks (RNN) layer, and graph convolutional networks
(GCN) layer, etc. It does not require domain expertise and significantly improves the
detection accuracy over the conventional machine learning algorithms.

In previous studies, temporal-spatial DNN methods are often used to extract high-level
information. Specifically, CNN is used to extract the temporal and channel characteristics
of specific patterns in the data segment. Along this research line, researchers focus on
techniques like combining channel and temporal attention (Gao et al. (2020)) or make use
of shallow CNN with channel-selectivity (Huang et al. (2021b)). However, aforementioned
methods can only extract the local temporal dependency and sensor’s cross-channel rela-
tionship. Some researchers introduce RNN to solve the above problems. RNN realizes the
re-modulation of historical signal by adding hidden layer and it is well-suited for exploiting
the temporal relationships within a specific acvitity (Francisco and Daniel (2016)), while it
introduces noise (irrelevant signal components and sensor modalities, etc.) in encoding pro-
cess (Zeng et al. (2018)). Therefore, researchers equip RNN with temporal attention and
sensor attention to capture the spatial-temporal interdependence of sensor signals (Dua
et al. (2021)). Additionally, with the adoption of GCN (Huang et al. (2021a)), only a
shallow network is needed to extract the interaction between different feature channels.
But GCN only considers convolution feature channel relationship and ignores the sensor’s
cross-channel relationship as well as temporal interaction.

The state-of-the-art HAR methods are mostly combinations of aforementioned research
lines, where 2D convolution and global pooling are used to extract temporal and cross-
channel relationship simultaneously. However, modeling the long-range temporal depen-
dency and cross-channel requires further investigation.

With the rise of attention mechanisms in computer vision area, some scholars combine
attention mechanisms with convolutional neural networks. Squeeze-and-Excitement (SE)
attention (Jie et al. (2017)) and Convolution Block Attention Module (CBAM) attention
(Woo et al. (2018)) are most commonly adopted attention mechanism. SE attention mech-
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anism includes two steps: squeeze and excitation, which are used for embedding global
information and feature channel’s adaptive recalibration, respectively. However, SE atten-
tion use 2D global pooling process to capture global information, which only consider the
correlation between the feature channel, and will lose relationship in temporal dimension
and sensor’s dimension. CBAM attention mechanism employs 7 × 7 convolution kernel to
capture the local cross sensor’s channel information in spatial dimension and local time
sequence dependency in temporal dimension. And then they establish correlation between
the feature channel. However, they ignore the global long-range dependency and cross sen-
sor’s channel correlation. As self-attention is proposed, the Transformer model based on
self-attention becomes popular. Transformer uses position embeding to establish correlation
signal image patch and then extract local feature in signal image patch (Dirgová Luptáková
et al. (2022)), which only considers the local association between signal image patch. While
the global positional information is ignored. Hou et al. (2021) propose coordinate attention,
which can dynamically increase the weights on both H − direction and W − direction in
image area. Inspired by this concept, we propose the HAR method with PA mechanism.

In this paper, we present a novel and efficient HAR method with PA mechanism. Dif-
ferent from position encoding in transformer (Dirgová Luptáková et al. (2022)), the PA
mechanism embeds global positional information into both temporal and sensor’s channel
dimensions to enable the network to extract long-range temporal dependency and sensor’s
cross-channel information simultaneously. It avoids loss of positional information due to
2D global pooling, as well as the increased computing cost introduced by enlarged network
structure for modeling the long-range temporal dependency.

In PA mechanism, firstly, we employ two 1D global pooling processes to respectively
aggregate the input features along the temporal-axis and sensor’s channel-axis into two
separate direction-aware feature maps. These two feature maps with embedded temporal-
channel positional information are encoded individually into two attention maps, which
capture long-range dependency along with temporal-axis and sensor’s cross-channel infor-
mation along with sensor’s channel-axis, respectively. Secondly, we employ two 1 × 1 con-
volution processes to extract interaction information of two attention maps between each
convolution feature channel. Thirdly, the input feature map is multiplied with both atten-
tion maps to enhance the areas of sharp signal changes. Finally, we combine PA mechanism
with CNN for HAR to enhance the temporal-channel positional information.

The contributions of our paper are summarized as follows.

• We propose a novel positional attention mechanism for sensor-based HAR, which en-
courages to capture long-range dependency along with temporal-axis and introduce
sensor channel-axis cross-channel relationship. Furthermore, we can extract the in-
teraction between the convolution feature channel.

• We employ two baseline networks (Resnet and 3-layers CNN), and add the PA mech-
anism to baseline network. Only using sample 1 × 1 Conv and 1D global pooling
processes, we get a greater performance than baseline. Therefore we demonstrate
that the gained features are more diversified and discriminative.

• Extensive experiments on various benchmark datasets are carried out to illustrate the
higher performance of our proposed PA-HAR.
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The following is a description of the paper’s structure. We summarize HAR’s relevant
work in Section II. The specifics of HAR with the PA method are presented in Section
III. In Section IV, we present the public HAR dataset and the experiment design in detail
and compare experiment results on a variety of levels and our discussion. We describe
conclusions in Section V.

2. RELATED WORKS

This section gives a brief literature review of HAR and attention mechanism, including
previous works on feature engineering approaches, deep learning approaches and attention
mechanism.

2.1. Feature engineering approches

Feature engineering approches include Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA), both of which are based on transformation coding (such as
the wavelet and Fourier transforms) and the handcrafted signal features such as the median
and moment order (like mean, variance, and skewness) (Figo et al. (2010)). Some machine
learning methods, like support vector machines (SVM) (Bulling et al. (2011)) and random
forests (RF) (Stisen et al. (2015)) use these features to predict what people are doing at a
given time. Guo et al. (2018) propose an entropy-based hierarchical fusion model for HAR,
consisting of a sensor fusion layer and a classifier fusion layer. With the rise of extreme
learning machine (ELM) method, some researchers (Semwal et al. (2021a)) use ELMmethod
to recognize human activity, and the result is better than SVM. Qian et al. (2018b) use
the kernel mean embedding technique to automatically extracts all orders of moments as
statistical features. Besides the statistical features, some methods also look at extra meta-
information as structural features. For example, empirical cumulative distribution function
(ECDF) method preserves the overall shape and spatial information of time series data
(Hammerla et al. (2013)).

2.2. Deep learning approches

Deep learning approaches employ DNN to automaticly perform feature extraction and classi-
fication, which provide promising results for HAR. CNN is used to identify human activities
and process the original sensor signal into 2D signal images. Previous study has shown that
this signal image can capture important spatial attributes and is better than conventional
machine learning methods (Hammerla et al. (2016)). Huang et al. (2021b) propose a chan-
nel selection method: firstly, the Expected Channel Damage Matrix (ECDM) (Jeong and
Shin (2019)) is used to identify the contribution of each convolution feature channel, and
the feature channel with a low contribution rate is recovered in the training stage, secondly,
the channel with a high contribution rate is reassigned to the position of the recovered low
contribution feature channel. Teng et al. (2020) propose a local loss method to avoid using
global backpropagation over the whole network, which can make the weights be updated
along with forward pass. Dirgová Luptáková et al. (2022) use transformer to classify activ-
ities. Wang et al. (2019) propose a CNN that employs the based on attention method to



An Enhanced Human Activity Recognition Algorithm with Positional Attention

detect weakly labeled sensor signal data. Gao et al. (2020) propose adding CBAM attention
to CNN.

Meanwhile, RNN is presented and successfully used in HAR, which can capture long-
term data in time series. Zeng et al. (2018) combine LSTM with two attention mechanisms
for HAR: temporal attention and spatial attention. These mechanisms can be used to
highlight significant parts of time series sensor data and sensor’s channel. To ensure the
continuity of time series signals, RNN must include regularization terms for temporal and
sensor attention. Ma et al. (2019) propose AttnSense, a novel attention-based multimodal
neural network model. AttnSense provides a framework for capturing the relationships
between signal in both spatial and temporal dimensions by combining attention processes
with Gated Recurrent Units (GRU) networks. This method shows advantages in prioritized
sensor selection and improves comprehensibility.

Another extensively used member of the deep learning family is made use of a com-
bination of CNN layers and RNN layers (Dua et al. (2021)). Qian et al. (2019) propose
meaningful features of automatic learning, including statistical features, temporal features,
and spatial features, in which the statistical module’s goal is to discover sensor location
correlations, the temporal module’s goal is to discover temporal sequence relationships, the
spatial module’s goal is to discover sensor channel positional correlations.

In recent literature, several neural network-based GCN models is proposed. Huang
et al. (2021a) propose a shallow CNN model that extracts cross convolution feature chan-
nel communication in the HAR area, where all convolution feature channels in the same
layer interact comprehensively to capture more discriminative aspects of sensor data. One
convolution feature channel can interact with all other channels via GCN to reduce re-
dundant information accumulated across channels, which is more efficient for constructing
lightweight deep models.

2.3. Attention mechanisms

Attention processes are advantageous for a variety of tasks in computer vision, including
image classification and segmentation. SENet (Jie et al. (2017)) is one of the effective
examples, which efficiently squeezes each 2D feature map to generate interdependencies
among convolution feature channels. CBAM (Woo et al. (2018)) extends this idea by adding
spatial attention through convolution process with a large kernal size. Later research, such
as GALA (Linsley et al. (2018)) and AA (Bello et al. (2020)), build on this concept by
employing other spatial attention processes or building improved attention blocks. Dual
Attention Network (DAN) (Fu et al. (2020)) uses Non-Local based convolution feature
channel attention and spatial attention for semantic segmentation. As self-attention is
proposed, the transformer model based on self-attention becomes popular. Wu et al. (2021)
propose vision transformer, which establish position embedding in image by divide signal
image to image patch. And then, they extract features in every image patch. Finally, they
establish a global association between the learned position information and local feature
information. All the above strategies improve the performance in computer vision area by
learning effective attention imformation.
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3. METHODOLOGY

This section introduces the PA mechanism in detail. We denote multiple raw sensor signals
to a predetermined window size as S = {S1, S2, . . . , Sn}, where Si ∈ Rm×n, Si is signal
image given to network, m is the length of the time series, and n denotes the channel
dimension.
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Figure 1: The Model of Positional Attention Based on Resnet.

3.1. Model Overview

HAR is challenging as it is affected by many factors, such as activity duration difference and
participant’s activity difference. Based on the above motivation, we design an end-to-end
trainable neural network structure for HAR. The proposed network structure consists of
two key operations to learn HAR related feature representations.

• Positional information embedding: This operation extracts long-range interaction
through single dimension global pooling.

• Positional weights generation: This operation uses convolution and nonlinear opera-
tions to generate positional weights information and then multiplies it with original
input.

We can develop a trainable model for the HAR problem by putting the above learned
features together and establishing an unified architecture. The overall illustration of the
proposed model is shown in Fig.1.

3.2. Positional Information Embedding

The PA mechanism encodes both sensor’s cross-channel relationships and long-range depen-
dencies. It is important to include the attention process in the HAR model, as suggested by
Ma et al. (2019). Therefore, we use PA mechanism in HAR classfication. We discover that
the global average pooling procedure builds connections inside the feature channel, which
can increase the model’s sensitivity to the feature channels information. For given input
X ∈ RC×H×W , where the X is the signal feature map, the global average pooling step can



An Enhanced Human Activity Recognition Algorithm with Positional Attention

be formulated as follows:

P =
1

H ×W

H∑
i=1

W∑
j=1

X(i, j) (1)

where P is the output of the global average pooling. In Eqn.(1), the global pooling operation
will loss the positional correlation information.

ph(h) =
1

W

∑
0≤i<W

X(h, i) (2)

pw(w) =
1

H

∑
0≤j<H

X(j, w) (3)

To encode positional correlation information along temporal and sensor’s channel dimen-
sions, we employ two directional pool kernals (H, 1) and (1,W ) depending on the input X.
Where the W − direction is responsible for the relationship information between sensor’s
channels, and the H − direction captures temporal long-range dependency.

The aforementioned procedures are described by Eqn.(2) and Eqn.(3). These two im-
provements enable the attention mechanism to capture long-range dependencies along a
single temporal-axis and maintain correlations among sensor’s channel-axis, allowing the
networks to find the items of interest more precisely.

3.3. Positional Weights Generation

Eqn.(2) and Eqn.(3), as previously stated, allow a global receptive field and exact positional
information. To utilize the resultant expressive representations, we introduce the second
design, called positional weights generation. Our design is based on the three standard listed
below. Firstly, the new design should be structurally simple and computationally efficient.
Secondly, it can fully utilize the acquired positional information to precisely highlight the
areas of interest. Thirdly, it should be able to capture inter-channel connections well, which
are shown to be important in previous research (Jie et al. (2017)).

Our positional weights generation method is as follows. Firstly, in order to normalize
the enhanced features, we concatenate the outputs of Eqn.(4) and Eqn.(5). Secondly, we
use the 1× 1 convolution process and sigmoid activation function to induce nonlinearity.

mid = δ
(
Conv

([
ph, pw

]))
(4)

where δ is sigmoid activation function, Conv is convolution function and [·, ·] is concate-
nation operation. Finally, we split the mid into two distinct tensors along the spatial
dimension (midh and midw), then apply two 1× 1 convolutions to revert to the input size.
The formula is listed below:

outh = σ
(
Conv

(
midh

))
(5)

outw = σ (Conv (midw)) (6)
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where σ is the sigmoid activation function, Conv is the 1×1 convolution operation. After
that, the outputs outh and outw are enlarged and utilized as attention weights. Meanwhile,
our PA mechanism output Y is expressed as follows:

Y (i, j) = X(i, j)× outh(i)× outw(j) (7)

Unlike convolution feature channel attention, that examines the relevance of distinct
channels, our PA mechanism incorporates spatial information encoding. The input tensor
X receives attention in both horizontal and vertical directions simultaneously. The area of
interest appears in the relevant row and column in each element of the two attention maps.
This encoding process permits our PA mechanism to selecet the exact position of the area
of interest, which aids the overall model’s recognition.

3.4. Implementation

As this paper’s aim is to research a more effective method for augmenting the convolutional
features of HAR networks, we use two architectures (Resnet and 3-layers CNN) to show
the benefits of PA mechanism over previous HAR methods. The Resnet only includes three
sets of convolutional blocks, each of which consists of two convolutional layers of the same
kernel size. In Resnet, we add the PA mechanism to the former two sets, and in 3-layers
CNN, we add the PA mechanism to every layer. The Fig.1 shows the constructure of the
Resnet with PA mechanism.

4. EXPERIMENT

4.1. Datasets

In order to evaluate the effectiveness of the proposed model, we conduct extensive ex-
periments based on five public HAR datasets. The UCIHAR dataset (Anguita et al.
(2012)), PAMAP2 dataset (Reiss and Stricker (2012)), UniMib-SHAR dataset (Micucci
et al. (2017)), DSADS (Altun et al. (2010)), and MHEALTH dataset (Banos et al. (2014))
are employed as the five benchmark HAR datasets. The classification number, division
proportion, and window size of the datasets are shown in Table 1, and the class description
of five daatasets is shown in Table 2.

Table 1: Briefly Description of The Operation for The HAR Datasets.

Operation
Dataset

UCIHAR PAMAP2 UniMib-SHAR DSADS MHEALTH

Number of Classification 6 12 17 9 13

Ratio of Train-set 70% 80% 70% 70% 75%

Ratio of Test-set 30% 20% 30% 30% 25%

Sliding Window Size 128 512 151 None 100

Overlap Rates 50% 50% 50% None 50

UCIHAR Dataset This dataset is collected with a group of 30 participants ranging in
age from 19 to 48 years old. Each subject conducted six actions while wearing a smartphone
(Samsung Galaxy S II) on their waist, including walking, going upstairs, walking downstairs,



An Enhanced Human Activity Recognition Algorithm with Positional Attention

Table 2: Class Description of UCIHAR, PAMAP2, UniMib-SHAR, DSADS and MHEALTH
Datasets.

Dataset The Category of Activity

UCIHAR Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing, Lying

PAMAP2
Lying, Sitting, Standing, Walking,Running, Cycling, Nordic Walking

Descending Stairs, Vacuum Cleaning, Ironing, Rope Jumping, Ascending Stairs

UniMib-SHAR

StandingUpFS, StandingUpFL, Running, SittingDown, GoingUps, FallingBack,

Syncope, Jumping, FallingLeft, GoingdownS, Walking, Falling with PS

LyingDownS, FallingFrow, HittingObstacle, FallingRight, FallingBackSC

DSADS

Moving Around in an Elevator, Standing in an Elevator Still, Playing Basketball,

Walking on a Treadmill 4 km/h (in Flat Position and in 15 Deg Inclined Position),

Exercising on a Stepper, Exercising on a Cross Trainer, Descending Stairs,

Moving Around in an Elevator, Walking in a Parking Lot

MHEALTH

Standing Still, Sitting and Relaxing, Lying Down, Walking, Climbing Stairs,

Waist Bends Forward, Frontal Elevation of Arms,Knees Bending,

Cycling, Jogging, Running, Jump front & back, NULL

lying, sitting, and standing. The accelerometer and gyroscope sensors data streams are
sampled at a rate of 50 Hz to capture the subjects’ actions. There are nine characteristics
in the raw time series data (i.e., body acceleration, total acceleration, and gyroscope signals
in all three directions).

PAMAP2 Dataset This dataset is collected from nine volunteers. The volunteers per-
formed 12 mandatory different activities including walking, cycling, rope jumping, etc.
Multiple sensors including chest sensor, wrist sensor and ankle sensor are applied to record
the data. The 100 Hz sampling rate is downsampled to 33.3 Hz for further analysis. Sport
intensity is estimated using a heart rate monitor with a sample rate of 9 Hz.

UniMib-SHAR Dataset This dataset is collected by scholars from the University of
Milano-Bicocca, which is intended to identify a variety of ”falling” activities. Data is
collected from 30 participants ranging in age from 18 to 60 years old using an Android
smartphone. During the data collection process, all participants must wear smart phones
in their left and right pockets. The sensor signals is sampled at 50 Hz.

DSADS Dataset The DSADS dataset collects 19 activities performed for five minutes
by 8 participants. We used nine of these activities. The entire signal length for each
participant’s activity is five minutes. The participants are asked to complete the activities
in their style. The activities occur at three campus locations: the Bilkent University Sports
Hall, the Electrical and Electronics Engineering Building, and a flat outdoor area. The
sensor signals is sampled at 25 Hz.

MHEALTH Dataset The MHEALTH dataset contain recordings of body movements
and vital signals from 10 participants with various characteristics. Each participants com-
plete 12 exercises in an out-of-lab setting with no constraints. Three inertial measurement
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units (IMUs) are attached to the chest, right wrist, and left ankle of the participants, re-
spectively. In addition, the IMU on the chest provides two-lead ECG readings. The sensor
signals is sampled at 50 Hz.

Table 3: Structure of 3-Layers Resnet and CNN (conv1-128 represents convolutional layer
with 1 input channel and 128 out channels, −→ represents input from the first
layer to the second layer, FC represents full connection layers. The first line (bold
type) is the parameters of Resnet, and the second line is the parameters of CNN).

Dataset Structure

UCIHAR
conv1-conv128−→conv256-conv256−→conv384-conv384−→FC

conv64−→conv128−→conv256−→FC

PAMAP2
conv1-conv128−→conv256-conv256−→conv384-conv384−→FC

conv128−→conv256−→conv384−→FC

UniMib-SHAR
conv1-conv128−→conv256-conv256−→conv384-conv384−→FC

conv128−→conv256−→conv384−→FC

DSADS
conv1-conv128−→conv256-conv256−→conv384-conv384−→FC

conv128−→conv256−→conv384−→FC

MHEALTH
conv1-conv128−→conv256-conv256−→conv384-conv384−→FC

conv128−→conv256−→conv384−→FC

4.2. Experimental Details

Platform All the models are trained/tested on two Nvidia K80 12GB GPU, Intel E5-2620
CPU, 64 GB memory.

Values of Hyperparameters Used in the Baseline Table 3 summarizes the values
of the hyperparameters employed. The batch size in the UniMib-SHAR dataset is set to
128. In other datasets, the batch size is set to 64. In all datasets, the initial learning rate
is 0.001. The default values are utilized for the other hyperparameters.
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Figure 2: Test Accuracies with Different Models on Five Datasets.
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Ablation Studies PA mechanism is critical. We execute a series of ablation tests to
illustrate the performance of the proposed positional attenttion mechanism, the results
are displayed in Table 4. To demonstrate the significance of positional information, we
eliminate PA mechanism. As seen in Table 4, adding positional information improves the
network greatly over the basic network. On the datasets UCIHAR, PAMAP2, UniMib-
SHAR, DSADS, and MHEALTH the 3-layer Resnet is used to improve 0.62%, 0.46%, 1.12%,
0.64%, 0.18, and 1.44% respectively, and the 3-layer CNN is used to improve 0.75%, 1.21%,
3.00%, 2.11%, and 4.01% respectively. These experiments show that the PA mechanism is
necessary for HAR classification.

Table 4: mAcc(%) of Models on Various Datasets.

Methods
Dataset

UCIHAR PAMAP2 UniMib-SHAR DSADS MHEALTH

Resnet + Positional Attention 97.65 97.16 78.84 94.85 99.45

Resnet Baseline 97.19 96.04 78.20 94.67 98.01

3-Layers CNN + Positional Attention 96.58 96.84 77.83 95.40 99.64

3-Layers CNN Baseline 95.83 95.63 74.83 93.29 95.63

Huang et al. (2021b) 96.40 95.67 77.55 94.44 98.76

Huang et al. (2021a) 94.68 94.86 75.42 94.52 96.68

Qian et al. (2019) 84.13 84.55 73.21 82.25 90.50

Teng et al. (2020) 95.23 94.59 76.19 94.29 95.51

Gao et al. (2020) 96.65 93.79 77.29 94.82 99.18

Comparison with Other Methods Our method is compared to both baseline and
state-of-the-art methods. The results are shown in the Table 4 and Fig.2. Because feature-
engineering-based machine learning approaches are difficult to scaled, we compare PA-HAR
model with deep learning-based methods in this study. We follow five HAR classification
methods as comparison, including Selective CNN (Huang et al. (2021b)), Shallow Convo-
lutional (Huang et al. (2021a)), DDNN (Qian et al. (2019)), Local Loss CNN (Teng et al.
(2020)) and DanHAR (Gao et al. (2020)). It can be seen from Table 4 that the PA method
based on Resnet proposed by us has significantly improved on the five data sets compared
with SOTA. Our method outperforms SOTA methods 1.0%, 1.49%, 1.29%, 0.58% and
0.46% on five datasets (UCIHAR, PAMAP2, UniMib-SHAR, DSADS, and MHEALTH)
respectively.

4.3. Discussion

The accuracy of the PA-HAR model on the five datasets is improves respectively, as shown in
Fig.2. Take PAMAP2 dataset as an example, as shown in Fig.2(b), our results show that the
classification model with PA mechanism has a significant improvement in both convergence
speed and accuracy. According to our experiment results, as seen in Table 4, we found that
the accuracy of the model increased with the addition of positional information. The long-
range dependency and sensor’s cross-channel information are lost by convolution operation.
It is reasonable that Eqn.(2) as well as Eqn.(3) extract the global temporal and sensor’s
channel information, and Eqn.(5) as well as Eqn.(6) use convolution to extract precisely
positional information.
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Figure 3: The Accuracy of PA Mechanism at Different Layers in MHEALTH Dataset (The
PA1 represents insert the PA mechanism into after the first layer of network and
PA1+2 represents insert the PA mechanism into after the first layer as well as
second layer of network).

On the MHEALTH dataset, we perform ablation experiments to evaluate the effect of
PA mechanism at various layers. As indicated in Fig.3, in CNN model, the PA mechanism
should be added after the first, second, and third layers for maximum efficiency. It is due
to the fact that the signal features at high-level have richer positional information. The
convolution process maps single-channel data to multi-channel data, and PA extracts high-
level information. In Resnet model, we add the PA mechanism to the first and second
blocks. Although the highest accuracy is obtained by adding PA mechanism after each
block, it causes an increase in parameters and the accuracy is only improved by 0.49%.

The experimental results show that our PA-HAR model is more robust than other meth-
ods. In LSTM-CNN related methods, for instance, DDNN (Qian et al. (2019)) is obviously
inferior on UCIHAR and PAMAP2, and shallow convolution (Huang et al. (2021a)) is in-
ferior on UniMib-SHAR. It is reasonable that LSTM has a forget gate, which will lose
long-range dependency. And because the size of the CNN convolution kernel is constrained,
cross convolution feature channel information cannot be taken into account overall. In the
CBAM-attention related method (Gao et al. (2020)), the convolutional feature channel di-
mension in spatial attention mechanism of CBAM is squeezed to 1, leading to information
loss. Second, CBAM encodes local spatial information using a convolutional process with
7 × 7 kernal size, which cannot cputure the global information. Furthermore, the CBAM-
based HAR method is inferior on PAMAP2. In conclusion, our method perform well on
multiple datasets.

Table 5: The Influence of H And W Attentions (The H is the temporal attention and W
is the sensor’s channel attention).

Network Baseline +H +W +H +W

mAcc 74.83% 76.69% 77.31% 77.83%

Table 6: The Execution Time Comparison on Different Methods.

Method Resnet Resnet + PA Selective-CNN Shallow-CNN DDNN Local-Loss DanHAR

Time (s) 0.0481 0.0611 0.1364 0.9972 0.0468 0.0452 0.0637
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Figure 4: Confusion Matrices on Unimib-SHAR Dataset.

As shown in Table 5, take UniMib-SHAR dataset as an example, we conclude that
adding both long-range dependency and cross sensor’s channel relationship can increase
the classification accuracy of the network. when both attention mechanisms are added, we
obtain the highest accuracy.

We conducted an execution time comparison for the test part of the MHEALTH dataset,
which includes 1285 test data, and the results are shown in the following table. As shown
in Table 6, though the proposed method is not the fastest, it does not have apparent
disadvantages. Our method is not superior in time execution. The main reason is our PA
mechanism, which increases the convolution and pooling processes, leading to an increase
in execution time. Several results that perform better, such as the Local-Loss (Teng et al.
(2020)) method, only use cosine similarity to make local losses upstream of the network.
DDNN (Qian et al. (2019)) use fully connected mapping to high-dimensional space to extract
the maximum mean difference.

According to our results, the propose model can be viewed as an additional step of
operation based on CNN, which has better performance than CNN or other SOTA classi-
fication approaches. Referring to other HAR researches (Huang et al. (2021a); Gao et al.
(2020)), to illustrate CNN’s superiority in classification, we employ a confusion matrix to
associate an explicit feature representation. The proposed model and the baseline CNN’s
confusion matrices on the Unimib-SHAR dataset for the HAR task are shown in Fig.4(a)
and Fig.4(b). When comparing the PA-HAR approach to the baseline CNN for two similar
activities, “fallingback” and “fallingright”, it is clear that the PA-HAR method has fewer
misclassifications.

5. CONCLUSION

The PA mechanism is used for the first time in a HAR situation in this study. Extensive
experiments are conducted on five public HAR datasets by adding the attention mechanism
in both the horizontal and vertical directions: the UCI-HAR dataset, the PAMAP2 dataset,
the UniMibSHAR dataset, the DSADS dataset, and the MHEALTH dataset. For each
dataset, we create a baseline Resnet and CNN. The experimental results have shown that the
PA-HAR approach outperforms the state-of-the-art approaches by adding PA mechanism.
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However, this method is not suitable for semi-supervised or unsupervised classification.
Therefore, we want to expand the PA-HAR model for semi-supervised or unsupervised
settings in the future, where the quantity of labeled training data is restricted.
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